
CS245 Logic and Computation
Alice Gao

June 26, 2018

Contents
1 Propositional Logic 3

1.1 Translations . 3
1.2 Structural Induction . 9
1.3 Tautology, Contradiction, and Satisfiable but Not a Tautology 13
1.4 Logical Equivalence . 14
1.5 Analyzing Conditional Code . 16
1.6 Circuit Design . 18
1.7 Semantic Entailment . 23
1.8 Natural Deduction . 26

1.8.1 Strategies for writing a natural deduction proof 26
1.8.2 And elimination and introduction . 27
1.8.3 Implication introduction and elimination 28
1.8.4 Or elimination and introduction . 30
1.8.5 Negation introduction and double negation elimination 32
1.8.6 Negation elimination . 34
1.8.7 Putting it together! . 35
1.8.8 Other problems . 38

1.9 Soundness and Completeness of Natural Deduction 39
1.9.1 The soundness of inference rules . 39
1.9.2 Soundness and Completeness of Natural Deduction 41

2 Predicate Logic 44
2.1 Translations . 44
2.2 Semantics of Predicate Formulas . 50

2.2.1 Evaluating Formulas with No Variables 50
2.2.2 Evaluating Formulas with Free Variables Only 52
2.2.3 Evaluating Formulas with Free and Bound Variables 54
2.2.4 Evaluating Formulas with Bound Variables Only 56

2.3 Semantic Entailment . 60

1

2.4 Natural Deduction . 65
2.4.1 Forall-elimination . 66
2.4.2 Exists-introduction . 66
2.4.3 Forall-introduction . 67
2.4.4 Exists-elimination . 68
2.4.5 Putting them together . 69

2.5 Soundness and Completeness of Natural Deduction 72
2.5.1 Proving that an inference rule is sound or not sound 72
2.5.2 Proofs using the soundness and completeness theorems 76

2

1 Propositional Logic
1.1 Translations
Exercise 1. Translate the following three sentences into propositional logic.

• Nadhi will eat a fruit if it is an apple.

• Nadhi will eat a fruit only if it is an apple.

• Nadhi will eat a fruit if and only if it is an apple.

n: Nadhi will eat a fruit.
a: The fruit is an apple.

• Nadhi will eat a fruit if it is an apple.
Translation: (a → n)
If the fruit is an apple, we know that Nadhi will eat it.
If the fruit is not an apple, Nadhi may or may not eat it.
The set of apples is a subset of the set of fruits that Nadhi eats.

• Nadhi will eat a fruit only if it is an apple.
Translation: (n → a)
If Nadhi eats a fruit, then we know that it is an apple.
If Nadhi does not eat a fruit, the fruit may or may not be an apple.
The set of fruits that Nadhi eats is a subset of the set of apples.

• Nadhi will eat a fruit if and only if it is an apple.
Translation: (n ↔ a)
If Nadhi eats a fruit, then it is an apple.
If Nadhi does not eat a fruit, then it is not an apple.
The set of fruits that Nadhi eats and the set of apples coincide.

3

Exercise 2. Translate the following sentence into multiple propositional formulas. Show
that they are logically equivalent using a truth table.
Soo-Jin will eat an apple or an orange but not both.

a: Soo-Jin will eat an apple. o: Soo-Jin will eat an orange.
This sentence translates into an exclusive OR. There are many ways of writing down a
formula for an exclusive OR.

• ((a ∨ o) ∧ (¬(a ∧ o)))
a or o is true, but not both.

• ((a ∨ o) ∧ ((¬a) ∨ (¬o)))
a or o is true, and a is false or o is false.

• ((a ∧ (¬o)) ∨ ((¬a) ∧ o))
a is true and o is false, or a is false and o is true.

• (¬(a ↔ o))
It is not the case that a and o have the same truth value.

• ((¬a) ↔ o) ≡ (a ↔ (¬o))
negated a and o have the same truth value.

4

Exercise 3. Translate the following sentence into at least three syntactically different propo-
sitional formulas. Show that they are logically equivalent using a truth table.
If it is sunny tomorrow, then I will play golf, provided that I am relaxed.

• s: It is sunny tomorrow.

• g: I will play golf.

• r: I am relaxed.

I can think of three ways of translating this sentence into a propositional formula.

• Interpretation 1: If it is sunny tomorrow, then, if I am relaxed, then I will play golf.
Translation: (s → (r → g)).
Sunny tomorrow is the premise for the first.

• Interpretation 2: If it is sunny tomorrow and I am relaxed, then I will play golf.
Translation: ((s ∧ r) → g).
Sunny tomorrow and being relaxed together are premises for playing golf.

• Interpretation 3: If I am relaxed, then, if it is sunny tomorrow, I will play golf.
Translation: (r → (s → g)).
Being relaxed is the premise for the rest.

All three interpretations are logically equivalent.

5

Exercise 4. Translate the following sentence into a propositional formula.
If I ace CS 245, I will get a job at Google; otherwise I will apply for the Geek
Squad.

Define the propositional variables:

• a: I ace CS 245.

• g: I will get a job at Google.

• s: I will apply for the Geek Squad.

First, let’s break down this sentence into two parts by the semicolon.
The first part translates into an implication because of the key word “if”. It becomes (a → g).
In the second part, “otherwise” means that “if I don’t ace CS 245”. After rephrasing, the
second part becomes “If I don’t ace CS 245, then I will apply for the Geek Squad.” This is
another implication ((¬a) → s).
Now the tricky part is: what connective should we use to connect the two parts together?
Two natural options are ∧ and ∨. The ∨ option seems possible because the sentence could
be rephrase as “If I ace CS 245, ...; or otherwise”
The correct connective to use is ∧ for the following reasons.
Let’s consider the scenario in which I ace CS 245, I don’t get a job at Google and I apply for
the Geek Squad. In this case, is the sentence true or false? Intuitively, the sentence should
be false, because the first implication is violated when I ace CS 245 but do not get a job at
Google. Now let’s look at the truth values of the two possible propositional formulas:

• If we use ∧ as the connective, the resulting formula ((a → g) ∧ ((¬a) → s)) is false
in this scenario. The truth value of the formula is the same as the truth value of the
sentence in this scenario.

• If we use ∨ as the connective, the resulting formula ((a → g) ∧ ((¬a) → s)) is true in
this scenario. This truth value of the formula is different from the truth value of the
sentence in this scenario. Therefore, ∨ is not the correct connective to use because the
resulting formula has a different meaning from the formula.

6

Exercise 5. Translate the following sentence into two propositional formulas and prove that
the formulas are not logically equivalent using a truth table.
Sidney will carry an umbrella unless it is sunny.

Define the propositional variables.
u: Sidney will carry an umbrella.
s: It is sunny.

• Interpretation 1:
Intuitively, many people understand “unless” as an “exclusive OR”, which means that
exactly one of the two parts of the sentence is true at a time.
With this interpretation, “unless” is equivalent to an “if and only if not”. The sentence
is true under the following two scenarios:

– It is not sunny and Sidney carries an umbrella.
– It is sunny and Sidney does not carry an umbrella.

Note that this interpretation does not allow Sidney to carry an umbrella when it is
sunny. So the sentence is false when u and s are both true.
In propositional logic, this is equivalent to

((¬u) ↔ s) (1)
≡ ((¬u) ∧ s) ∨ (u ∧ (¬s))) (2)
≡ ((u ∨ s) ∧ (¬(u ∧ s))) (3)
≡ ((u ∨ s) ∧ ((¬u) ∨ (¬s))). (4)

All the formulas above are equivalent. They look different but their meanings are the
same.

• Interpretation 2:
Alternatively, you may think of “unless” as meaning “if not”. Then the sentence
becomes: if it is not sunny, then Sidney will carry an umbrella. In propositional logic,
this becomes:

((¬s) → u) (5)
≡ ((¬(¬s)) ∨ u) (6)
≡ (s ∨ u). (7)

Under this interpretation, this sentence is true under three scenarios:

– It is not sunny and Sidney carries an umbrella.

7

– It is sunny and Sidney does not carry an umbrella.
– It is sunny and Sidney carries an umbrella.

Notice that this interpretation allows Sidney to carry an umbrella when it is sunny. So
the sentence is true when u and s are both true.

8

1.2 Structural Induction
Theorem 1. Every well-formed formula has an equal number of opening and closing brackets.

Proof by Structural Induction. Let P(φ) denote that the well-formed formula φ has an equal
number of opening and closing brackets. Let op(φ) and cl(φ) denote the number of opening
and closing brackets of φ respectively.

Base case: φ is a propositional variable q. Prove that P(q) holds.
q has zero opening and zero closing bracket. Thus, P(φ) holds.

Induction step:

Case 1: φ is (¬a), where a is well-formed.
Induction hypothesis: Assume that P(a) holds.
We need to prove that P((¬a)) holds.

op((¬a)) = 1 + op(a) (8)
= 1 + cl(a) By induction hypothesis (9)
= cl((¬a)) (10)

Thus, P((¬a)) holds.

Case 2: φ is (a ∗ b) where a and b are well-formed and ∗ is a binary connective.
Induction hypothesis: Assume that P(a) and P(b) hold.
We need to prove that P((a ∗ b)) holds.

op((a ∗ b)) = 1 + op(a) + op(b) (11)
= 1 + cl(a) + cl(b) By induction hypothesis (12)
= cl(a ∗ b) (13)

Thus, P((a ∗ b)) holds.

By the principle of structural induction, P(φ) holds for every well-formed formula φ.
QED

9

Theorem 2. Every proper prefix of a well-formed formula has more opening than closing
brackets.
Proof by Structural Induction. Let P(φ) denote that every proper prefix of the well-formed
formula φ has more opening than closing brackets.
Let op(φ) and cl(φ) denote the number of opening and closing brackets of φ respectively.

Base case: φ is a propositional variable q. Prove that P(q) holds.

Induction step:

Case 1: φ is (¬a), where a is well-formed.
Induction hypothesis: Assume that P(a) holds.
We need to prove that P((¬a)) holds.
Let m denote any proper prefix of a. There are four possible proper prefixes of
(¬a): (, (¬, (¬m, and (¬a. We will prove the four cases separately.

op(() = 1 (14)
cl(() = 0 (15)
op(() > cl(() (16)

op((¬) = 1 (17)
cl((¬) = 0 (18)
op((¬) > cl(() (19)

op((¬m) (20)
= 1 + op(m) (21)
> 1 + cl(m) By the induction hypothesis on m (22)
> cl(m) (23)
= cl((¬m) (24)

op((¬a) (25)
= 1 + op(a) (26)
= 1 + cl(a) By Theorem 1 and a is a well-formed formula (27)
> cl(a) (28)
= cl((¬a) (29)

10

Case 2: φ is (a ∗ b) where a and b are well-formed and ∗ is a binary connective.
Let m and n denote any proper prefix of a and b respectively.
Induction hypothesis: Assume that P(a) and P(b) hold. In other words, P(m)
and P(n) are true.
We need to prove that P((a ∗ b)) holds.
There are six possible proper prefixes of (a ∗ b): (, (m, (a, (a∗, (a ∗ n, and (a ∗ b.

op(() = 1 (30)
cl(() = 0 (31)
op(() > cl(() (32)

op((m) (33)
= 1 + op(m) (34)
> 1 + cl(m) By the induction hypothesis on m (35)
> cl(m) (36)
= cl((m) (37)

op((a) (38)
= 1 + op(a) (39)
= 1 + cl(a) By Theorem 1 and a is a well-formed formula (40)
> cl(a) (41)
= cl((a) (42)

op((a∗) (43)
= 1 + op(a) (44)
= 1 + cl(a) By Theorem 1 and a is a well-formed formula (45)
> cl(a) (46)
= cl((a∗) (47)

11

op((a ∗ n) (48)
= 1 + op(a) + op(n) (49)
= 1 + cl(a) + op(n) By Theorem 1 and a is a well-formed formula (50)
> 1 + cl(a) + cl(n) By the induction hypothesis on n (51)
> cl(a) + cl(n) (52)
= cl((a ∗ n) (53)

op((a ∗ b) (54)
= 1 + op(a) + op(b) (55)
= 1 + cl(a) + cl(b) By Theorem 1 and a is a well-formed formula (56)
> cl(a) + cl(b) (57)
= cl((a ∗ b) (58)

By the principle of structural induction, P(φ) holds for every well-formed formula φ.
QED

12

1.3 Tautology, Contradiction, and Satisfiable but Not a Tautology
Exercise 6. Determine whether each of the following formulas is a tautology, satisfiable but
not a tautology, or a contradiction.

• p
Answer: Satisfiable but not a tautology.
Reason: True when p is true and false when p is false.

• ((r ∧ s) → r)
Answer: Tautology.
Reason: When r is true, the conclusion of the implication is true, so the implication
is true. When r is false, the premise of the implication is false, so the implication is
vacuously true.

• ((¬(p ↔ q)) ↔ (q ∨ p))
Answer: Satisfiable but not a tautology
Reason: It’s tempting to say “these two formulas don’t mean the same thing so the
biconditional is false”. However, go back to truth values. When p is true and q is false,
both sides of the biconditional are true and the biconditional itself is true. When p
and q are both true, the left side is false but the right is true, and so the biconditional
is false.

• ((((p ∨ q) ∧ (p ∨ (¬q))) ∧ ((¬p) ∨ q)) ∧ ((¬p) ∨ (¬q)))
Answer: Contradiction
Reason: The first half can be simplfiied to (p ∨ (q ∧ (¬q))), which is (p ∨ F) or p. The
second half can be simplfiied to (¬p). Thus, the entire formula is (p ∧ (¬p)), which is
a contradiction.

13

1.4 Logical Equivalence
Exercise 7. ”If it is sunny, I will play golf, provided that I am relaxed.”
s: it is sunny. g: I will play golf. r: I am relaxed.
There are three possible translations:

1. (r → (s → g))

2. ((s ∧ r) → g)

3. (s → (r → g))

Prove that all three translations are logically equivalent.

Part 1: (r → (s → g)) ≡ ((s ∧ r) → g).
Proof.

(r → (s → g)) (59)
≡ (r → ((¬s) ∨ g)) Implication (60)
≡ ((¬r) ∨ ((¬s) ∨ g)) Implication (61)
≡ (((¬r) ∨ (¬s)) ∨ g) Associativity (62)
≡ (((¬(r ∧ s)) ∨ g) De Morgan (63)
≡ ((r ∧ s) → g) Implication (64)
≡ ((s ∧ r) → g) Commutativity (65)

Part 2: (r → (s → g)) ≡ (s → (r → g)).
Proof.

(r → (s → g)) (66)
≡ (r → ((¬s) ∨ g)) Implication (67)
≡ ((¬r) ∨ ((¬s) ∨ g)) Implication (68)
≡ (((¬r) ∨ (¬s)) ∨ g) Associativity (69)
≡ (((¬s) ∨ (¬r)) ∨ g) Commutativity (70)
≡ ((¬s) ∨ ((¬r) ∨ g)) Associativity (71)
≡ ((¬s) ∨ (r → g)) Implication (72)
≡ (s → (r → g)) Implication (73)

14

Exercise 8. ”If it snows then I will not go to class but I will do my assignment.”
s: it snows. c: I will go to class. a: I will do my assignment.
There are two possible translations:

1. ((s → (¬c)) ∧ a)

2. (s → ((¬c) ∧ a))

Prove that the two translations are NOT logically equivalent.

Proof. We need to find a valuation t under which the two formulas have different values.
Consider the truth valuation t where t(s) = F, t(c) = T, and t(a) = F.
The two formulas have different values under t, as shown below.

• ((s → (¬c)) ∧ a)t = F

• (s → ((¬c) ∧ a))t = T

15

1.5 Analyzing Conditional Code
Consider the following code fragment:

if (input > 0 || !output) {
if (!(output && queuelength < 100)) {

P1
} else if (output && !(queuelength < 100)) {

P2
} else {

P3
}

} else {
P4

}

Define the propositional variables:

• i: input > 0

• u: output

• q: queuelength < 100

The code fragment becomes the following. We’ll call this code fragment #1.
if (i || !u) {

if (!(u && q)) {
P1

} else if (u && !q) {
P2

} else { P3 }
} else { P4 }

Code fragment #2:

if ((i && u) && q) {
P3

} else if (!i && u) {
P4

} else {
P1

}

Prove that these two pieces of code fragments are equivalent:

16

Prove that the condition leading to P2 is logically equivalent to F.
The condition leading to P2:

(((i ∨ (¬u)) ∧ (¬(¬(u ∧ q)))) ∧ (u ∧ (¬q))) (74)
≡ (((i ∨ (¬u)) ∧ (u ∧ q)) ∧ (u ∧ (¬q))) Double Negation (75)
≡ ((i ∨ (¬u)) ∧ ((u ∧ u) ∧ (q ∧ (¬q)))) Associativity, Commutativity (76)
≡ ((i ∨ (¬u)) ∧ (u ∧ (q ∧ (¬q)))) Idempotence (77)
≡ ((i ∨ (¬u)) ∧ (u ∧ F)) Contradiction (78)
≡ ((i ∨ (¬u)) ∧ F) Simplification 1 (79)
≡ F Simplification 1 (80)

(81)

Prove that the condition leading to P3 is true if and only if all three variables are true.
The condition leading to P3:

(((i ∨ (¬u)) ∧ (u ∧ q)) ∧ (¬(u ∧ (¬q)))) (82)
≡ (((i ∨ (¬u)) ∧ (u ∧ q)) ∧ ((¬u) ∨ (¬(¬q)))) De Morgan (83)
≡ (((i ∨ (¬u)) ∧ (u ∧ q)) ∧ ((¬u) ∨ q)) Double Negation (84)
≡ ((i ∨ (¬u)) ∧ (u ∧ (q ∧ ((¬u) ∨ q))))) Associativity (85)
≡ ((i ∨ (¬u)) ∧ (u ∧ q)) Simplification 2 (86)
≡ ((i ∨ (¬u)) ∧ u) ∧ q) Associativity (87)
≡ (((i ∧ u) ∨ ((¬u) ∧ u)) ∧ q) Distributivity (88)
≡ (((i ∧ u) ∨ F) ∧ q) Contradiction (89)
≡ ((i ∧ u) ∧ q) Simplification 1 (90)

Prove that the condition leading to P4 is true if and only if i is false and u is true.
The condition leading to P4:

(¬(i ∨ (¬u))) (91)
((¬i) ∧ (¬(¬u))) De Morgan (92)
≡ ((¬i) ∧ u) Double Negation (93)

The condition leading to P1:

((i ∨ (¬u)) ∧ (¬(u ∧ q))) (94)
≡ ((i ∨ (¬u)) ∧ ((¬u) ∨ (¬q))) De Morgan (95)
≡ ((¬u) ∨ (i ∧ (¬q))) Distributivity (96)

17

1.6 Circuit Design
Basic gates:

Problem: Your instructors, Alice, Carmen, and Collin, are choosing questions to be put on
the midterm. For each problem, each instructor votes either yes or not. A question is chosen
if it receives two or more yes votes. Design a circuit, which outputs yes whenever a question
is chosen.

1. Draw the truth table based on the problem description.

x y z output
T T T T
T T F T
T F T T
T F F F
F T T T
F T F F
F F T F
F F F F

2. Convert the truth table into a propositional formula.

3. Then, convert the formula to a circuit.

18

Solution 1:

1. Convert the truth table into a propositional formula.

Convert each row of the truth table to a conjunction.
If a variable is true in that row, write it down. Otherwise, if the variable is false, write
down its negation. Then connect all variables or their negations together using AND.

• ((x ∧ y) ∧ z)
• ((x ∧ y) ∧ (¬z))
• ((x ∧ (¬y)) ∧ z)
• (((¬x) ∧ y) ∧ z)

Connect all formulas into a disjunction.
(((((x ∧ y) ∧ z) ∨ ((x ∧ y) ∧ (¬z))) ∨ ((x ∧ (¬y)) ∧ z)) ∨ (((¬x) ∧ y) ∧ z))

2. Draw the circuit.

Making a circuit clear and readable can be challenging. Here are some advice on
drawing circuits:

• Determine where to put the inputs and the outputs first.
• Determine where to put the major gates (the OR at the end, and one AND for

each scenario).
• Try to draw wires horizontally or vertically, not at an angle.
• Indicate clearly whether two crossing wires are connected or not.

19

Solution 2:

1. Convert the truth table into a propositional formula.

Converts rows 1-3 to a propositional formula.
(x ∧ (y ∨ z))
Convert row 5 to a propositional formula.
(((¬x) ∧ y) ∧ z)
Connect all formulas into a disjunction.
((x ∧ (y ∨ z)) ∨ (((¬x) ∧ y) ∧ z))

2. Draw the circuit.

20

Solution 3:

1. Convert the truth table into a propositional formula.

Convert rows 1 and 5 into a propositional formula.
(y ∧ z)
Convert rows 2 and 3 into a propositional formula.
(x ∧ (y ⊕ z))
For convenience, we will use the symbol ⊕ to represent an exclusive OR. However, you
are only allowed to use this symbol in circuit design problems. You are not allowed to
use this symbol for other problems because it is not a basic connective based on the
definition of well-formed formulas.
Connect all formulas into a disjunction.
((y ∧ z) ∨ (x ∧ (y ⊕ z)))

2. Draw the circuit.

21

Solution 4 (contributed by Triman Kandola)

1. Convert the truth table into a propositional formula.
(((x ∧ y) ∨ (x ∧ z)) ∨ (y ∧ z))
This formula intuitively makes sense. If two people are already voting yes, then I don’t
care about what the third vote is.

2. Draw the circuit.

22

1.7 Semantic Entailment
Exercise 9. Let Σ = {(p → q), (q → r)}. Is Σ satisfiable? Why or why not?

Σ is satisfied by the truth valuation t where t(p) = T, t(q) = T and t(r) = T.
Note that (p → q)t = T and (q → r)t = T. Thus, Σ is satisfiable.

Exercise 10. Let Σ = ∅. Is Σ satisfiable? Why or why not?

Σ is satisfiable. In fact, any truth valuation satisfies Σ.
A truth valuation t satisfies Σ if and only if, for any formula α, if α is in Σ, then αt = T.
Since Σ = ∅, no formula is in Σ. The premise of the implication is false for any α, so the
implication is true for every α. Therefore, any truth valuation satisfies Σ = ∅.

Exercise 11. Let Σ = {p, (¬p)}. Is Σ satisfiable? Why or why not?

Σ is not satisfiable. To show this, we need to show that, under every truth valuation, at
least one formula in Σ is false.
Consider an arbitrary truth valuation t. Under t, p is either true or false.

• If pt = T, then (¬p)t = F. t does not satisfy Σ.

• If pt = F, then t does not satisfy Σ.

In both cases, t does not satisfy Σ. Therefore, no truth valuation can satisfy Σ. Σ is not
satisfiable.

23

Exercise 12. Prove that {(¬(p ∧ q)), (p → q)} ⊧ (¬p).

Proof. Consider a truth valuation t such that (¬(p ∧ q))t = T and (p → q)t = T.
Since (p → q)t = T, it is not the case that pt = T and qt = F.
Since (¬(p ∧ q))t = T, it is not the case that pt = T and qt = T.
Thus, the two premises are true under two scenarios:

• pt = F and qt = T: In this case, (¬p)t = T.

• pt = F and qt = F: In this case, (¬p)t = T.

In both scenarios, the conclusion is true. Thus, the entailment holds.

Exercise 13. Prove that {(¬(p ∧ q)), (p → q)} 6⊧ (p ↔ q).

Proof. Consider the truth valuation t where pt = F and qt = T.
By definitions of the connectives, (¬(p ∧ q))t = T, (p → q)t = T and (p ↔ q)t = F. Thus,
the entailment does not hold.

Exercise 14. Prove that ∅ ⊧ ((p ∧ q) → p)).

Proof. Since there is no premise, we need to prove that the conclusion ((p ∧ q) → p)) is a
tautology.
Consider any truth valuation t. Under t, p must be either true or false.

• pt = T: The conclusion of the implication ((p ∧ q) → p))is true. Therefore, the
implication is true.

• pt = F: The premise of the implication ((p ∧ q) → p)) is true. Therefore, the implica-
tion is true.

Thus, the conclusion is true under any truth valuation and is a tautology. The entailment
holds.

24

Exercise 15. Prove that {r, (p → (r → q))} ⊧ (p → (q ∧ r)).

Proof. Consider a truth valuation t where rt = T and (p → (r → q))t = T. We need to show
that (p → (q ∧ r))t = T.
Consider two cases: pt = F and pt = T.
If pt = F, then (p → (q ∧ r))t = T.
Otherwise, suppose that pt = T. We need to show that (q ∧ r)t = T.
By the definition of implication, (r → q)t = T since (p → (r → q))t = T. Since rt = T
and (r → q)t = T, then qt = T by the definition of implication. By the definition of ∧,
(q ∧ r)t = T since q and r are both true under t. Therefore, (p → (q ∧ r))t = T.
In both cases, the conclusion is true under t. The entailment holds.

Exercise 16. Prove that {(¬p), (q → p)} 6⊧ ((¬p) ∧ q).

Note 1. We need to come up with a truth valuation under which both premises are true and
the conclusion is false.
(¬p) has to be true. So p has to be false under this truth valuation.
(q → p) has to be true and p is false. Thus, q must be false under this truth valuation.
Therefore, this truth valuation must make p false and q false.

Proof. Consider the truth valuation t where pt = F and qt − F.
Under this truth valuation, (¬p)t = T and (q → p)t = T. Both premises are true.
Under this truth valuation, ((¬p) ∧ q)t = F. The conclusion is false.
Therefore, the entailment does not hold.

Exercise 17. Prove that {p, (¬p)} ⊧ r.

Proof. Consider any truth valuation t under which both premises are true. If such a truth
valuation exists, we have to show that r must be true under this truth valuation.
However, such a truth valuation does not exist. There are two possible cases. p is true or p
is false. If p is false, then this truth valuation does not satisfy the first premise. If p is true
under this truth valuation, then (¬p) must be false. This truth valuation does not satisfy
the second premise.
Since no truth valuation satisfies both premises, the entailment holds.

25

1.8 Natural Deduction
1.8.1 Strategies for writing a natural deduction proof

General strategies:

• Write down all of the premises

• Leave plenty of space. Then write down the conclusion.

• Look at the conclusion carefully. What is the structure of the conclusion (what is the
last connective applied in the formula? Can you apply an introduction rule to produce
the conclusion?

• Look at each premise carefully. What is the structure of the premise (what is the last
connective applied in the formula)? Can you apply an elimination rule to simplify it?

• Working backwards from the conclusion is often more effective than working forward
from the premises. It keeps your eyes on the prize.

• If no rule is applicable, consider using a combination of ¬i and ¬¬e.

Working with subproofs

• To apply an introduction rule to produce the conclusion, lay down the structure
of the subproof before you proceed to fill in the subproof. That is, draw the
box for the subproof, write down the assumption on the first line, copy the conclusion
to the last line of the subproof.

• Every subproof must be created to apply a particular rule. If you don’t know what
rule you are trying to apply, don’t create a subproof.

• When filling in a subproof, you can use all the formulas that come before as long as
the formula is not in a previous subproof that has already closed.

• Outside of a subproof, you have to use the subproof as a whole. You cannot use any
individual formula in the subproof.

26

1.8.2 And elimination and introduction

Exercise 18. Show that {(p ∧ q), (r ∧ s)} ⊢ (q ∧ s).

1. (p ∧ q) premise
2. (r ∧ s) premise
3. q ∧e: 1
4. s ∧e: 2
5. (q ∧ s) ∧i: 3, 4

Exercise 19. Show that ((p ∧ q) ∧ r) ⊢ (p ∧ (q ∧ r)).

1. ((p ∧ q) ∧ r) premise
2. (p ∧ q) ∧e: 1
3. p ∧e: 2
4. q ∧e: 2
5. r ∧e: 1
6. (q ∧ r) ∧i; 4, 5
7. (p ∧ (q ∧ r)) ∧i: 3, 6

27

1.8.3 Implication introduction and elimination

Exercise 20. Show that {(p → q), (q → r)} ⊢ (p → r).

1. (p → q) premise
2. (q → r) premise
3. p assumption
4. q →e: 1, 3
5. r →e: 2, 4
6. (p → r) →i: 3–5

Exercise 21. Show that {(p → (q → r)), (p → q)} ⊢ (p → r).

1. (p → (q → r)) premise
2. (p → q) premise
3. p assumption
4. (q → r) →e: 1, 3
5. q →e: 2, 3
6. r →e: 4, 5
7. (p → r) →i: 3-6

28

Exercise 22. Show that {(p → (q → r))} ⊢ ((p ∧ q) → r).

1. (p → (q → r)) premise
2. (p ∧ q) assumption
3. p ∧e: 2
4. (q → r) →e: 1, 3
5. q ∧e: 2
6. r →e: 4, 5
7. ((p ∧ q) → r) →i: 2–6

Exercise 23. Show that {((p ∧ q) → r)} ⊢ (p → (q → r)).

1. ((p ∧ q) → r) premise
2. p assumption
3. q assumption
4. (p ∧ q) ∧i: 2, 3
5. r →e: 1, 4
6. (q → r) →i: 3–5
7. (p → (q → r)) →i: 2–6

29

1.8.4 Or elimination and introduction

Exercise 24. Show that {(p ∧ (q ∨ r))} ⊢ ((p ∧ q) ∨ (p ∧ r)).

1. (p ∧ (q ∨ r)) premise
2. p ∧e: 1
3. (q ∨ r) ∧e: 1
4. q assumption
5. (p ∧ q) ∧i: 2, 4
6. ((p ∧ q) ∨ (p ∧ r)) ∨i: 5
7. r assumption
8. (p ∧ r) ∧i: 2, 7
9. ((p ∧ q) ∨ (p ∧ r)) ∨i: 8

10. ((p ∧ q) ∨ (p ∧ r)) ∨e: 3, 4–6, 7–9

Exercise 25. Show that {((p ∧ q) ∨ (p ∧ r))} ⊢ (p ∧ (q ∨ r)).

1. ((p ∧ q) ∨ (p ∧ r)) premise
2. (p ∧ q) assumption
3. p ∧e: 2
4. q ∧e: 2
5. (q ∨ r) ∨i: 4
6. (p ∧ (q ∨ r)) ∧i: 3, 5
7. (p ∧ r) assumption
8. p ∧e: 7
9. r ∧e: 7

10. (q ∨ r) ∨i: 9
11. (p ∧ (q ∨ r)) ∧i: 8, 10
12. (p ∧ (q ∨ r)) ∨e: 1, 2-6, 7-11

30

Exercise 26. Show that {(p ∨ q)} ⊢ ((p → q) ∨ (q → p)).

1. (p ∨ q) premise
2. p assumption
3. q assumption
4. p Reflexivity: 2
5. (q → p) →i: 3–4
6. ((p → q) ∨ (q → p)) ∨i: 5
7. q assumption
8. p assumption
9. q Reflexivity: 7

10. (p → q) →i: 8–9
11. ((p → q) ∨ (q → p)) ∨i: 10
12. ((p → q) ∨ (q → p)) ∨e: 1, 2–6, 7–11

Exercise 27. Show that {(p → q)} ⊢ ((r ∨ p) → (r ∨ q)).

1. (p → q) premise
2. (r ∨ p) assumption
3. r assumption
4. (r ∨ q) ∨i: 3
5. p assumption
6. q →e: 1, 5
7. (r ∨ q) ∨i: 6
8. (r ∨ q) ∨e: 2, 3–4, 5–7
9. ((r ∨ p) → (r ∨ q)) →e: 2–8

31

1.8.5 Negation introduction and double negation elimination

Exercise 28. Show that {(p → (¬p))} ⊢ (¬p).

1. (p → (¬p)) premise
2. p assumption
3. (¬p) →e: 1, 2
4. ⊥ ⟂i: 2, 3
5. (¬p) ¬i, 2–4

Exercise 29. Show that {(p → (q → r)), p, (¬r)} ⊢ (¬q).

1. (p → (q → r)) premise
2. p premise
3. (¬r) premise
4. (q → r) →e: 1, 2
5. q assumption
6. r →e: 4, 5
7. ⟂ ⟂i: 3, 6
8. (¬q) ¬i: 5–7

32

Exercise 30. Show that {((¬p) → (¬q))} ⊢ (q → p).

1. ((¬p) → (¬q)) premise
2. q assumption
3. (¬p) assumption
4. (¬q) →e: 1, 3
5. ⊥ ⊥i: 2, 4
6. (¬(¬p)) ¬i: 3-5
7. p ¬¬e: 6
8. (q → p) →i: 2-7

Exercise 31. Show that {((p ∧ (¬q)) → r), (¬r), p} ⊢ q.

1. ((p ∧ (¬q)) → r) premise
2. (¬r) premise
3. p premise
4. (¬q) assumption
5. (p ∧ (¬q)) ∧i: 3, 4
6. r →e: 1, 5
7. ⟂ ⟂i: 2, 6
8. (¬(¬q)) ¬i: 4–7
9. q ¬¬e: 8

33

1.8.6 Negation elimination

Exercise 32. Show that {(p ∨ q), (¬p)} ⊢ q.

1. (p ∨ q) premise
2. (¬p) premise
3. p assumption
4. ⊥ ⊥i: 2, 3
5. q ⊥e: 4
6. q assumption
7. q ∨e: 1, 3-5, 6

Exercise 33. Show that ∅ ⊢ ((¬p) → (p → (p → q))).

1. (¬p) assumption
2. p assumption
3. ⊥ ⊥i: 1, 2
4. (p → q) ⊥e: 3
5. (p → (p → q)) →i: 2-4
6. ((¬p) → (p → (p → q))) →i: 1-5

34

1.8.7 Putting it together!

Exercise 34. (De Morgan’s Law) Show that {(¬(α ∨ β))} ⊢ ((¬α) ∧ (¬β)).

1. (¬(α ∨ β)) premise
2. α assumption
3. (α ∨ β) ∨i: 2
4. ⟂ ⟂i: 1, 3
5. (¬α) ¬i: 2–4
6. β assumption
7. (α ∨ β) ∨i: 6
8. ⟂ ⟂i: 1, 7
9. (¬β) ¬i: 6–8

10. ((¬α) ∧ (¬β)) ∧i: 5, 9

Exercise 35. (De Morgan’s Law) Show that {((¬α) ∧ (¬β))} ⊢ (¬(α ∨ β)).

1. ((¬α) ∧ (¬β)) premise
2. (α ∨ β) assumption
3. α assumption
4. (¬α) ∧e: 1
5. ⟂ ⟂i: 3, 4
6. β assumption
7. (¬β) ∧e: 1
8. ⟂ ⟂i: 7, 8
9. ⟂ ∨e: 2, 3–6, 7–10

10. (¬(α ∨ β)) ¬i: 2–11

35

Exercise 36. (De Morgan’s Law) Show that {((¬α) ∨ (¬β))} ⊢ (¬(α ∧ β)).

1. ((¬α) ∨ (¬β)) premise
2. (¬α) assumption
3. (α ∧ β) assumption
4. α ∧e: 3
5. ⊥ ⊥i: 2, 4
6. (¬(α ∧ β)) ¬i: 3-5
7. (¬β) assumption
8. (α ∧ β) assumption
9. β ∧e: 8

10. ⊥ ⊥i: 7, 9
11. (¬(α ∧ β)) ¬i: 8-10
12. (¬(α ∧ β)) ∨e: 1, 2-6, 7-11

Exercise 37. (De Morgan’s Law) Show that {(α ∨ β)} ⊢ (¬((¬α) ∧ (¬β))).

1. (α ∨ β) premise
2. α assumption
3. ((¬α) ∧ (¬β)) assumption
4. (¬α) ∧e: 3
5. ⊥ ⊥i: 2, 4
6. (¬((¬α) ∧ (¬β))) ¬i: 3-5
7. β assumption
8. ((¬α) ∧ (¬β)) assumption
9. (¬β) ∧e: 8

10. ⊥ ⊥i: 7, 9
11. (¬((¬α) ∧ (¬β))) ¬i: 8-10
12. (¬((¬α) ∧ (¬β))) ∨e: 1, 2-6, 7-11

36

Exercise 38. (De Morgan’s Law) Show that {(¬(α ∧ β))} ⊢ ((¬α) ∨ (¬β)).

1. (¬(α ∧ β)) premise
2. (¬((¬α) ∨ (¬β))) assumption
3. (¬α) assumption
4. ((¬α) ∨ (¬β)) ∨i: 3
5. ⊥ ⊥i: 2, 4
6. α PBC: 3-5
7. (¬β) assumption
8. ((¬α) ∨ (¬β)) ∨i: 7
9. ⊥ ⊥i: 2, 8

10. β PBC: 7-9
11. (α ∧ β) ∧i: 6, 10
12. ⊥ ⊥i: 1, 11
13. ((¬α) ∨ (¬β)) PBC: 2-12

Exercise 39. Show that {(¬(p → q))} ⊢ (q → p).

1. (¬(p → q)) premise
2. q assumption
3. (¬p) assumption
4. p assumption
5. q reflexive: 2
6. (p → q) →i: 4-5
7. ⊥ ⊥i: 1, 6
8. (¬(¬p)) ¬i: 3-7
9. p ¬¬e: 8

10. (q → p) →i: 2-9

37

1.8.8 Other problems

Exercise 40. E4 Exercise 4: Prove that for any set of propositional formulas Σ and any
propositional variables p and q, if Σ ⊢ p, then Σ ⊢ ((¬p) → q).

Proof. Let Σ be a set of propositional formulas and let p and q be propositional variables.
Assume that Σ ⊢ p. This means that the following proof exists.

1. Σ premises
2.
3. p

Using the above proof, we will construct a natural deduction proof for Σ ⊢ ((¬p) → q).
1. Σ premises
2.
3. p
4. (¬p) assumption
5. ⊥ ⊥i: 3, 4
6. q ⊥e: 5
7. ((¬p) → q) →i: 4-6

Therefore, Σ ⊢ ((¬p) → q) holds.

38

1.9 Soundness and Completeness of Natural Deduction
1.9.1 The soundness of inference rules

Exercise 41. The following inference rule is called Disjunctive syllogism.

(¬α) (α ∨ β)
β Disjunctive syllogism

where α and β are well-formed propositional formulas.
Prove that this inference rule is sound. That is, prove that the following semantic entailment
holds.

{(¬α), (α ∨ β)} ⊧ β
You must use the definition of semantic entailment to write your proof. Do not use
any other technique such as truth table, valuation tree, logical identities, natural deduction,
soundness, or completeness.

Note 2. To prove that an entailment holds, we need to consider all truth valuations under
which all of the premises are true. For each such truth valuation, we need to show that the
conclusion is true.
The proof typically looks like the following.

• Consider a truth valuation t under which all of the premises are true.

• If premise 1 is true under t, then α must be ... under t and β must be ... under t. If
premise 2 is true under t, then ...

• There are ... cases that we need to consider.

• Case 1: this case is impossible because .../... the conclusion is true under t.

• Case 2: ...

• The conclusion is true in every case. Therefore, the entailment holds.

Proof. Consider a truth valuation t under which (¬α)t = T and (α ∨ β)t = T. We need to
show that βt = T.
Since (α ∨ β)t = T, at least one of α and β is true under t.
Since (¬α)t = T, α is false under t. Therefore, β must be true under t.
Therefore, the entailment holds.

39

Exercise 42. Consider the following inference rule:

(α → β)
(β → α) Flip the implication

where α and β are well-formed propositional formulas.
Prove that this inference rule is NOT sound. That is, prove the following statement:

{(α → β)} 6⊧ (β → α)

You must use the definition of semantic entailment to write your proof. Do not use
any other technique such as truth table, valuation tree, logical identities, natural deduction,
soundness, or completeness.

Note 3. To prove that an entailment does not hold, we need to find a concrete counterexample,
which shows that, there is a truth valuation t under which all of the premises are true and
the conclusion is false.
A concrete counterexample consist of the following:

• Choose concrete formulas for α and β. In the following proof, we let α be p and β be
q where p and q are propositional variables.

• Choose a truth valuation t such that all the premises are true and the conclusion is
false.

Choosing a concrete formula for each symbol is important. In the proof below, if we do not
assign concrete formulas to α and β, then we cannot make claims about their truth values
under t. We want to find a truth valuation under which β is true and α is false. This is not
possible if β is (r ∧ (¬r)) and α is (r ∨ (¬r)).
The difficult part is coming up with a counterexample that works. After that, writing up the
proof is straightforward.

Proof. To prove that the entailment does not hold, we need to find one counterexample.
Let p and q be two propositional variables. Let α be p and let β be q. Consider a truth
valuation t under which pt = F and qt = T.
Under t, the premise is true. (α → β)t = (p → q)t = T.
Under t, the conclusion is false. (β → α)t = (q → p)t = F.
We found a truth valuation under which the premise is true and the conclusion is false.
Thus, the entailment does not hold.

40

1.9.2 Soundness and Completeness of Natural Deduction

Exercise 43. Prove or disprove this statement: If {a, b} ⊢ c, then ∅ ⊧ ((a ∧ b) → c). a, b,
and c are well-formed propositional formulas.

Note 4. The statement is an implication, and the premise and the conclusion of the impli-
cation differ in two ways. The premise is about the existence of a natural deduction proof,
whereas the conclusion is about an entailment. Moreover, the premise has a and b on the
left hand side, whereas the conclusion has everything on the right hand side. Thus, there are
two ways for us to transform the premise into the conclusion.

Approach 1:
A visual representation of approach 1:

{a, b} ⊢ c → {a, b} ⊧ c → ∅ ⊧ ((a ∧ b) → c)

First, we transform {a, b} ⊢ c (the existence of a proof) to {a, b} ⊧ c (an entailment) by
using the soundness of natural deduction.
Then, we move a and b from the left hand side to the right hand side by proving that {a, b} ⊧ c
are ∅ ⊧ ((a ∧ b) → c) equivalent by the definition of entailment.

Approach 2:
A visual representation of approach 2:

{a, b} ⊢ c → ∅ ⊢ ((a ∧ b) → c) → ∅ ⊧ ((a ∧ b) → c)

First, we move a and b from the left hand side to the right hand side by proving that {a, b} ⊢ c
and ∅ ⊢ ((a ∧ b) → c) are equivalent.
Then, we transform ∅ ⊢ ((a ∧ b) → c) (the existence of a proof) to ∅ ⊧ ((a ∧ b) → c) (an
entailment) by the soundness of natural deduction.

See the two proofs on the following page.

41

Proof 1. We will prove the statement.
Assume {a, b} ⊢ c holds.
By the soundness of natural deduction, the entailment {a, b} ⊧ c holds.
Consider a truth valuation t under which at = T and bt = T. We know that ct = T by
{a, b} ⊧ c. Therefore, by the definition of an implication, we know that ((a ∧ b) → c) is a
tautology.
Consider a truth valuation t. There is no formula in ∅. Thus, t satisfies ∅. t also satisfies
((a ∧ b) → c) since ((a ∧ b) → c) is a tautology. Therefore, the entailment ∅ ⊧ ((a ∧ b) → c)
holds.

Proof 2. We will prove the statement.
Assume {a, b} ⊢ c holds. Thus, there is a natural deduction proof which starts with a and
b as the premises and ends with c.

1. a premise
2. b premise
3.
4. c ...

We construct a natural deduction proof for ∅ ⊢ ((a ∧ b) → c) as follows.

1. (a ∧ b) assumption
2. a ∧e: 1
3. b ∧e: 1
4.
5. c ...
6. ((a ∧ b) → c) →i: 1-5

This proof shows that ∅ ⊢ ((a ∧ b) → c) holds.
By the soundness of natural deduction, the entailment ∅ ⊧ ((a ∧ b) → c) holds.

42

Exercise 44. Prove or disprove this statement: If {α} ⊧ β, then ∅ ⊢ (β → α). α and β are
well-formed propositional formulas.

Note 5. To show that the implication is false, we need to choose concrete formulas for α
and β such that the premise is true and the conclusion is false.
By inspecting the premise and the conclusion, we see that the concrete formulas need to make
sure that α entails β, but β does not entail α.
Choosing α to be p and β to be (p ∨ q) satisfy both requirements.

Proof. We will disprove the statement.
Let p and q be two propositional variables. Let α be p and let β be (p ∨ q).
First, we prove that {α} ⊧ β holds. Consider a truth valuation t under which α is true.
This means that pt = T. Under t, β is true because (p ∨ q)t = T. Therefore, the entailment
{α} ⊧ β holds.
Now, we prove that ∅ ⊬ (β → α) holds. To show that such a proof does not exist, it
suffices to show that the corresponding entailment ∅ ⊧ (β → α) does not hold. Then by the
contrapositive of the soundness of natural deduction, we have that ∅ ⊬ (β → α) holds.
To prove that ∅ 6⊧ (β → α) (or ∅ 6⊧ ((p∨q) → p)), we consider a truth valuation t such that
pt = F and qt = T. Under t, βt = (p ∨ q)t = T and αt = pt = F. Therefore, ∅ 6⊧ (β → α)
holds.

43

2 Predicate Logic
2.1 Translations
Exercise 45. Let the domain be the set of animals. Let B(x) mean that x is a bear. Let
H(x) mean that x likes honey.
Translate “every bear likes honey” into predicate logic.

People often come up with the following two translations. See the formulas and the corre-
sponding explanations below.

• (∀x (B(x) ∧ H(x)))
This formula says that every animal x is a bear and likes honey.
This formula is an incorrect translation. The original sentence does not require every
animal to be a bear. The sentence simply ignores any animal that is not a bear and
focuses on animals that are bears.

• (∀x (B(x) → H(x)))
This formula says that for every animal x, if x is a bear, then x likes honey.
This is a correct translation. If an animal is a bear, then it must like honey as required
by the original sentence. If an animal is not a bear, then the premise of the implication
is false, which means that the implication is vacuously true. (In other words, we don’t
care about animals that are not bears.)

To differentiate between two predicate formulas, it is often a useful exercise to come up with
a domain for which one formula is true and the other formula is false.
Consider a domain, which contains a bear A who likes honey and a rabbit B.

• For this domain, the first formula is false. When x is rabbit B, x is not a bear.

• For this domain, the second formula is true. When x is bear A, it likes honey, so the
implication is true. When x is rabbit B, it is not a bear, so the implication is vacuously
true. Since the implication is true for every element of the domain, the formula is true.

In general, consider a domain D and a predicate P(x).
The following sentence

“All <things in D for which P is true> have the property Q.”

translates into the formula

(∀x (P(x) → Q(x))).

44

Exercise 46. Let the domain be the set of animals. Let B(x) mean that x is a bear. Let
H(x) mean that x likes honey.
Translate “some bear likes honey” into predicate logic.

People often come up with the following two translations. See the formulas and the corre-
sponding explanations below.

• (∃x (B(x) ∧ H(x)))
This formula says that there is an animal x, which is a bear and likes honey.
This formula is the correct translation. The original sentence requires that there is a
bear in the domain. Furthermore, it requires that there is a bear in the domain that
likes honey. This formula guarantees both.

• (∃x (B(x) → H(x)))
This formula says that there is an animal x, which is either not a bear, or is a bear
and likes honey.
This sentence is an incorrect translation, although many people think that it makes
intuitive sense. The problem with this formula comes from the fact that the implication
is vacuously true when the premise is false. This formula does not guarantee that there
has to be a bear in the domain. As soon as we find an animal that is not a bear in the
domain, the premise of the implication is false and the implication is vacuously true.
This does not correspond to the original sentence, which requires that there is a bear
in the domain.

To differentiate these two formulas, let’s consider a domain, which contains a rabbit B. For
this domain, the original sentence should be false because there is no bear.

• For this domain, the first formula is false. We cannot find a bear in the domain, which
is required by the formula.

• For this domain, the second formula is true. When x is rabbit B, B is not a bear, so
the premise of the implication is false. Thus, the implication is vacuously true. Since
we have found an animal which makes the implication true, the formula is true.

In general, consider a domain D and a predicate P(x).
The following sentence

“Some <thing in D for which P is true> have the property Q.”

translates into the formula

(∃x (P(x) ∧ Q(x))).

45

Exercise 47. Could you summarize the general patterns of translations based on the two
exercises above? Which binary connectives usually go with the universal and the existential
quantifiers?
Alice: I put this exercise here so that I will have a place to put down a summary.

As a general rule of thumb, the universal quantifier is often used in conjunction with the im-
plication (→), and the existential quantifier is often used in conjunction with the conjunction
(∧). We’ve seen examples of both above.
The universal quantifier

• ∀ and →: This universal quantifier pairs well with the implication. This combination
is used to make a statement about a subset of the domain. Therefore, we use the
premise of the implication to restrict our attention to this subset. We don’t have to
worry about any element that is not in this subset because the implication is vacuously
true for any such element.

• ∀ and ∧: This combination is not impossible. However, it is a very strong statement.
This combination is claiming that every element of the domain must satisfy the prop-
erties connected by the ∧. If this is what you meant to express, then go ahead and use
this combination.

The existential quantifier

• ∃ and ∧: The existential quantifier pairs well with the conjunction. This combination
can be used to express the fact that there exists an element of domain which has the
two properties connected by the conjunction.

• ∃ and →: This combination does not make sense logically. The main reason is that it
is too easy to make such a formula true. As soon as we find an element of the domain,
which makes the premise of the implication false, the implication is vacuously true and
the formula is true as well.

46

Exercise 48. Translate the following sentences into predicate formulas.

Let the domain contain the set of all students and courses. Define the following predicates:
C(x): x is a course.
S(x): x is a student.
T(x, y): student x has taken course y.

1. Every student has taken some course.
(∀x (S(x) → (∃y (C(y) ∧ T(x, y)))))

2. A student has taken a course.
(∃x (S(x) ∧ (∃y (C(y) ∧ T(x, y)))))

3. No student has taken every course.
(¬(∃x (S(x) ∧ (∀y (C(y) → T(x, y))))))

4. Some student has not taken any course.
(∃x (S(x) ∧ (∀y (C(y) → (¬T(x, y))))))

5. Every student has taken every course.
(∀x (S(x) → (∀y (C(y) → T(x, y)))))

47

Exercise 49. Translating “at least”, “at most”, and “exactly”.
Translate the following sentences into predicate formulas.

• There is at least one bear.

(∃x B(x))

• There are at least two bears.

(∃x (∃y ((B(x) ∧ B(y)) ∧ (x ≠ y))))

The formula says: there are two bears x and y, and x and y must be different. Note
that, if we don’t have (x ≠ y), the formula only guarantees that there exists one bear
because x and y could refer to the same animal in the domain.

• There is at most one bear.

(¬(∃x (∃y ((B(x) ∧ B(y)) ∧ (x ≠ y)))))

The negation of “at most one” is “at least two”. Therefore, the sentence is equivalent
to “It is not the case that there exist two different bears”.

Using the generalized De Morgan’s laws, we can show that the above formula is logically
equivalent to the formula below.

(∀x (∀y ((B(x) ∧ B(y)) → (x = y))))

This formula says that: If we can find two bears x and y, then x and y must refer to
the same bear. To understand this formula, imagine that I made the claim that there
is at most one bear. Then your goal is to disprove my claim. You find two bears in
the domain and show them to me. For my claim to be true, I have to be able to prove
that the two bears you found are actually the same bear. I have to be able to do this
no matter which two bears you show to me.

Yet another translation is that: ((there is no bear) or (there is exactly one bear)). We
can use any translation of ”there is exactly one bear” on the next page.

((∀x (¬B(x))) ∨ (∃y (B(y) ∧ (∀z (B(z) → (y = z))))))

48

• There is exactly one bear.
One translation is: there is at least one bear and there is at most one bears.

((∃z B(z)) ∧ ((¬(∃x (∃y ((B(x) ∧ B(y)) ∧ (x ≠ y)))))))

Another translation: there is at least one bear and if there is another bear, then the
two bears must be the same.

(∃x (B(x) ∧ (∀y (B(y) → (x = y)))))

49

2.2 Semantics of Predicate Formulas
Consider this language of predicate logic:

• Constant symbols: a, b, c
• Variable symbols: x, y, z
• Function symbols: f(1), g(2)

• Predicate symbols: P(1), Q(2)

2.2.1 Evaluating Formulas with No Variables

Exercise 50. Give an interpretation I such that Q(f(c), a)I = T where dom(I) = {1, 2, 3}.
Note 6. I don’t like to work with weird functions. So let’s fix the function f to something
simple first. Let fI be fI(x) = x, ∀x ∈ dom(I). Given this, we simplify the formula below.

f(c)I = fI(cI) = cI (97)
Q(f(c), a)I = Q(c, a)I (98)

The function g does not appear in the formula. Nevertheless, we need to give it an interpre-
tation. Let gI be gI(x) = 1, ∀x ∈ dom(I).
I like to deal with the predicates last. So let’s assign meanings to the constant symbols. Let
cI = 1 and aI = 2. Then, we have that Q(c, a)I is true if and only if ⟨1, 2⟩ ∈ QI.
The constant symbol b does not appear in the formula, but we still need to give it an
interpretation. Let bI = 1.
Finally, let’s define QI. Above the above analysis, at a minimum, we need ⟨1, 2⟩ ∈ QI. We
could include other tuples in QI if we like, but they don’t affect the truth value of this formula.
Thus, let QI = {⟨1, 2⟩}.
P does not appear in the formula, but we still need to give it an interpretation. Let PI be the
empty set.
Solution: The interpretation I is given below.

• dom(I) = {1, 2, 3}.

• aI = 2, bI = 1, cI = 1.

• fI(x) = x, ∀x ∈ dom(I), gI(x) = 1, ∀x ∈ dom(I).
• QI = {⟨1, 2⟩}, PI = ∅.

Therefore, Q(f(c), a)I = T since all of the following hold:

f(c)I = fI(1) = 1 (99)
aI = 2 (100)
⟨1, 2⟩ ∈ QI. (101)

50

Exercise 51. Give an interpretation I such that Q(f(c), a)I = F.

Note 7. All we need to do is make one small adjustment to the interpretation in exercise 50.
To make the formula false, we need to make sure the tuple ⟨1, 2⟩ is not in QI. Let QI be the
empty set.

Solution: The modified interpretation I is given below.

• dom(I) = {1, 2, 3}.

• aI = 2, bI = 1, cI = 1.

• fI(x) = x, ∀x ∈ dom(I), gI(x) = 1, ∀x ∈ dom(I).

• QI = ∅, PI = ∅.

Therefore, Q(f(c), a)I = F since all of the following hold:

f(c)I = fI(1) = 1 (102)
aI = 2 (103)
⟨1, 2⟩ ∉ QI. (104)

51

2.2.2 Evaluating Formulas with Free Variables Only

Exercise 52. Give an interpretation I and an environment E such that Q(f(x), a)(I,E) = T.

Note 8. Let’s start with the interpretation in the solution to exercise 50. Consider an
arbitrary environment E. We simplify the formula below.

f(x)(I,E) = fI(E(x)) = E(x) (105)
aI = 2 (106)

Thus, the formula is true if and only if ⟨E(x), 2⟩ ∈ QI.
The only tuple in QI is ⟨1, 2⟩. Thus, it is sufficient to let E(x) = 1. Even though y and z
do not appear in the formula, we still need to include mappings for them in the definition of
the environment. Let E(y) = 1 and E(z) = 1.

Solution: The interpretation I and the environment E are given below.

• dom(I) = {1, 2, 3}.

• aI = 2, bI = 1, cI = 1.

• fI(x) = x, ∀x ∈ dom(I), gI(x) = 1, ∀x ∈ dom(I).

• QI = {⟨1, 2⟩}, PI = ∅.

The environment E is E(x) = 1, E(y) = 1, and E(z) = 1.
Given I and E, we can show that Q(f(x), a)(I,E) = T because

E(x) = 1 (107)
f(x)(I,E) = fI(1) = 1 (108)
aI = 2 (109)
⟨1, 2⟩ ∈ QI. (110)

52

Exercise 53. Give an interpretation I such that Q(f(x), a)(I,E) = F.

Note 9. Let’s start with the interpretation in the solution to exercise 52, and modify QI to
be the empty set.
Under I and E, the formula is false, using similar reasoning as exercise 51.

Solution: The interpretation I and the environment E are given below.

• dom(I) = {1, 2, 3}.

• aI = 2, bI = 1, cI = 1.

• fI(x) = x, ∀x ∈ dom(I), gI(x) = 1, ∀x ∈ dom(I).

• QI = {⟨1, 2⟩}, PI = ∅.

The environment E is E(x) = 1, E(y) = 1, and E(z) = 1.
Given I and E, we can show that Q(f(x), a)(I,E) = F because

E(x) = 1 (111)
f(x)(I,E) = fI(1) = 1 (112)
aI = 2 (113)
⟨1, 2⟩ ∉ QI. (114)

53

2.2.3 Evaluating Formulas with Free and Bound Variables

Exercise 54. Give an interpretation I and an environment E such that (∃x Q(x, y))(I,E) = T.
Assume that the domain is dom(I) = {1, 2, 3}.

Note 10. Here is more explanation to help you understand how I came up with the I and E
above.
y is a free variable in α. The value of y is given by the environment. Let’s arbitrarily
define E(y) = 2. Even though x and z do not appear in the formula, we need to define their
mappings as part of E. Let E(x) = 1 and E(z) = 1.
To make α true, there must be at least one tuple in QI and the second value in the tuple (the
value of y in the tuple) must be 2 because E(y) = 2. Let QI be {⟨1, 2⟩}.
We need to define the rest of I even though the symbols do not appear in the formula.

Solution: The interpretation I is shown below.

• dom(I) = {1, 2, 3}.

• aI = 2, bI = 1, cI = 1.

• fI(x) = x, ∀x ∈ dom(I), gI(x) = 1, ∀x ∈ dom(I).

• QI = {⟨1, 2⟩}, PI = ∅.

The environment E is E(x) = 1, E(y) = 2, E(z) = 1.
Given the I and E above, we know that Q(x, y)(I,E[x↦1]) = T because all of the following
hold:

E[x ↦ 1](x) = 1 (115)
E[x ↦ 1](y) = 2 (116)
⟨1, 2⟩ ∈ QI (117)

Hence, by the satisfaction rules for ∃, (∃x Q(x, y))(I,E) = T.

54

Exercise 55. Give an interpretation I and an environment E such that (∀x Q(x, y))(I,E) = T.
Assume that the domain is dom(I) = {1, 2, 3}.

Note 11. Let’s start with the I and E in exercise 54.
We will modify QI. To make the formula true, we must be able to replace x by any value
in the domain. Furthermore, for each tuple in QI, the second value in the tuple must be 2
because the environment maps y to 2. Thus, let QI = {⟨1, 2⟩, ⟨2, 2⟩, ⟨3, 2⟩}.

Solution: The interpretation I is shown below.

• dom(I) = {1, 2, 3}.

• aI = 2, bI = 1, cI = 1.

• fI(x) = x, ∀x ∈ dom(I), gI(x) = 1, ∀x ∈ dom(I).

• QI = {⟨1, 2⟩, ⟨2, 2⟩, ⟨3, 2⟩}, PI = ∅.

The environment E is E(x) = 1, E(y) = 2, E(z) = 1.
We will prove that (∀x Q(x, y))(I,E) = T. Consider all possible values of x. By the definition
of QI, the following statements hold.

• [x ↦ 1]: Q(x, y)(I,E[x↦1]) = T because all of the following hold.

E[x ↦ 1](x) = 1 (118)
E[x ↦ 1](y) = 2 (119)
⟨1, 2⟩ ∈ QI. (120)

• [x ↦ 2]: Q(x, y)(I,E[x↦2]) = T because all of the following hold.

E[x ↦ 2](x) = 2 (121)
E[x ↦ 2](y) = 2 (122)
⟨2, 2⟩ ∈ QI. (123)

• [x ↦ 3]: Q(x, y)(I,E[x↦3]) = T because all of the following hold.

E[x ↦ 3](x) = 3 (124)
E[x ↦ 3](y) = 3 (125)
⟨3, 3⟩ ∈ QI. (126)

Therefore, by the satisfaction rules for ∀, (∀x Q(x, y))(I,E) = T.

55

2.2.4 Evaluating Formulas with Bound Variables Only

Exercise 56. Give an interpretation I and an environment E such that (∃x(∀y Q(x, y)))(I,E) =
T. Start with the domain dom(I) = {1, 2, 3}.

Note 12. To make the formula true, there must be at least 3 tuples in QI because y (the
second value of each tuple) could take any of the 3 possible values in the domain.
The first element of all three tuples must be the same because there must be one value for x
that makes Q(x, y) true.
Note that, when choosing the value of x, we do not know the value of y yet. Our choice of
value for x cannot depend on the value of y.
One definition of QI that satisfies all these requirements is QI = {⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩}.

Solution: The interpretation I is given below.

• dom(I) = {1, 2, 3}.

• aI = 2, bI = 1, cI = 1.

• fI(x) = x, ∀x ∈ dom(I), gI(x) = 1, ∀x ∈ dom(I).

• QI = {⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩}, PI = ∅.

Let E be an arbitrary environment.
We will prove that (∃x(∀y Q(x, y)))(I,E) = T.
By the satisfaction rules of ∃, we need to show that (∀y Q(x, y))(I,E[x↦dx]) = T for some
dxindom(I).
Consider dx = 1. We now need to show that Q(x, y)(I,E[x↦dx][y↦dy) = T for every dy ∈
dom(I). Consider all possible values of y.

• [y ↦ 1]: Q(x, y)(I,E[x↦1][y↦1]) = T because all of the following hold.

E[x ↦ 1][y ↦ 1](x) = 1 (127)
E[x ↦ 1][y ↦ 1](y) = 1 (128)
⟨E[x ↦ 1][y ↦ 1](x), E[x ↦ 1][y ↦ 1](y)⟩ = ⟨1, 1⟩ ∈ QI. (129)

• [y ↦ 2]: Q(x, y)(I,E[x↦1][y↦2]) = T because all of the following hold.

E[x ↦ 1][y ↦ 2](x) = 1 (130)
E[x ↦ 1][y ↦ 2](y) = 2 (131)
⟨E[x ↦ 1][y ↦ 2](x), E[x ↦ 1][y ↦ 2](y)⟩ = ⟨1, 2⟩ ∈ QI. (132)

56

• [y ↦ 3]: Q(x, y)(I,E[x↦1][y↦3]) = T because all of the following hold.

E[x ↦ 1][y ↦ 3](x) = 1 (133)
E[x ↦ 1][y ↦ 3](y) = 3 (134)
⟨E[x ↦ 1][y ↦ 3](x), E[x ↦ 1][y ↦ 3](y)⟩ = ⟨1, 3⟩ ∈ QI. (135)

By the satisfaction rules of ∀, (∃x(∀y Q(x, y)))(I,E[x↦1]) = T holds. By the definition of ∃,
(∃x(∀y Q(x, y)))(I,E) = T holds.

57

Exercise 57. Give an interpretation I and an environment E such that (∃x(∀y Q(x, y)))(I,E) =
F. Start with the domain dom(I) = {1, 2, 3}.

Note 13. The formula has no free variables. The bound variables get their meanings through
the quantifiers. Thus, there is no need to define an environment. We only need to define an
interpretation to evaluate the formula.
There are many ways to make the formula false. An easy solution is to let QI be the empty
set. Then, QI(x, y) is always false and the formula must be false as well.
If there are tuples in QI, we need to make sure that QI does not have three tuples such that
the first value of all three tuples are the same and the second value in all three tuples are all
different.

Solution: The interpretation I is shown below.

• dom(I) = {1, 2, 3}.

• aI = 2, bI = 1, cI = 1.

• fI(x) = x, ∀x ∈ dom(I), gI(x) = 1, ∀x ∈ dom(I).

• QI = {⟨1, 1⟩, ⟨2, 2⟩, ⟨3, 3⟩}, PI = ∅.

Let E be an arbitrary environment.
We will prove that (∃x(∀y Q(x, y)))(I,E) = F.
By the satisfaction rules for ∃, we need to show that (∀y Q(x, y))(I,E[x↦dx]) = F holds for
every dx ∈ dom(I).
Consider all possible values of x.

• [x ↦ 1]:
By the rules of satisfaction for ∀, to prove that (∀y Q(x, y))(I,E[x↦1]) = F, we need to
prove that Q(x, y)(I,E[x↦1][y↦dy]) = F for some dy ∈ dom(I).
Q(x, y)(I,E[x↦1][y↦2]) = F holds since all of the following statements hold.

E[x ↦ 1][y ↦ 2](x) = 1 (136)
E[x ↦ 1][y ↦ 2](y) = 2 (137)
⟨E[x ↦ 1][y ↦ 2](x), E[x ↦ 1][y ↦ 2](y)⟩ = ⟨1, 2⟩ ∉ QI (138)

Therefore, Q(x, y)(I,E[x↦1][y↦2]) = F holds, which means that (∀y Q(x, y))(I,E[x↦1]) = F
holds.

58

• [x ↦ 2]:
Q(x, y)(I,E[x↦2][y↦1]) = F holds because all of the following statements hold.

E[x ↦ 2][y ↦ 1](x) = 2 (139)
E[x ↦ 2][y ↦ 1](y) = 1 (140)
⟨E[x ↦ 2][y ↦ 1](x), E[x ↦ 2][y ↦ 1](y)⟩ = ⟨2, 1⟩ ∉ QI (141)

Therefore, (∀y Q(x, y))(I,E[x↦2]) = F holds.

• [x ↦ 3]:
Q(x, y)(I,E[x↦3][y↦1]) = F holds because all of the following statements hold.

E[x ↦ 3][y ↦ 1](x) = 3 (142)
E[x ↦ 3][y ↦ 1](y) = 1 (143)
⟨E[x ↦ 3][y ↦ 1](x), E[x ↦ 3][y ↦ 1](y)⟩ = ⟨3, 1⟩ ∉ QI (144)

Therefore, (∀y Q(x, y))(I,E[x↦3]) = F holds.

By the satisfaction rules of ∃, we have proven that (∃x(∀y Q(x, y)))(I,E) = F.

59

2.3 Semantic Entailment
Exercise 58. Show that {(∀x P(x))} ⊧ (∃x P(x)).

Proof. Consider an interpretation I such that (∀x P(x))I = T. We will prove that (∃x P(x))I =
T.
Consider an arbitrary environment E. Let d1 ∈ dom(I) be a domain element.
By the satisfaction rules for ∀, P(x)(I,E[x↦d1]) = T. Therefore, E[x ↦ d1](x) = d1 ∈ PI.
By the satisfaction rules for ∃, (∃x P(x))I = T.

Exercise 59. Show that {(∃x P(x))} ⊭ (∀x P(x)).

Proof. To prove that the entailment does hold, we need to find an interpretation I such that
(∃x P(x))I = T and (∀x P(x))I = F.
Consider the interpretation I below.

• dom(I) = {1, 2}.

• PI = {1}.

Let E be an arbitrary environment.
P(x)(I,E[x↦1]) = T holds since E[x ↦ 1](x) = 1 ∈ PI. By the satisfaction rules for ∃,
(∃x P(x))(I,E) = T.
P(x)(I,E[x↦2]) = F holds since E[x ↦ 2](x) = 2 ∉ PI. By the satisfaction rules for ∀,
(∀x P(x))(I,E) = F holds.

60

Exercise 60. Show that {(∃y (∀x Q(x, y)))} ⊧ (∀x (∃y Q(x, y))).

Proof. Consider an interpretation I such that (∃y (∀x Q(x, y)))(I,E) = T. We will prove that
(∀x (∃y Q(x, y)))(I,E) = T. Let E be an arbitrary environment.
By the satisfaction rules for ∃, we have

(∀x Q(x, y))(I,E[y↦dy]) = T for some dy ∈ dom(I).

By the satisfaction rules for ∀, we have

Q(x, y)(I,E[y↦dy][x↦d]) = T, for some dy ∈ dom(I) and for every d ∈ dom(I).

Note that the environment E[y ↦ dy][x ↦ d] is the same environment as E[x ↦ d][y ↦ dy].
(Their effects on the variables x and y are identical.) Thus, we can re-write the above fact
as

Q(x, y)(I,E[x↦d][y↦dy]) = T for every d ∈ dom(I) and for some dy ∈ dom(I).
By the satisfaction rule for ∃, we have

(∃y Q(x, y))(I,E[x↦d]) = T for every d ∈ dom(I).
By the satisfaction rule for ∀, we have that

(∀x (∃y Q(x, y)))(I,E) = T.

61

Exercise 61. Show that {(∀x (∃y Q(x, y)))} ⊭ (∃y (∀x Q(x, y))).

Proof. To prove that the entailment does not hold, we need to find an interpretation I such
that (∀x (∃y Q(x, y)))(I,E) = T and (∃y (∀x Q(x, y)))(I,E) = F.
Consider the interpretation I below.

• dom(I) = {1, 2}.

• QI = {⟨1, 1⟩, ⟨2, 2⟩}.

First, we will show that (∀x (∃y Q(x, y)))(I,E) = T. Let E be an arbitrary environment.
Consider all possible values of x.

• [x ↦ 1]: Q(x, y)(I,E[x↦1][y↦1]) = T because

⟨E[x ↦ 1][y ↦ 1](x), E[x ↦ 1][y ↦ 1](y)⟩ = ⟨1, 1⟩ ∈ QI.

By the satisfaction rule for ∃, (∃y Q(x, y))(I,E[x↦1]) = T.

• [x ↦ 2]: Q(x, y)(I,E[x↦2][y↦2]) = T because

⟨E[x ↦ 2][y ↦ 2](x), E[x ↦ 2][y ↦ 2](y)⟩ = ⟨2, 2⟩ ∈ QI.

By the satisfaction rule for ∃, (∃y Q(x, y))(I,E[x↦2]) = T.

Thus, by the satisfaction rule for ∀, (∀x (∃y Q(x, y)))(I,E) = T.

Next, we will show that (∃y (∀x Q(x, y)))(I,E) = F. Let E be an arbitrary environment.
Consider all possible values of y.

• [y ↦ 1]: Q(x, y)(I,E[x↦2][y↦1]) = F because

⟨E[x ↦ 2][y ↦ 1](x), E[x ↦ 2][y ↦ 1](y)⟩ = ⟨2, 1⟩ ∉ QI.

By the satisfaction rule for ∃, (∀x Q(x, y))(I,E[y↦1]) = F.

• [y ↦ 2]: Q(x, y)(I,E[x↦1][y↦2]) = F because

⟨E[x ↦ 1][y ↦ 2](x), E[x ↦ 1][y ↦ 2](y)⟩ = ⟨1, 2⟩ ∉ QI.

By the satisfaction rule for ∀, (∀x Q(x, y))(I,E[y↦2]) = F.

Thus, by the satisfaction rule for ∀, (∃y (∀x Q(x, y)))(I,E) = F.
Hence, the entailment does not hold.

62

Exercise 62. Show that {(∀x (α → β))} ⊧ ((∀x α) → (∀x β)), where x is a variable symbol
and α and β are well-formed predicate formulas.

Proof. Consider an interpretation I and an environment E such that (∀x (α → β))(I,E) = T.
We will prove that ((∀x α) → (∀x β))(I,E) = T.
To show that ((∀x α) → (∀x β))(I,E) = T, we assume that (∀x α)(I,E) = T.
By the satisfaction rule for ∀, we have that

α(I,E[x↦d]) = T for every d ∈ dom(I).

By our assumption, (∀x (α → β))(I,E) = T. By the satisfaction rule for ∀, we have that

(α → β)(I,E[x↦d]) = T for every d ∈ dom(I).

By the satisfaction rule for an implication, we have that

β(I,E[x↦d]) = T for every d ∈ dom(I).

By the satisfaction rule for ∀, we have that

(∀x β)(I,E) = T.
Thus, the entailment holds.

63

Exercise 63. Show that {((∀x α) → (∀x β))} ⊭ (∀x (α → β)), where x is a variable symbol
and α and β are well-formed predicate formulas.

Note 14. The most important step for the proof below is to come up with the concrete
example such that the premises are all true and the conclusion is false.
I first chose concrete formulas for α and β. This step is important. Without doing so, I
may not be able to make claims about whether α and β are true or false under a particular
interpretation.
Next, I construct an interpretation to satisfy the two requirements. I start by picking a
domain containing two elements. It is small enough to be manageable and large enough to
give me a few possibilities to experiment with.
Then, I try to find definitions for PI and QI to satisfy the two requirements.
First, I want to make the conclusion (∀x (P(x) → Q(x))) false. To do this, it is sufficient to
make P to be true and Q to be false for one value of x (so that the implication (P(x) → Q(x))
is false). I used x = 2 for this case and made sure that 2 ∈ PI and 2 ∉ QI.
Next, I want to make the premise true. Since 2 ∉ QI, then (∀x Q(x)) is false. So the
conclusion of the premise is false. To make the premise true, I have to make the premise of
the premise false. This means that, I need to make sure at least one domain element is not
in PI. Therefore, I defined PI such that 1 ∉ PI.

Solution:
Let α be P(x) and let β be Q(x), where P and Q are unary predicates. Consider the following
interpretation:

• dom(I) = {1, 2}
• PI = {2} and QI = {1}

We need to show that ((∀x P(x)) → (∀x Q(x)))(I,E) = T and (∀x (P(x) → Q(x)))(I,E) = F.
Let E be an arbitrary environment.

First, we will show that ((∀x P(x)) → (∀x Q(x)))(I,E) = T.
P(x)(I,E[x↦1]) = F because E[x ↦ 1](x) = 1 ∉ PI. By the satisfaction rule for ∀, (∀x P(x))(I,E) =
F.
By the satisfaction rule for an implication, ((∀x P(x)) → (∀x Q(x)))(I,E) = T because
(∀x P(x))(I,E) = F.

Next, we will show that (∀x (P(x) → Q(x)))(I,E) = F.
(P(x) → Q(x))(I,E[x↦2]) = F because E[x ↦ 2](x) = 2 ∈ PI and E[x ↦ 2](x) = 2 ∉ QI.
By the satisfaction rule for ∀, (∀x (P(x) → Q(x)))(I,E) = F.

In summary, the entailment does not hold.

64

2.4 Natural Deduction
• ∀e (analogous to ∧e)

• ∀i (analogous to ∧i)

– We know nothing about the fresh variable u except that u is a domain element.
(If u is special, our conclusion may not be valid.)

– The fresh variable u cannot escape the subproof box. For example, we cannot
conclude α[u/x] outside of the box.

– When you choose the fresh variable u, make sure that it has not appears anywhere
outside of the subproof box in the proof.

• ∃e (analogous to ∨e)

– Proof by cases.
– The conclusion may have nothing to do with the starting formula.

• ∃i (analogous to ∨i)

65

2.4.1 Forall-elimination

Exercise 64. Show that {P(t), (∀x (P(x) → (¬Q(x))))} ⊢ (¬Q(t)).

1. P(t) premise
2. (∀x (P(x) → (¬Q(x)))) premise
3. (P(t) → (¬Q(t))) ∀e: 2
4. (¬Q(t)) →e: 1, 3

2.4.2 Exists-introduction

Exercise 65. Show that {(¬P(y))} ⊢ (∃x (P(x) → Q(y))).

1. (¬P(y)) premise
2. P(y) assumption
3. ⊥ ⊥i: 1, 2
4. Q(y) ⊥e: 3
5. (P(y) → Q(y)) →i: 2-4
6. (∃x (P(x) → Q(y))) ∃i: 5

Exercise 66. Show that {(∀x P(x))} ⊢ (∃y P(y)).

1. (∀x P(x)) premise
2. P(u) ∀e: 1
3. (∃y P(y)) ∃i: 2

66

2.4.3 Forall-introduction

Exercise 67. Show that {(∀x P(x))} ⊢ (∀y P(y)).

1. (∀x P(x)) premise
2. u fresh assumption
3. P(u) ∀e: 1
4. (∀y P(y)) ∀i: 2-3

Exercise 68. Show that {(∀x (P(x) → Q(x))), (∀x P(x))} ⊢ (∀x Q(x)).

1. (∀x (P(x) → Q(x))) premise
2. (∀x P(x)) premise
3. u fresh assumption
4. P(u) ∀e: 2
5. (P(u) → Q(u)) ∀e: 1
6. Q(u) →e: 4, 5
7. (∀x Q(x)) ∀i: 3-6

Exercise 69. Show that {(∀x (P(x) → Q(x)))} ⊢ ((∀x P(x)) → (∀y Q(y))).

1. (∀x (P(x) → Q(x))) premise
2. (∀x P(x)) assumption
3. u fresh assumption
4. P(u) ∀e: 2
5. (P(u) → Q(u)) ∀e: 1
6. Q(u) →e: 4, 5
7. ((∀y Q(y)) ∀i: 3-6
8. ((∀x P(x)) → (∀y Q(y))) →i: 2-7

67

2.4.4 Exists-elimination

Exercise 70. Show that {(∃x P(x))} ⊢ (∃y P(y)).

1. (∃x P(x)) premise
2. P(u), u fresh assumption
3. (∃y P(u)) ∃i: 2
4. (∃y P(y)) ∃e: 1, 2-3

Exercise 71. Show that {(∀x (P(x) → Q(x))), (∃x P(x))} ⊢ (∃x Q(x)).

1. (∀x (P(x) → Q(x))) premise
2. (∃x P(x)) premise
3. P(u), u fresh assumption
4. (P(u) → Q(u)) ∀e: 1
5. Q(u) →e: 3, 4
6. (∃x Q(x)) ∃i: 5
7. (∃x Q(x)) ∃e: 2, 3-6

Exercise 72. Show that {(∀x (Q(x) → R(x))), (∃x (P(x) ∧ Q(x)))} ⊢ (∃x (P(x) ∧ R(x))).

1. (∀x (Q(x) → R(x))) premise
2. (∃x (P(x) ∧ Q(x))) premise
3. (P(u) ∧ Q(u)), u fresh assumption
4. P(u) ∧e: 3
5. Q(u) ∧e: 3
6. (Q(u) → R(u)) ∀e: 1
7. R(u) →e: 5, 6
8. (P(u) ∧ R(u)) ∧i: 4, 7
9. (∃x (P(x) ∧ R(x))) ∃i: 8

10. (∃x (P(x) ∧ R(x))) ∃e: 2, 3-9

68

2.4.5 Putting them together

Exercise 73. Show that {(∃x P(x)), (∀x (∀y (P(x) → Q(y))))} ⊢ (∀y Q(y)).

1. (∃x P(x)) premise
2. (∀x (∀y (P(x) → Q(y)))) premise
3. y0 fresh assumption
4. P(x0), x0 fresh assumption
5. (∀y (P(x0) → Q(y))) ∀e: 2
6. (P(x0) → Q(y0)) ∀e: 5
7. Q(y0) →e: 4, 6
8. Q(y0) ∃e: 1, 4-7
9. (∀y Q(y)) ∀i: 3-8

Exercise 74. Show that {(∃y (∀x P(x, y)))} ⊢ (∀x (∃y P(x, y))).

1. (∃y (∀x P(x, y))) premise
2. (∀x P(x, y0)), y0 fresh assumption
3. x0 fresh assumption
4. P(x0, y0) ∀e: 2
5. (∃y P(x0, y)) ∃i: 4
6. (∀x (∃y P(x, y))) ∀i: 3-5
7. (∀x (∃y P(x, y))) ∃e: 1, 2-6

69

Exercise 75. Show that {(¬(∃x P(x)))} ⊢ (∀x (¬P(x))). (De Morgan)

1. (¬(∃x P(x)) premise
2. u fresh assumption
3. P(u) assumption
4. (∃x P(x)) ∃i: 3
5. ⊥ ⊥i: 1, 4
6. (¬P(u)) ¬i: 3-5
7. (∀x (¬P(x))) ∀i: 2-6

Exercise 76. Show that {(∀x (¬P(x)))} ⊢ (¬(∃x P(x))). (De Morgan)

1. (∀x (¬P(x))) premise
2. (∃x P(x)) assumption
3. P(u), u fresh assumption
4. (¬P(u)) ∀e: 2
5. ⊥ ⊥i: 3, 4
6. ⊥ ∃e: 3-5
7. (¬(∃x P(x))) ¬i: 2-6

70

Exercise 77. Show that {(∃x (¬P(x)))} ⊢ (¬(∀x P(x))). (De Morgan)

1. (∃x (¬P(x))) premise
2. (∀x P(x)) assumption
3. (¬P(u)), u fresh assumption
4. P(u) ∀e: 2
5. ⊥ ⊥i: 3, 4
6. ⊥ ∃e: 3-5
7. (¬(∀x P(x))) ¬i: 2-6

Exercise 78. Show that {(¬(∀x P(x)))} ⊢ (∃x (¬P(x))). (De Morgan)

1. (¬(∀x P(x))) premise
2. (¬(∃x (¬P(x)))) assumption
3. u fresh assumption
4. (¬P(u)) assumption
5. (∃x (¬P(x))) ∃i: 4
6. ⊥ 2, 5
7. P(u) PBC: 4-6
8. (∀x P(x)) ∀i: 3-7
9. ⊥ ⊥i: 1, 8

10. (∃x (¬P(x))) PBC: 2-9

71

2.5 Soundness and Completeness of Natural Deduction
2.5.1 Proving that an inference rule is sound or not sound

Lemma 1. Let t be a predicate term. Let I be an interpretation with domain dom(I). Let
E be an environment. Then we have that t(I,E) ∈ dom(I).

Lemma 2. Let α be a well-formed predicate formula. Let t be a predicate term. Let I
and E be an interpretation and environment. Let x be a variable. Then we have that
α[t/x](I,E) = α(I,E[x↦t(I,E)]).

Exercise 79. Prove that the ∀e inference rule is sound. That is, prove that the entailment
holds:

{(∀x α)} ⊧ α[t/x] (145)

where α be a Predicate formula, x is a variable, and t is a Predicate term.

Proof. Let (I, E) be an interpretation and environment such that (∀x α)(I,E) = T.
By the satisfaction rule for ∀, we have that α(I,E[x↦d]) = T, for every d ∈ dom(I).
By Lemma 1, t(I,E) is some domain element. Thus, we have that α(I,E[x↦t(I,E)]) = T.
By Lemma 2, we have that α[t/x](I,E) = α(I,E[x↦t(I,E)]). Thus, we have that α[t/x](I,E) = T.

Exercise 80. Prove that the ∃i inference rule is sound. That is, prove that the entailment
holds:

{α[t/x]} ⊨ (∃x α) (146)

where α is a predicate formula, t is a predicate term, and x is a variable.

Proof. Let (I, E) be an interpretation and environment such that α[t/x](I,E) = T.

By Lemma 2, we have that α[t/x](I,E) = α(I,E[x↦t(I,E)]). Thus, we have that α(I,E[x↦t(I,E)]) = T.
By Lemma 1, t(I,E) is some domain element. Thus, by the satisfaction rule for ∃, we have
that (∃x α)(I,E) = T.

72

Exercise 81. Prove that the following inference rule is NOT sound.

α[t/x]
(∀x α) ∀i∗ (147)

where α is a predicate formula, t is a predicate term, and x is a variable.

Proof. We need to provide an interpretation I and an environment E such that α[t/x](I,E) = T
and (∀x α)(I,E) = F.
Consider the language of predicate logic where P(1) is a unary predicate and x and y are
variables.
Let α be P(x) and let t be y. Let the interpretation I be defined below.

• dom(I) = {1, 2}

• PI = {1}

Let the environment E be defined by E(x) = 1 and E(y) = 1.

First, we show that α[t/x](I,E) = T. By Lemma 2, α[t/x](I,E) = α(I,E[x↦t(I,E)]). By the
definition of the term t, t(I,E) = y(I,E) = E(y) = 1. Thus, α[t/x](I,E) = α(I,E[x↦1]) =
P(x)(I,E[x↦1]) = T because E[x ↦ 1](x) = 1 ∈ PI.
Next, we show that (∀x α)(I,E) = F. By the satisfaction rule for ∀, we need to show that
α(I,E[x↦d]) = F for at least one d ∈ dom(I). We have that α(I,E[x↦2]) = P(x)(I,E[x↦2]) = F
because E[x ↦ 2](x) = 2 ∉ PI.

73

Exercise 82. Prove that the following inference rule is NOT sound.

(∀x(α → β)) β[t/x]
α[t/x] ∀e∗ (148)

where α and β are predicate formulas, t is a predicate term, and x is a variable.

Proof. We need to provide an interpretation I and an environment E such that (∀x(α →
β))(I,E) = T, β[t/x](I,E) = T and α[t/x](I,E) = F.
Consider the language of predicate logic where P(1) and Q(1) are unary predicates and x and
y are variables.
Let α be (P(x) ∧ Q(x)). Let β be P(x) and let t be y. Let the interpretation I be defined
below.

• dom(I) = {1}

• PI = {1}

• QI = ∅

Let the environment E be defined by E(x) = 1 and E(y) = 1.

First, we show that (∀x(α → β))(I,E) = T. The domain in I only has 1 element. Consider
x ↦ 1.
By the definitions of α and β, we have that

(α → β)(I,E[x↦1]) = ((P(x) ∧ Q(x)) → P(x))(I,E[x↦1]).

By the definition of P, we have that

P(x))(I,E[x↦1]) = T

because E[x ↦ 1](x) = 1 ∈ PI.
By the satisfaction rule for →, since P(x))(I,E[x↦1]) = T, we have that

((P(x) ∧ Q(x)) → P(x))(I,E[x↦1]) = T.

Thus, we can conclude that
(α → β)(I,E[x↦1]) = T.

By the satisfaction rule for ∀, we have that

(∀x(α → β))(I,E) = T.

74

Next, we show that β[t/x](I,E) = T. By Lemma 2, we have that

β[t/x](I,E) = β(I,E[x↦t(I,E)]) = T.

By the definition of the term t, we have that t(I,E) = y(I,E) = E(y) = 1. Thus,

β[t/x](I,E) = β(I,E[x↦1]) = P(x)(I,E[x↦1]) = T

because E[x ↦ 1](x) = 1 ∈ PI.

Finally, we show that α[t/x](I,E) = F.
By Lemma 2 and by the definition of α, we have that

α[t/x](I,E) = α(I,E[x↦t(I,E)]) = (P(x) ∧ Q(x))(I,E[x↦t(I,E)]).

By the definition of the term t, we have that

t(I,E) = y(I,E) = E(y) = 1.

By the definition of Q, we have that

Q(x))(I,E[x↦1]) = F

because E[x ↦ 1](x) = 1 ∉ QI.
Thus, by the definition of ∧, we have that

(P(x) ∧ Q(x))(I,E[x↦t(I,E)]) = F,

which is equivalent to α[t/x](I,E) = F.

75

2.5.2 Proofs using the soundness and completeness theorems

Exercise 83. Show that there is no natural deduction proof for {(∃x P(x))} ⊢ P(t), where
P is a unary predicate, t is a term and x is a variable.

76

	Propositional Logic
	Translations
	Structural Induction
	Tautology, Contradiction, and Satisfiable but Not a Tautology
	Logical Equivalence
	Analyzing Conditional Code
	Circuit Design
	Semantic Entailment
	Natural Deduction
	Strategies for writing a natural deduction proof
	And elimination and introduction
	Implication introduction and elimination
	Or elimination and introduction
	Negation introduction and double negation elimination
	Negation elimination
	Putting it together!
	Other problems

	Soundness and Completeness of Natural Deduction
	The soundness of inference rules
	Soundness and Completeness of Natural Deduction

	Predicate Logic
	Translations
	Semantics of Predicate Formulas
	Evaluating Formulas with No Variables
	Evaluating Formulas with Free Variables Only
	Evaluating Formulas with Free and Bound Variables
	Evaluating Formulas with Bound Variables Only

	Semantic Entailment
	Natural Deduction
	Forall-elimination
	Exists-introduction
	Forall-introduction
	Exists-elimination
	Putting them together

	Soundness and Completeness of Natural Deduction
	Proving that an inference rule is sound or not sound
	Proofs using the soundness and completeness theorems

