Structural induction for well-formed formulas

Problem: Prove that every well-formed formula φ has property P.

Define $P(\varphi)$ to be the property in the problem.

Theorem: For every well-formed formula φ , $P(\varphi)$ holds.

Proof by structural induction:

Base case: φ is a propositional variable. We need to prove that $P(\varphi)$ holds.

<u>Induction step</u>:

Case 1: φ is a well-formed formula of the form $(\neg x)$ where x is a well-formed formula.

Induction hypothesis: Assume P(x) holds.

Prove that $P((\neg x))$ holds.

Case 2: φ is a well-formed formula of the form (x * y) where x and y are well-formed formulas and * is one of the four binary connectives $(\land, \lor, \rightarrow, \text{ and } \leftrightarrow)$.

Induction hypothesis: Assume P(x) and P(y) hold.

Prove that P((x * y)) holds.

By the principle of structural induction, $P(\varphi)$ holds for every well-formed formula φ .

QED