Lemma 2: Every well-formed formula has an equal number of opening and closing brackets. (This is proved in a separate handout. For this proof, we assume that this lemma is true.)

Lemma 3: Every proper prefix of a well-formed formula φ has more opening than closing brackets.

Define $P(\varphi)$ to be that every proper prefix of φ has more opening than closing brackets.

Proof by structural induction:

Base case: φ is a propositional variable. We need to prove that $P(\varphi)$ holds.

A propositional variable has no proper prefix. Thus, the theorem is true and $P(\varphi)$ holds.

Induction step:

Let op(x) and cl(x) denote the number of opening and closing brackets in x respectively.

Case 1: φ is a well-formed formula of the form $(\neg x)$ where x is a well-formed formula.

Induction hypothesis: Assume that P(x) holds. Let m denote any proper prefix of x. The induction hypothesis becomes that m has more opening than closing brackets.

We need to prove that $P((\neg x))$ holds.

There are four possible proper prefixes of $(\neg x)$: $(\neg (\neg m, and (\neg x) \land we'))$ prove the four cases separately below.

```
Case a: op(() = 1 \text{ by inspection. } cl(() = 0 \text{ by inspection. } op(() > cl(()
```

Case b:
$$op((\neg) = 1)$$
 by inspection. $cl((\neg) = 0)$ by inspection. $op((\neg) > cl((\neg))$

Case c:
$$op((\neg m))$$

= $1 + op(m)$ by inspection of $(\neg m)$
> $1 + cl(m)$ by the induction hypothesis
> $cl(m)$ algebra
= $cl((\neg m))$ by inspection of $(\neg m)$

Case d:

$$op((\neg x))$$
= $1 + op(x)$ by inspection $(\neg x)$
= $1 + cl(x)$ by Lemma 2 and x is a well-formed formula $> cl(x)$ algebra by inspection $(\neg x)$

Thus, $P((\neg x))$ holds.

(Proof continued on the next page)

Case 2: φ is a well-formed formula of the form (x * y) where x and y are well-formed formulas and * is one of the four binary connectives $(\land, \lor, \rightarrow)$, and \leftrightarrow).

Induction hypothesis: Assume that P(x) and P(y) hold. Let m and n denote any proper prefix of x and y respectively. The induction hypothesis becomes that each of m and n has more opening than closing brackets.

We need to prove that P((x * y)) holds.

There are six possible proper prefixes of (x * y): (, (m, (x, (x *, (x * n, and (x * y. We'll prove the six cases separately below.

Case a: op(() = 1 by inspection. cl(() = 0 by inspection. op(() > cl(() = 0 by inspection. op(() > cl(() = 0 by inspection.))

```
Case b: op((m))
      = 1 + op(m)
                                  by inspection of (m
      > 1 + cl(m)
                                  by the induction hypothesis
      > cl(m)
                                  algebra
      = cl((m))
                                  by inspection of (m
Case c: op((x))
      = 1 + op(x)
                                  by inspection of (x)
      = 1 + cl(x)
                                  by Lemma 2 and x is a well-formed formula
      > cl(x)
                                  algebra
      = cl((x))
                                  by inspection of (x)
Case d: op((x *)
                                  by inspection of (x *
      = 1 + op(x)
      =1+cl(x)
                                  by Lemma 2 and x is a well-formed formula
      > cl(x)
      = cl((x *)
                                  by inspection of (x *
Case e: op((x*n))
      = 1 + op(x) + op(n)
                                  by inspection (x * n)
      = 1 + cl(x) + op(n)
                                  by Lemma 2 and x is a well-formed formula
      > 1 + cl(x) + cl(n)
                                  by the induction hypothesis
      > cl(x) + cl(n)
                                  algebra
      = cl((x * n))
                                  by inspection (x * n)
Case f: op((x * y))
      = 1 + op(x) + op(y)
                                  by inspection (x * y)
      = 1 + cl(x) + cl(y)
                                  by Lemma 2 and x and y are well-formed formulas
      > cl(x) + cl(y)
```

By the principle of structural induction, $P(\varphi)$ holds for every well-formed formula φ . QED

by inspection (x * y)

= cl((x * y))