September 14, 2017

Version 1: I describe the property in English in the proof.

Lemma 2: Every well-formed formula φ has an equal number of opening and closing brackets.

Define $P(\varphi)$ to be φ has an equal number of opening and closing brackets.

Proof by structural induction:

Base case: φ is a propositional variable.

A propositional variable has zero opening bracket and zero closing bracket. Thus, the number of opening and closing brackets in ϕ are equal.

Induction step:

Let op(x) and cl(x) denote the number of opening and closing brackets in x respectively.

Case 1: φ is a well-formed formula of the form $(\neg x)$ where x is a well-formed formula.

Induction hypothesis: Assume that x has an equal number of opening and closing brackets. We need to prove that $(\neg x)$ has an equal number of opening and closing brackets.

```
op((\neg x))
= 1 + op(x) by inspection of (\neg x)
= 1 + cl(x) by the induction hypothesis
= cl((\neg x)) by inspection of (\neg x)
```

Thus, $(\neg x)$ has an equal number of opening and closing brackets.

Case 2: φ is a well-formed formula of the form (x * y) where x and y are well-formed formulas and * is one of the four binary connectives $(\land, \lor, \rightarrow)$, and \Leftrightarrow).

Induction hypothesis: Assume that each of x and y has an equal number of opening and closing brackets

We need to prove that (x * y) has an equal number of opening and closing brackets.

```
op((x * y))
= 1 + op(x) + op(y) by inspection of (x * y)
= 1 + cl(x) + cl(y) by the induction hypothesis
= cl((x * y)) by inspection of (x * y)
```

Thus, (x * y) has an equal number of opening and closing brackets.

By the principle of structural induction, every well-formed formula ϕ has an equal number of opening and closing brackets. QED

Version 2: I describe the property using P(.) in the proof.

Lemma 2: Every well-formed formula φ has an equal number of opening and closing brackets.

Define $P(\varphi)$ to be φ has an equal number of opening and closing brackets.

Proof by structural induction:

Base case: φ is a propositional variable. We need to prove that $P(\varphi)$ holds.

A propositional variable has zero opening bracket and zero closing bracket. Thus, $P(\varphi)$ holds.

Induction step:

Let op(x) and cl(x) denote the number of opening and closing brackets in x respectively.

Case 1: φ is a well-formed formula of the form $(\neg x)$ where x is a well-formed formula.

Induction hypothesis: Assume that P(x) holds. We need to prove that $P((\neg x))$ holds.

```
op((\neg x))
= 1 + op(x) by inspection of (\neg x)
= 1 + cl(x) by the induction hypothesis
= cl((\neg x)) by inspection of (\neg x)
Thus, P((\neg x)) holds.
```

Case 2: φ is a well-formed formula of the form (x * y) where x and y are well-formed formulas and * is one of the four binary connectives $(\land, \lor, \rightarrow)$, and \Leftrightarrow).

Induction hypothesis: Assume that P(x) and P(y) hold. We need to prove that P((x * y)) holds.

```
op((x*y))
= 1 + op(x) + op(y) by inspection of (x*y)
= 1 + cl(x) + cl(y) by the induction hypothesis
= cl((x*y)) by inspection of (x*y)
Thus, P((x*y)) holds.
```

By the principle of structural induction, $P(\varphi)$ holds for every well-formed formula φ . QED