Program Verification
Reversing an array

Alice Gao
Lecture 22

Based on work by J. Buss, L. Kari, A. Lubiw, B. Bonakdarpour, D. Maftuleac, C. Roberts, R. Trefler, and P. Van Beek
Program Verification: Reversing an array

Learning Goals

Introducing the array assignment rule

Revisiting the Learning Goals
Learning Goals

By the end of this lecture, you should be able to:
Partial correctness for array assignments

- Prove that a Hoare triple is satisfied under partial correctness for a program containing array assignment statements.
The array assignment inference rule

Let A be an array of n integers.

First, write down the sequence of changes.
Resolve all of the changes when we prove the implied’s.

\[Q[A[e_1 \gets e_2]/A] \]
\[A[e_1] = e_2; \]
\[Q \text{ array assignment} \]

- A is the original array.
- $A[e_1 \gets e_2]$ is the new array, which is identical to array A except that the e_1^{th} element is e_2.
The array re-assignment notation:

\[A\{e_1 \leftarrow e_2\}[i] = \begin{cases}
 e_2, & \text{if } i = e_1 \\
 A[i], & \text{if } i \neq e_1
\end{cases} \]

Note that \(e_1 \) is an index whereas \(e_2 \) is an array element.

We apply assignments from left to right.

Examples:

\[A\{1 \leftarrow 3\}[1] = 3 \]
\[A\{1 \leftarrow 3\}\{1 \leftarrow 4\}[1] = 4 \]
Reversing an array

Consider an array \(R \) of \(n \) integers, \(R[1], R[2], \ldots, R[n] \).

We want to reverse the order of its elements.

Our algorithm:

For each \(1 \leq j \leq \lfloor n/2 \rfloor \), we will swap \(R[j] \) with \(R[n + 1 - j] \).
Reversing an array

R is an array of n integers, $R[1], R[2], \ldots, R[n]$. Prove that the following triple is satisfied under partial correctness.

$$(\forall x \ ((1 \leq x \leq n) \rightarrow (R[x] = r_x)))$$

$j = 1;\quad$ \textbf{while} $(2 \ast j \leq n)$ \{
 $t = R[j];$
 $R[j] = R[n+1-j];$
 $R[n+1-j] = t;$
 $j = j + 1;$
\}

$$(\forall x \ ((1 \leq x \leq n) \rightarrow (R[x] = r_{n+1-x})))$$
Reversing an array

R is an array of n integers, $R[1], R[2], ..., R[n]$. Prove that the following triple is satisfied under partial correctness.

Let $Inv(j)$ denote our invariant.

$$(\forall x \ ((1 \leq x \leq n) \rightarrow (R[x] = r_x)))$$

$$j = 1;$$

while $ (2 \ast j \leq n) \{$

$$t = R[j];$$

$$R[j] = R[n+1-j];$$

$$R[n+1-j] = t;$$

$$j = j + 1;$$

}$$

$$(\forall x \ ((1 \leq x \leq n) \rightarrow (R[x] = r_{n+1-x})))$$
CQ 1: Consider the premise of implied (A).
Which of the following is an accurate description of the formula?

(A) No swap has occurred.
(B) Elements in $[1, j - 1]$ have been swapped, and elements in $[j, (n + 1)/2]$ have NOT been swapped.
(C) Elements in $[1, j]$ have been swapped, and elements in $[j + 1, (n + 1)/2]$ have NOT been swapped.
(D) All swaps have been completed.
(E) None of the above
CQ 2: Consider the conclusion of implied (A).
Which of the following is an accurate description of the formula?

(A) No swap has occurred.
(B) Elements in \([1, j - 1]\) have been swapped, and elements in \([j, (n + 1)/2]\) have NOT been swapped.
(C) Elements in \([1, j]\) have been swapped, and elements in \([j + 1, (n + 1)/2]\) have NOT been swapped.
(D) All swaps have been completed.
(E) None of the above
CQ 3: Consider the premise of implied (C).
Which of the following is an accurate description of the formula?

(A) No swap has occurred.

(B) Elements in $[1, j - 1]$ have been swapped, and elements in $[j, (n + 1)/2]$ have NOT been swapped.

(C) Elements in $[1, j]$ have been swapped, and elements in $[j + 1, (n + 1)/2]$ have NOT been swapped.

(D) All swaps have been completed.

(E) None of the above
CQ 4: Consider the conclusion of implied (C).
Which of the following is an accurate description of the formula?

(A) No swap has occurred.
(B) Elements in \([1, j - 1]\) have been swapped, and elements in \([j, (n + 1)/2]\) have NOT been swapped.
(C) Elements in \([1, j]\) have been swapped, and elements in \([j + 1, (n + 1)/2]\) have NOT been swapped.
(D) All swaps have been completed.
(E) None of the above
CQ 5: Consider the premise of implied (B).
Which of the following is an accurate description of the formula?

(A) No swap has occurred.
(B) Elements in $[1, j - 1]$ have been swapped, and elements in $[j, (n + 1)/2]$ have NOT been swapped.
(C) Elements in $[1, j]$ have been swapped, and elements in $[j + 1, (n + 1)/2]$ have NOT been swapped.
(D) All swaps have been completed.
(E) None of the above
CQ 6: Consider the conclusion of implied (B). Which of the following is an accurate description of the formula?

(A) No swap has occurred.
(B) Elements in $[1, j - 1]$ have been swapped, and elements in $[j, (n + 1)/2]$ have NOT been swapped.
(C) Elements in $[1, j]$ have been swapped, and elements in $[j + 1, (n + 1)/2]$ have NOT been swapped.
(D) All swaps have been completed.
(E) None of the above
Revisiting the learning goals

By the end of this lecture, you should be able to:
Partial correctness for array assignments

- Prove that a Hoare triple is satisfied under partial correctness for a program containing array assignment statements.