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Learning Goals

By the end of this lecture, you should be able to:

» Define reduction.

» Describe at a high level how we can use reduction
to prove that a decision problem is undecidable.

» Prove that a decision problem is undecidable
by using a reduction from the halting problem.
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Outline

A Template for Reduction Proofs
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Proving that other problems are undecidable

We proved that the halting problem is undecidable.
How do we prove that another problem is undecidable?

» We could prove it from scratch, or

» We could prove that it is as difficult as the halting problem.
Hence, it must be undecidable.
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Proving undecidability via reductions

We will prove undecidability via reductions.

Reduce the halting problem to problem Pjg.

» Given an algorithm for solving P,
we could use it to solve the halting problem.

» If Py is decidable, then the halting problem is decidable.
» If the halting problem is undecidable, then Py is undecidable.
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Proving undecidability via reductions

Theorem: Problem Ppg is undecidable.

Proof by Contradiction.

Assume that there is an algorithm B, which solves problem Pg.

{We will construct algorithm A, Which o solve
the halting problem. (Describe algorithm A S
Since algorithm B solves problem Pg, algorithm A solves the

halting problem, which contradicts with the fact that the halting
problem is undecidable.

Eplanatin eductdn

Therefore, problem Py is undecidable. O
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Algorithm A solves the hatting  pmblem
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Outline

Examples of Reduction Proofs
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Example 1 of reduction proofs

The halting-no-input problem:
Given a program P which takes no input, does P halt?

Theorem: The halting-no-input problem is undecidable.
> o input”
P(woid) {
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Algorithm A sdles the  hatting  prblem
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Foof by contradictivon :

Assume hat There 55 an alprithm B, which ssles
e hatting— no—input= problem .

We wil constnet an olgprithm A 1> Solve the haking problem.
A@b/‘/\#)m A works as Pllws:;

— A <tokes fwo Mpus, o pmgram P and an jput 1.

— Let program P’ run P with hpar I and retum P(DD.

— Run olporithm B with P’ as ¥s hpu-.

— Ketun B(P')



By our construction of- algorithm A,
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Since algorithm B sulbes the  haktihy— o mmput problem,
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Example 2 of reduction proofs

The both-halt problem:

Given two programs P; and P, which take no input,
do both programs halt?

Theorem: The both-halt problem is undecidable.
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Example 3 of reduction proofs

- Wwhich takes one mput T,
The exists-halting-input pfoblem

Given a program P; does there exist an input I such that
P halts with input I?

Theorem The exists-halting-input problem is undecidable.
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Algorithm A Solves e halimg  problem
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Dot by contradiction

Assume. 1t there B on alrithm B, whith soles
Hhe  exEh- hatting ~ input prodie .

We will construt an- algorithm A, which  Sples

the halting problem.  Algoritim A woks s flows:

- A takes two Mpums, a pogram P ard an input 1

— let pogram P’ Ymre Fs mpa ,  run P with it 1,
and retun P2

— Run agorithm B with P’ s e Inpar.

— Retwn. BP)



By our constructim of algorihm A,
|P ol on inpur L] and oy +F [Fhere exiss an gt 7
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Revisiting the learning goals

By the end of this lecture, you should be able to:

» Define reduction.

» Describe at a high level how we can use reduction
to prove that a decision problem is undecidable.

» Prove that a decision problem is undecidable
by using a reduction from the halting problem.
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