Semantic entailment.

Show that \(\vdash (p \to q), (q \to r) \vdash (p \to r) \)

Proof 1:

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>q</th>
<th>r</th>
<th>P \to q</th>
<th>q \to r</th>
<th>P \to r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The * marks all the rows in which \(p \to q \) and \(q \to r \) are both true. \((p \to r) \) is true in all of the * rows. So the entailment holds. **QED.**

Proof 2: We prove this by contradiction.

Assume that the entailment does not hold.

There is a truth valuation \(t \) such that

\[
(p \to q)^t = T, \quad (q \to r)^t = T \quad \text{and} \quad (p \to r)^t = F.
\]

If \((p \to r)^t = F \), then \(t \) has to be that \(p^t = T \) and \(r^t = F \).

If \((p \to q)^t = T \) and \(p^t = T \), then \(q^t = T \). This is a contradiction.

If \((q \to r)^t = T \) and \(r^t = F \), then \(q^t = F \) and \(r^t = F \).

Our assumption is false and the entailment holds. **QED.**
Semantic entailment

Show that
\[\not \vDash (p \Rightarrow (-q)) \lor r, (q \land (-r)), (p \leftrightarrow r) \not\vDash (p \land (q \Rightarrow r)) \]

Proof: Consider a truth valuation \(t \) such that
\[p^t = F, \quad q^t = T, \quad \text{and} \quad r^t = F. \]

\[(p \Rightarrow (-q)) \lor r)^t = ((T \Rightarrow F) \lor F) = T \]
\[(q \land (-r))^t = (T \land T) = T \]
\[(p \leftrightarrow r)^t = (F \leftrightarrow F) = T \]

\[(p \land (q \Rightarrow r))^t = (F \land (T \Rightarrow F)) = F \]

The premises are true but the conclusion is false, so the entailment does not hold. \(\Box \)