Tautology, Contradiction, Satisfiable

Answer: (d). a and b are true. c is false

set 3, contradictions,
false in every row of the truth table.

set 2, contingencies,
true in at least one row, false in at least one row.

set 1, tautologies,
true in every row of the truth table.

sets 1 and 2 satisfiable,
true in at least one row.

1. tautologies
 true in every row

2. contingencies
 true in at least one row
 false in at least one row

3. contradictions
 false in every row

satisfiable
true in at least one row.
Tautology, Contradiction, Satisfiable.

$(p \lor q) \iff ((p \land \neg q) \lor (\neg p \land q))$ (Slie 22 example 3)

Note that this formula is a biconditional. The left side is an inclusive OR, and the right side is an exclusive OR.

Can this formula be true?

- A biconditional is true when both sides of it have the same truth value. So we need the inclusive & exclusive OR's to be both true or both false.
- When p and q have different truth values, both OR's are true.
 So this formula can be true & is not a contradiction.

Can this formula be false?

- A biconditional is false when both sides have different truth values. So we need the two OR's to be different.
- The two OR's have different truth values when $p \equiv q \equiv T$.
 $(p \lor q) \equiv T$ and $((p \land \neg q) \lor (\neg p \land q)) \equiv F$.
 So this formula can be false and is not a tautology.

It's satisfiable but not a tautology.
Tautology, Contradiction, Satisfiable.

\[(((p \land q) \rightarrow r) \land (p \rightarrow q)) \rightarrow (p \rightarrow r) \]

Is this formula a contradiction? Can it be true?
This formula is a giant conditional.
The easiest way to make a conditional true is to make the premise false.

The premise is a conjunction. The easiest way to make a conjunction false is to make one of the two formulas false. Let's make \((p \rightarrow q)\) false by \(p = T, q = F\).

When \(p = T, q = F, r = T\) or \(F\), the formula is true.
So it is not a contradiction.

Is this formula a tautology? Can it be false?
Proof:
To make it false, we need the premise to be true and the conclusion to be false.
To make the conclusion \((p \rightarrow r)\) false, we need.
\(p = T\) and \(r = F\).
The formula becomes true.
\[(((T \land q) \rightarrow F) \land (T \rightarrow q)) \rightarrow F \]
\[\equiv (((q \rightarrow F) \land q) \rightarrow F) \]
\[\equiv ((-q) \land q) \rightarrow F \]
\[\equiv (F \rightarrow F) \]
\[\equiv T \]
This shows that it's impossible to make the formula false, so it's a tautology. QED