Array Assignment

A is an array of n integers A[1], A[2], ..., A[n].

if x = y, ??? should be 1 = 0.

A[x] = 1; if x ≠ y, ??? should be A[y] = 0.

A[1] = 0 D

When we use variables as indices into arrays, we need to account for multiple cases for many possible values that the variables can take.

Solutions: Write down the sequence of changes first and resolve them when we need to prove any implied conditions.

\(e_2 \) \(A[e_1] = e_2 \);
\(e_3 \) \(D \) array assignment.

For an assignment to an array value \(A[e_1] = e_2 \), assume that the assignment produced a new array \(A' \), where:

- **Input:** array \(A \), index \(e_1 \), value \(e_2 \)
- **Output:** array \(A' \), except the \(e_1 \)th element is changed to have the value \(e_2 \).

We apply assignments from left to right.

004
Array assignment

Prove that the following program satisfies the given triple under partial correctness.

\[(A[x] = \pi_0) \land (A[y] = \pi_0) \triangleright\]
\[(A[y] = \pi_0) \land (A[y] = \pi_0) \triangleright\]

Assignment:

\[t = A[x] ; \]

Array assignment

\[A[x] = \text{AC}[y] ; \text{Q[A[x] A]} \]

Array assignment

\[A[y] = \pi_3 ; \text{Q[A[y] A]} \]

Array assignment

\[A[x] = \pi_0 \land (A[y] = \pi_0) \triangleright\]

To prove the implied condition, we need to prove the following:

Proof of 2: The first assignment \(x = A[y] \) does not matter because the second assignment changes the 4th element of \(A \) to \(A[x] \). This is what we want to show. QED

Proof of 0: Consider 2 cases:

1. \(x = y \). The second assignment can be rewritten as \(x = A[y] \), which is the same as the first assignment. Thus, the \(x \)-th element of \(A \) is \(A[y] \) after both assignments.
2. \(x \neq y \). The second assignment does not change the \(x \)-th element of \(A \). Therefore, the \(x \)-th element of \(A \) is \(A[y] \) after both assignments. QED
Array assignment

Prove that the following program satisfies the given triple under partial correctness.

\[q \left(A[x] = x_0 \right) \land (A[y] = y_0) \]
\[\downarrow \left(A[x] \leftarrow A[y] ; A[y] \leftarrow A[x], y \leftarrow A[y], x = x_0 \right) \]
\[t = A[x] ; \]
\[\downarrow \left(A[x] \leftarrow A[y] ; A[y] \leftarrow t \right) \land (A[y] = y_0) \]
\[A[x] = A[y] ; \]
\[\downarrow \left(A[y] \leftarrow t \right) \land (A[x] = x_0) \]
\[A[y] = t ; \]
\[\downarrow \left(A[x] = y_0 \right) \land (A[y] = x_0) \]

To prove the "implied" condition, we need to prove the following:
1. \(A[x] \leftarrow A[y] ; A[y] \leftarrow A[x], y \leftarrow A[y], x = x_0 \)
 - and

Proof of 1: The first assignment \(x \leftarrow A[y] \) assigns \(A[y] \) to the \(x \)th element of \(A \). Consider 2 cases for \(y \).
1. If \(y \neq x \), then the second assignment does not change the \(x \)th element of \(A \). Thus, the \(x \)th element of \(A \) is \(A[y] \) after the assignments.
2. If \(y = x \), the second assignment can be rewritten as \(x \leftarrow A[y] \), which is the same as the first assignment.
 Thus, the \(x \)th element of \(A \) is \(A[y] \) after the assignments.

Proof of 2: The first assignment does not matter. The second assignment assigns \(A[x] \) to the \(y \)th element of \(A \), and this is the desired result.