CS245 Undecidability Alice Gao . Nov 28

Undecidability

There are problems that cannot be solved by computer
programs (i.e. algorithms) even
assuming unlimited time and space.

Proved by Alan Turing (and Alonzo
Church) in 1936

(Witch The Tmitation Gamz !) |
(Watch Hidden Figures !)

What is a computer program/algorithm? ,\
. At the time, there were no electronic computers. AA
computer referred to a person who computes.
- Turing’s idea of a “computer program” was a list of
instructions that a person could follow.
- For us, an algorithm could refer to any of the following:
- Racket, C, and C++ programs
» Turing machines
- High-level pseudo-code

What does it mean for an algorithm to solve a problem?
. The algorithm must produce the correct output for every
input.

CS245 Undecidability Alice Gao Nov 28

‘We focus on decision problems.
A decision problem has YES/NO answers.

A decision problem is

- Decidable iff there exists an algorithm to solve it.

- Undecidable iff there does not exist an algorithm to
solve it.

Examples of decision problems:

1. Given a propositional formula, is it satisfiable?

This problem is decidable. Here is an algorithm:
Construct a truth table for the propositional formula. The
formula has to have a finite number of variables, so the
truth table will be finite. Check whether there is a T in the
final column of the truth table. If there is a T in the
column, then the formula is satisfiable. Otherwise, the
formula is not satisfiable.

2. Given a predicate formula, is it valid?
Undecidable

3. Given a positive integer, is it prime?

This problem is decidable. Here is an algorithm:

Let the given positive integer be n. For every integer k
from 2 up to n-1, try dividing n by k. [f k divides n, then n
is not prime. If k does not divide for any k, then n is

prime.

CS245 Undecidability Alice Gao Nov 28

4. Given a program and a Hoare triple, does the program
satisfy the Hoare triple under partial correctness?
Undecidable '

5. Given a program and a Hoare triple, does the program
satisfy the Hoare triple under total correctness?
Undecidable

6. Given two programs, do the two programs produce the
same output for every input? |
Undecidable

7.Given a program and an input, does the program
terminate on the input?

Undecidable

This is also called the halting problem. This is one of the

first known problems to be proven to be undecidable.

CS245 Undecidability ' Alice Gao Nov 28

The Halting Problem:
Given a program P and an input |, will P halt on 1?

« “Halts” means “terminates” or “does not get stuck”.
 One of the first known undecidable problems

The Halting Theorem: The halting problem is undecidable.
That is, there does not exist an algorithm H which solves
the halting problem for every program P and input I.

Proof by contradiction:

Assume that there exists an algorithm H(P,I), which solves
the halting problem for every program P and input I.

We need to derive a contradiction, which shows that H
does not exist.

Our approach:

We will construct an algorithm X(P), which takes a
program P as input. We will show that H always gives the
wrong answer when predicting whether the program X
halts on the input X. That is,

- If H(X,X) returns yes, then X does not halt on X.
« If H(X,X) returns no, then X halts on X.

CS245 Undecidability Alice Gao Nov 28

The algorithm X(P) does the following three things:
(1) Makes two copies of P.
(2) Runs H(P,P).
(3) X behaves differently depending on the result of
H(P,P).
(1) If H(PP) outputs yes, X goes into an infinite loop and
runs forever.
(2) If H(P,P) outputs no, X terminates.

Let’s compare the result of X(X) and the output of H(X,X).

If H(X,X) returns yes, then X goes into an infinite loop and
does not halt on X. However, H predicted that X halts on
X. H’s prediction was wrong. This contradicts our
assumption that H solves the halting problem for any
program and input.

If H(X,X) returns no, then X terminates and halts on X.
However, H predicted that X does not halt on X. H’s
prediction was wrong. This again contradicts our
assumption that H solves the halting problem for any
program and input.

Therefore, our assumption must be wrong, and H does
not exist.

QED

P

CS245 Undecidability Alice Gao Nov 28

Proving Undecidability via Reduction

Now that we know the halting problem is undecidable.

How do we prove that another problem is undecidable?

- We could prove it from scratch, or...

- We could prove that this problem is as hard as the
halting problem; hence it is undecidable.

Problem A is reducible to problem B.

- An algorithm for solving B could be used as a
subroutine for solving A.

- If B is decidable, then A is decidable. (If there is an
algorithm to solve B, then there is an algorithm to solve
A))

- If A is undecidable, then B is undecidable.

A picture to illustrate this: |
Algortthm 4o solve A

yes | Y&

\

Ta Algortthm o

s Transtorm Ja o I 2 > solve B

no | 1o

A\

Question: Prove that problem X is undecidable.

Proof: We reduce the halting problem to problem X.
(Describe the reduction). Since the halting problem is
undecidable, problem X is also undecidable.

QED

CS245 Undecidability Alice Gao Nov 28

Halting-no-input Problem: Given a program P (that
requires no input), does P halt?

Theorem: The halting-no-input problem is undecidable.
Proof by contradiction:

Assume that there is an algorithm B which solves the
halting-no-input problem.

We will construct an algorithm A to solve the halting

problem. Algorithm A works as follows:

- A takes two inputs, a program P and an input I.

- Construct a program P’ as follows: P’ runs P with input
| and outputs the result of P(l).

+ Run algorithm B with P’ as the input.

« Return the result of B(P’).

By our construction of algorithm A, P’ halts if and only if P
halts on input I. Therefore, if algorithm B solves the
halting-no-input Problem for input P’, then the algorithm A
solves the halting problem for inputs P and I. By our
assumption, algorithm B solves the halting-no-input
problem. Thus, algorithm A solves the halting problem.
This contradicts the fact that the halting problem is
undecidable. |

Maortthm A solves e hattihg problem. QED

|
|
|

> Construct P! ohich o ‘,"?r[g@ﬁfhm & soles | jeg| Yes,
| | runs P with tnpat T hatting-no—input prob | na) no

CS245 Undecidability Alice Gao Nov 28

Problem (Both-Halt): Given two programs P1 and P2, do
both problems halt?

Theorem: The both-halt problem is undecidable.
Proof by contradiction:

Assume that there is an algorithm B to solve the both-halt
problem.

We will construct an algorithm A to solve the halting

problem. Algorithm A works as follows:

- A takes two inputs: a program P and an input |.

« Construct program P1, which runs P with input | and
returns the result of P(l).

 Construct program P2, which does nothing and halts.

« Run algorithm B with P1 and P2 as inputs.

 Return the result of B(P1, P2).

By the design of algorithm A, P1 and P2 both halt if and
only if P halts on input I. Thus, if algorithm B solves the
Both-Halt problem, then algorithm A solves the Halting
problem. By our assumption, algorithm B solves the
Both-Halt problem. Thus, algorithm A solves the Halting
Problem. This contradicts the fact that the Halting
Problem is undecidabile.

=
|

D,
€ \/ hes..
| o
|

D

«<

Construet Pl 4o man Pwf ¢ PU
hput T Construet P2

+o do ﬂﬁﬁf)\g and hale (.

114

' A/g&ﬁfh}ﬂ B solves
pr | the both-halt prob | no

>

8

Algortthm A sploes the hatirg problem.

CS245 Undecidability Alice Gao Nov 28

Total Correctness: Given a Hoare triple (| P |) C (| Q |), does
C satisfy the triple under total correctness?

Theorem: The total correctness problem is undecidable.
Proof by contradiction:

Assume that we have an algorithm B to solve the total
correctness Problem.

We will construct an algorithm A to solve the halting-no-

input problem. Algorithm A works as follows:

- A takes one input, a program P.

+ Run algorithm B with the following Hoare triple as input.
« ([true|) P (| true |)

 Return the result of algorithm B.

Therefore, the Hoare triple is satisfied under total
correctness if and only if P halts. Therefore, if algorithm B
solves the total correctness problem, then algorithm A
solves the halting-no-input problem. By our assumption
algorithm B solves the total correctness problem. Thus,
algorithm A solves the halting-no-input problem. This
contradicts with the fact that the halting-no-input problem
is undecidable.

QED
ECMSY‘TUGI‘ dﬁie D A(gm%m 2 lwes the |9 yes
>3 Hhis Honse T Total Correciness prob :
+iple_ dtved

Mgorithm A solves the hatthg—no-Mpuet prob.

CS245 Undecidability Alice Gao Nov 28

Partial Correctness: Given a Hoare triple (P) C (| Q),
Does C satisfy the triple under partial correctness?

Theorem: The partial correctness problem is undecidable.
Proof by contradiction:

Assume that we have an algorithm B to solve the partial
correctness problem.

We will construct an algorithm A to solve the halting-no-

input problem. Algorithm A works as follows.

- A takes one input, a program P.

+ Run algorithm B with the following Hoare triple as input.
« (| true|) P (| false |)

« Return the result of algorithm B.

It is impossible for any program to satisfy the above
Hoare triple because the post condition is false.
Therefore, the Hoare triple is satisfied under partial
correctness if and only if P does not halt. Therefore, if
algorithm B solves the partial correctness problem, then
algorithm A solves the halting-no-input problem. By our
assumption algorithm B solves the partial correctness
problem. Thus, algorithm A solves the halting-no-input
problem. This contradicts with the fact that the halting-
no-input problem is undecidable.

QED |
CQWSTZ[{@ dt{;ueb Moorthm B soles e [96] MO
{ s Hewre e SR W R no hes,

Algortthm A solves the haltng—no—mput prob

