Propositional Logic: Semantic Entailment

Alice Gao Lecture 6

Based on work by J. Buss, L. Kari, A. Lubiw, B. Bonakdarpour, D. Maftuleac, C. Roberts, R. Trefler, and P. Van Beek

Outline

Propositional Logic: Semantic Entailment Satisfying a set of formulas Definition of entailment Proving/Disproving an entailment Subtleties of an entailment By the end of this lecture, you should be able to

(Semantic entailment)

- Determine if a set of formulas is satisfiable.
- Define semantic entailment.
- Explain subtleties of semantic entailment.
- Prove that a semantic entailment holds/does not hold by using the definition of semantic entailment, and/or truth tables.

Logical Deduction and Semantic Entailment

- Logic is the science of reasoning.
- The process of logical deduction is formalized by the notion of semantic entailment.
- Is a conclusion true based on a set of premises that we assume to be true?

Let Σ be a set of premises. Let φ be the conclusion. A truth valuation t satisfies Σ (denoted $\Sigma^t = T$): For any formula α , if $\alpha \in \Sigma$, then $\alpha^t = T$. CQ 28 and 29 Is Sigma Satisfiable?

Let Σ be a set of premises. Let φ be the conclusion.

 Σ (semantically) entails φ (denoted $\Sigma \models \varphi$):

For any truth valuation t, if $\Sigma^t = T$, then $\varphi^t = T$.

 Σ does not entail φ (denoted $\Sigma \not\models \varphi$):

There exists a truth valuation t such that $\Sigma^t = T$ and $\varphi^t = F$.

Consider the entailment $\Sigma \models \varphi$. To prove that the entailment holds, we need to consider

- (A) Every truth valuation t under which $\Sigma^t = T$.
- (B) Every truth valuation t under which $\Sigma^t = F$.
- (C) One truth valuation t under which $\Sigma^t = T$.
- (D) One truth valuation t under which $\Sigma^t = F$.

Consider the entailment $\Sigma \models \varphi$.

To prove that the entailment does NOT hold, we need to consider

(A) Every truth valuation t under which $\Sigma^t = T$ and $\varphi = T$. (B) Every truth valuation t under which $\Sigma^t = T$ and $\varphi = F$. (C) One truth valuation t under which $\Sigma^t = T$ and $\varphi = T$. (D) One truth valuation t under which $\Sigma^t = T$ and $\varphi = F$. Proving/disproving an entailment using a truth table

Let $\Sigma = \{(\neg(p \land q)), (p \rightarrow q)\}, x = (\neg p), and y = (p \leftrightarrow q)$. Based on the truth table, which of the following statements is true?

A) $\Sigma \models x \text{ and } \Sigma \models y$. B) $\Sigma \models x \text{ and } \Sigma \not\models y$. C) $\Sigma \not\models x \text{ and } \Sigma \models y$. D) $\Sigma \not\models x \text{ and } \Sigma \not\models y$.

р	q	$(\neg(p \land q))$	(p ightarrow q)	(<i>¬p</i>)	$(p \leftrightarrow q)$
F	F	Т	Т	Т	Т
F	Т	Т	Т	Т	F
Т	F	Т	F	F	F
Т	Т	F	Т	F	Т

Proving/disproving an entailment using the definition

Exercise. Show that $\{(\neg(p \land q)), (p \rightarrow q)\} \models (\neg p)$. Exercise. Show that $\{(\neg(p \land q)), (p \rightarrow q)\} \not\models (p \leftrightarrow q)$.

Subtleties of an entailment

Consider the entailment $\Sigma \models \varphi$.

Does the entailment hold under each of the following conditions?

- 1. Σ is the empty set.
- 2. Σ is not satisfiable.
- 3. φ is a tautology.
- 4. φ is a contradiction.

CQ 34-37 Subtleties of an entailment