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Learning goals

By the end of this lecture, you should be able to:
▶ Define a valuation.
▶ Determine the value of a term given a valuation.
▶ Determine the truth value of a formula given a valuation.
▶ Give a valuation that makes a formula true or false.
▶ Determine and justify whether a formula is satisfiable and/or

valid.
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The Language of Predicate Logic

▶ Domain: a non-empty set of objects
▶ Individuals: concrete objects in the domain
▶ Functions: takes objects in the domain as arguments and

returns an object of the domain.
▶ Relations: takes objects in the domain as arguments and

returns true or false. They describe properties of objects or
relationships between objects.

▶ Variables: placeholders for concrete objects in the domain
▶ Quantifiers: for how many objects in the domain is the

statement true?
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The semantics of a predicate formula

Given a well-formed formula of predicate logic,
does the formula evaluate to 0 or 1 in some context?
Example: What does (𝐹(𝑎) ∨ 𝐺(𝑎, 𝑏)) mean?

The symbols 𝐹,𝐺, 𝑎, and 𝑏 do not have intrinsic meanings.
In propositional logic, we need a truth valuation
to give a meaning to a formula.
In predicate logic, we need a valuation
to give a meaning to a term or a formula.
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Valuation

A valuation 𝑣 for our language ℒ consists of
1. A domain 𝐷,
2. A meaning for each individual symbol, e.g. 𝑎𝑣 ∈ 𝐷,
3. A meaning for each free variable symbol, e.g. 𝑢𝑣 ∈ 𝐷,
4. A meaning for each relation symbol, e.g. 𝐹𝑣 ⊆ 𝐷𝑛,

≈𝑣= {⟨𝑥, 𝑥⟩}𝑥 ∈ 𝐷} ⊆ 𝐷2.
5. A meaning for each function symbol, e.g. 𝑓𝑣 ∶ 𝐷𝑚 → 𝐷.
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A function symbol must be interpreted as a total function

A function symbol 𝑓 must be interpreted as
a function 𝑓𝑣 that is total on the domain 𝐷.

𝑓𝑣 ∶ 𝐷𝑚 → 𝐷

▶ Any 𝑚-tuple (𝑑1, ..., 𝑑𝑚) ∈ 𝐷𝑚 can be an input to 𝑓𝑣.
▶ For any legal 𝑚-tuple (𝑑1, ..., 𝑑𝑚) ∈ 𝐷𝑚,

𝑓𝑣(𝑑𝑣
1 , ..., 𝑑𝑣

𝑚) ∈ 𝐷.
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CQ Which function is total?

Which of the following functions is total?

(A) 𝑔(𝑥, 𝑦) = 𝑥 − 𝑦. 𝐷 = ℕ (natural numbers).
Incorrect. 1 - 2 = -1 is not a natural number.

(B) 𝑓(𝑥) = √𝑥. 𝐷 = ℤ (integers).
Incorrect. The square root of an integer may not be an integer
anymore.

(C) 𝑓(𝑥) = 𝑥 + 1. 𝐷 = {1, 2, 3}.
Incorrect. 3 + 1 = 4 not in domain.

(D) 𝑓(1) = 2, 𝑓(2) = 3 and 𝑓(3) = 3. 𝐷 = {1, 2, 3}.
Correct

(E) 𝑔(𝑥, 𝑦) = 𝑥 > 𝑦. 𝐷 = ℤ (integers).
Incorrect. x > y produces true or false, not a domain element.
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Value of Terms

Definition (Value of Terms)
The value of terms of 𝐿 under valuation 𝑣 over domain 𝐷 is
defined by recursion:

1. 𝑎𝑣 ∈ 𝐷.
2. 𝑢𝑣 ∈ 𝐷.
3. 𝑓(𝑡1,… , 𝑡𝑛)𝑣 = 𝑓𝑣(𝑡𝑣1,… , 𝑡𝑣𝑛).
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The assignment override notation

𝑣(𝑢/𝛼) keeps all the mappings in 𝑣 intact
EXCEPT reassigning 𝑢 to 𝛼 ∈ 𝐷.
Consider a valuation: 𝑢𝑣

1 = 3, 𝑢𝑣
2 = 3, 𝑢𝑣

3 = 1. 𝐷 = {1, 2, 3}.

1. 𝑢𝑣(𝑢1/2)
1 = ?

2. 𝑢𝑣(𝑢1/2)
2 = ?

3. 𝑢𝑣(𝑢1/2)(𝑢2/1)
1 = ?

4. 𝑢𝑣(𝑢1/2)(𝑢2/1)
2 = ?

5. 𝑢𝑣(𝑢1/2)(𝑢2/1)
3 = ?

𝑢𝑣(𝑢1/2)
1 = 2, 𝑢𝑣(𝑢1/2)

2 = 3
𝑢𝑣(𝑢1/2)(𝑢2/1)
1 = 2, 𝑢𝑣(𝑢1/2)(𝑢2/1)

2 = 1, 𝑢𝑣(𝑢1/2)(𝑢2/1)
3 = 1
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True Value of Formulas

Definition (Truth Value of Formulas)
The truth value of formulas of 𝐿 under valuation 𝑣 over domain 𝐷
is defined by recursion:

1. 𝐹(𝑡1,… , 𝑡𝑛)𝑣 = 1 iff ⟨𝑡𝑣1,… , 𝑡𝑣𝑛⟩ ∈ 𝐹𝑣.
2. (¬𝐴)𝑣 = 1 iff 𝐴𝑣 = 0.
3. (𝐴 ∧ 𝐵)𝑣 = 1 iff 𝐴𝑣 = 1 and 𝐵𝑣 = 1.
4. (𝐴 ∨ 𝐵)𝑣 = 1 iff 𝐴𝑣 = 1 or 𝐵𝑣 = 1.
5. (𝐴 → 𝐵)𝑣 = 1 iff 𝐴𝑣 = 0 or 𝐵𝑣 = 1.
6. (𝐴 ↔ 𝐵)𝑣 = 1 iff 𝐴𝑣 = 𝐵𝑣.
7. (∀𝑥 𝐴(𝑥))𝑣 = 1 iff for every 𝛼 ∈ 𝐷, 𝐴(𝑢)𝑣(𝑢/𝛼) = 1,

where 𝑢 does not occur in 𝐴(𝑥).
8. (∃𝑥 𝐴(𝑥))𝑣 = 1 iff there exists 𝛼 ∈ 𝐷, 𝐴(𝑢)𝑣(𝑢/𝛼) = 1,

where 𝑢 does not occur in 𝐴(𝑥).
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Our predicate logic language

Our language of predicate logic:

Individual symbols: 𝑎, 𝑏, 𝑐.
Free variable symbols: 𝑢, 𝑣, 𝑤.
Bound variable symbols: 𝑥, 𝑦, 𝑧.
Function symbols: 𝑓 is a unary function. 𝑔 is a binary function.
Relation symbols: 𝐹 is a unary relation. 𝐺 is a binary relation.
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An example of a valuation

Valuation 𝑣:
▶ Domain: 𝐷 = {1, 2, 3}.
▶ Individuals: 𝑎𝑣 = 1, 𝑏𝑣 = 2, 𝑐𝑣 = 3.
▶ Free variables: 𝑢𝑣 = 3, 𝑣𝑣 = 2, 𝑤𝑣 = 1.
▶ Functions:

𝑓𝑣: 𝑓𝑣(1) = 2, 𝑓𝑣(2) = 3, 𝑓𝑣(3) = 1.
𝑔𝑣: 𝑔𝑣(𝑥, 𝑦) = ((𝑥 + 𝑦) mod 3) + 1.

▶ Relations:
𝐹𝑣: 𝐹𝑣(𝑥) is true if and only if 𝑥 > 5.
𝐺𝑣: 𝐺𝑣(𝑥, 𝑦) is true if and only if 𝑥 > 𝑦.
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Another example of a valuation

Valuation 𝑣′:
▶ Domain: 𝐷 = {𝐴𝑙𝑖𝑐𝑒,𝐵𝑜𝑏, 𝐶𝑎𝑡𝑒}.
▶ Individuals: 𝑎𝑣 = 𝐴𝑙𝑖𝑐𝑒, 𝑏𝑣 = 𝐵𝑜𝑏, 𝑐𝑣 = 𝐶𝑎𝑡𝑒.
▶ Free variables: 𝑢𝑣 = 𝐵𝑜𝑏, 𝑣𝑣 = 𝐴𝑙𝑖𝑐𝑒, 𝑤𝑣 = 𝐴𝑙𝑖𝑐𝑒.
▶ Functions:

𝑓𝑣: 𝑓𝑣(𝐴𝑙𝑖𝑐𝑒) = 𝐴𝑙𝑖𝑐𝑒, 𝑓𝑣(𝐵𝑜𝑏) = 𝐶𝑎𝑡𝑒, 𝑓𝑣(𝐶𝑎𝑡𝑒) = 𝐵𝑜𝑏.
𝑔𝑣: 𝑔𝑣(𝑥, 𝑦) = the person with the longer name. return 𝑥 if
there is a tie.

▶ Relations:
𝐹𝑣: 𝐹𝑣(𝑥) is true iff the person likes chocolates. (Alice and
Cate like chocolates whereas Bob dislikes chocolates.)
𝐺𝑣: 𝐺𝑣(𝑥, 𝑦) is true iff 𝑥 is older than or has the same age as
𝑦. (Alice is older than Cate, who is older than Bob.)
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Notation for functions and relations

Consider the domain 𝐷 = {1, 2, 3}.

Functions:
▶ 𝑓𝑣 is the identify function. 𝑓𝑣(𝑥) = 𝑥.
▶ 𝑓𝑣(1) = 1, 𝑓𝑣(2) = 2 and 𝑓𝑣(3) = 3.

Relations:
▶ 𝐺𝑣: 𝐺𝑣(𝑥, 𝑦) is true if and only if 𝑥 > 𝑦.
▶ 𝐺𝑣 = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩}
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Evaluating terms and formulas w/o variables
Evaluate these terms and formulas under the valuation 𝑣.
𝑓(𝑓(𝑎)), (𝐹(𝑎) ∨ 𝐺(𝑎, 𝑏)).
Valuation 𝑣:

▶ Domain: 𝐷 = {1, 2, 3}.
▶ Individuals: 𝑎𝑣 = 1, 𝑏𝑣 = 2, 𝑐𝑣 = 3.
▶ Free variables: 𝑢𝑣 = 3, 𝑣𝑣 = 2, 𝑤𝑣 = 1.
▶ Functions:

𝑓𝑣: 𝑓𝑣(1) = 2, 𝑓𝑣(2) = 3, 𝑓𝑣(3) = 1.
𝑔𝑣: 𝑔𝑣(𝑥, 𝑦) = ((𝑥 + 𝑦) mod 3) + 1.

▶ Relations:
𝐹𝑣: 𝐹𝑣(𝑥) is true if and only if 𝑥 > 5.
𝐺𝑣: 𝐺𝑣(𝑥, 𝑦) is true if and only if 𝑥 > 𝑦.

𝑓(𝑓(𝑎))𝑣 = ?, 𝑎𝑣 = 1, 𝑓𝑣(𝑎𝑣) = 2, 𝑓𝑣(𝑓𝑣(𝑎𝑣)) = 3
(𝐹(𝑎) ∨ 𝐺(𝑎, 𝑏))𝑣 = ?, 𝐹(𝑎)𝑣 = 0, 𝐺(𝑎, 𝑏)𝑣 = 0,
(𝐹(𝑎) ∨ 𝐺(𝑎, 𝑏))𝑣 = 0
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Give a valuation that makes the formula true/false
Complete the valuation 𝑣 such that
(A) 𝐺(𝑎, 𝑓(𝑓(𝑎)))𝑣 = 1
(B) 𝐺(𝑎, 𝑓(𝑓(𝑎)))𝑣 = 0

Valuation 𝑣:
▶ Domain: 𝐷 = {1, 2, 3}.
▶ Individuals: 𝑎𝑣 = ?, 𝑏𝑣 = ?, 𝑐𝑣 = ?.
▶ Functions: 𝑓𝑣 ∶ ?, 𝑔𝑣 ∶ ?
▶ Relations: 𝑃𝑣 ∶ ?, 𝐺𝑣 ∶ ?

𝑎𝑣 = 1
𝑓𝑣 is the identity function.
To make the formula true, make sure ⟨1, 1⟩ ∈ 𝐺.
To make the formula false, make sure ⟨1, 1⟩ ∉ 𝐺.
If 𝐺𝑣 = ∅, the formula is false.
If 𝐺𝑣 contains all possible tuples, the formula is true.
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A valuation for interpreting free variables

Valuation 𝑣:
▶ Domain: 𝐷 = {1, 2, 3}.
▶ Individuals: 𝑎𝑣 = 1, 𝑏𝑣 = 2, 𝑐𝑣 = 3.
▶ Free variables: 𝑢𝑣 = 3, 𝑣𝑣 = 2, 𝑤𝑣 = 1.
▶ Functions:

𝑓𝑣: 𝑓𝑣(1) = 2, 𝑓𝑣(2) = 3, 𝑓𝑣(3) = 1.
𝑔𝑣: 𝑔𝑣(𝑥, 𝑦) = ((𝑥 + 𝑦) mod 3) + 1.

▶ Relations:
𝐹𝑣: 𝐹𝑣(𝑥) is true if and only if 𝑥 > 5.
𝐺𝑣: 𝐺𝑣(𝑥, 𝑦) is true if and only if 𝑥 > 𝑦.
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Evaluating terms & formulas w/o bound variables

Evaluate these terms and formulas under the valuation 𝑣.
𝑔(𝑢, 𝑓(𝑏)), 𝐺(𝑎, 𝑓(𝑓(𝑢))).
Valuation 𝑣:

▶ Domain: 𝐷 = {1, 2, 3}.
▶ Individuals: 𝑎𝑣 = 1, 𝑏𝑣 = 2, 𝑐𝑣 = 3.
▶ Free variables: 𝑢𝑣 = 3, 𝑣𝑣 = 2, 𝑤𝑣 = 1.
▶ Functions:

𝑓𝑣: 𝑓𝑣(1) = 2, 𝑓𝑣(2) = 3, 𝑓𝑣(3) = 1.
𝑔𝑣: 𝑔𝑣(𝑥, 𝑦) = ((𝑥 + 𝑦) mod 3) + 1.

▶ Relations:
𝐹𝑣: 𝐹𝑣(𝑥) is true if and only if 𝑥 > 5.
𝐺𝑣: 𝐺𝑣(𝑥, 𝑦) is true if and only if 𝑥 > 𝑦.

𝑔(𝑢, 𝑓(𝑏))𝑣 = 1.
𝐺(𝑎, 𝑓(𝑓(𝑢)))𝑣 = 0.
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Give a valuation that makes the formula true/false

Complete a valuation such that
(A) 𝐺(𝑎, 𝑓(𝑓(𝑢)))𝑣 = 1
(B) 𝐺(𝑎, 𝑓(𝑓(𝑢)))𝑣 = 0

Valuation 𝑣:
▶ Domain: 𝐷 = {1, 2, 3}.
▶ Individuals: 𝑎𝑣 = ?, 𝑏𝑣 = ?, 𝑐𝑣 = ?.
▶ Free variables: 𝑢𝑣 = ?, 𝑢𝑣 = ? 𝑢𝑣 = ?.
▶ Functions: 𝑓𝑣 ∶ ?, 𝑔𝑣 ∶ ?
▶ Relations: 𝑃𝑣 ∶ ?, 𝐺𝑣 ∶ ?

𝑢𝑣 = 1. 𝑓𝑣 is the identity function. 𝑎𝑣 = 1.
To make 𝐺 true, let ⟨1, 1⟩ ∈ 𝐺𝑣.
To make 𝐺 true, let ⟨1, 1⟩ ∉ 𝐺𝑣.
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Evaluate quantified formulas under a valuation

Evaluate these formulas under the valuation 𝑣.
(A) (∀𝑥 (∃𝑦 𝐺(𝑥, 𝑦)))
(B) (∃𝑥 (∀𝑦 𝐺(𝑥, 𝑦)))

Valuation 𝑣:
▶ Domain: 𝐷 = {1, 2, 3}.
▶ Relations: 𝐺𝑣 = {⟨1, 2⟩, ⟨3, 1⟩, ⟨2, 3⟩}.
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(A) (∀𝑥 (∃𝑦 𝐺(𝑥, 𝑦)))
(B) (∃𝑥 (∀𝑦 𝐺(𝑥, 𝑦)))

⟨𝑢𝑣(𝑢/1)(𝑤/2), 𝑤𝑣(𝑢/1)(𝑤/2)⟩ = ⟨1, 2⟩ ∈ 𝐺𝑣,
⟨𝑢𝑣(𝑢/3)(𝑤/1), 𝑤𝑣(𝑢/3)(𝑤/1)⟩ = ⟨3, 1⟩ ∈ 𝐺𝑣,
⟨𝑢𝑣(𝑢/2)(𝑤/3), 𝑤𝑣(𝑢/2)(𝑤/3)⟩ = ⟨2, 3⟩ ∈ 𝐺𝑣,
Therefore, (∀𝑥 (∃𝑦 𝐺(𝑥, 𝑦)))𝑣 = 1.

⟨𝑢𝑣(𝑢/1)(𝑤/1), 𝑤𝑣(𝑢/1)(𝑤/1)⟩ = ⟨1, 1⟩ ∉ 𝐺𝑣,
⟨𝑢𝑣(𝑢/3)(𝑤/2), 𝑤𝑣(𝑢/3)(𝑤/2)⟩ = ⟨3, 2⟩ ∉ 𝐺𝑣,
⟨𝑢𝑣(𝑢/2)(𝑤/1), 𝑤𝑣(𝑢/2)(𝑤/1)⟩ = ⟨2, 1⟩ ∉ 𝐺𝑣,
Therefore, (∃𝑥 (∀𝑦 𝐺(𝑥, 𝑦)))𝑣 = 0.
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Give a valuation that makes the formula true/false

Complete the valuation 𝑣 to make the following formula true/false.
(When satisfying the formula, try making 𝐺𝑣 as small as possible.)

(A) (∀𝑦 (∃𝑥 𝐺(𝑥, 𝑦)))
(B) (∃𝑦 (∀𝑥 𝐺(𝑥, 𝑦)))

Valuation 𝑣:
▶ Domain: 𝐷 = {1, 2, 3}.
▶ ...

(A) 𝐺𝑣 = {⟨1, 1⟩, ⟨1, 2⟩, ⟨1, 3⟩} makes the formula true.
(B) 𝐺𝑣 = {⟨1, 1⟩, ⟨2, 1⟩, ⟨3, 1⟩} makes the formula true.
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Difference between Individual and Free Variable Symbols

Let our domain be the set of people. Let the predicate 𝐿(𝑢) be
true if 𝑢 likes chocolates. Let 𝑎 be an individual symbol referring
to Alice.

▶ 𝐿(𝑎)
This formula only contains individual symbols.
Since 𝑎 refers to Alice, the truth value of this formula is
already determined (It’s true because Alice likes chocolates
=).

▶ 𝐿(𝑢)
This formula only contains free variable symbols.
We do not know the truth value of this formula because 𝑢 can
refer to any person in the domain. We need to assign 𝑢 to a
particular person because we can determine whether this
formula is true or false.
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Difference between Free and Bound Variables

Let our domain be the set of integers.
▶ 𝑢 + 𝑢 = 𝑣

The variables are free.
We do not know the truth value of this formula until we
assign the free variables to elements of the domain.

▶ ∀𝑥∀𝑦 (𝑥 + 𝑥 = 𝑦)
The variables are bound.
We know the truth value of this formula because the
meanings of the variables are given by the quantifiers.
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Satisfiable and Valid

A formula 𝐴 is satisfiable:

there exists a valuation 𝑣, 𝐴𝑣 = 1.

A formula 𝐴 is valid:

for every valuation 𝑣, 𝐴𝑣 = 1.

Most predicate formulas are satisfiable but not valid
because we have a great deal of freedom to choose the valuation.
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Proving that a formula is satisfiable or not

Is the following formula satisfiable? If it’s satisfiable, give a
valuation that satisfies it. If it’s not satisfiable, give a proof.

(∃𝑥 𝐹(𝑥)) → (∀𝑥 𝐹(𝑥))

Answer: This formula is satisfiable.
Proof:
Consider the valuation: 𝐷 = {1, 2}, and 𝐹𝑣 = ∅.
Since 𝐹𝑣 = ∅, 𝐹(𝑢)𝑣(𝑢/𝛼) = 0 for every 𝛼 ∈ 𝐷.
Thus, (∃𝑥 𝐹(𝑥))𝑣 = 0 and ((∃𝑥 𝐹(𝑥)) → (∀𝑥 𝐹(𝑥)))𝑣 = 1.
Here is another valuation that works: 𝐷 = {1, 2} and 𝐹𝑣 = {1, 2}.
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Proving that a formula is valid/not valid
Is the following formula valid? If it’s valid, give a proof.
If it’s not valid, give a counterexample.

(∀𝑥 𝐹(𝑥)) → (∃𝑥 𝐹(𝑥))

▶ Determine whether the formula is valid or not.

▶ How do I prove that a formula is NOT valid?
Find a valuation under which the formula is false.
In this case, find a valuation under which ∀𝑥 𝐹(𝑥) is true and
∃𝑥 𝐹(𝑥) is false.

▶ How do I prove that a formula is valid?
Consider any valuation. Prove that the formula must be true.
In this case, consider any valuation 𝑣 under which ∀𝑥 𝐹(𝑥) is
true. Show that ∃𝑥 𝐹(𝑥) is also true under 𝑣.
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Proving that a formula is valid or not

Is the following formula valid? If it’s valid, give a proof.
If it’s not valid, give a counterexample.

(∀𝑥 𝐹(𝑥)) → (∃𝑥 𝐹(𝑥))

Answer: This formula is valid.
Proof:
We prove this by contradiction. Assume that there is a valuation 𝑣
such that (∀𝑥𝐹(𝑥))𝑣 = 1 and (∃𝑥𝐹(𝑥))𝑣 = 0. Form 𝐹(𝑢) from
𝐹(𝑥), 𝑢 not occurring in 𝐹(𝑥).
Since (∀𝑥𝐹(𝑥))𝑣 = 1, then for every 𝛼 ∈ 𝐷, 𝐹(𝑢)𝑣(𝑢/𝛼) = 1. (1)
Since (∃𝑥𝐹(𝑥))𝑣 = 0, then there exists 𝛼 ∈ 𝐷, 𝐹(𝑢)𝑣(𝑢/𝛼) = 0,
which contradicts (1).
QED
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Proving that a formula is valid or not

Is the following formula valid? If it’s valid, give a proof.
If it’s not valid, give a counterexample.

(∃𝑥 𝐹(𝑥)) → (∀𝑥 𝐹(𝑥))

Answer: This formula is not valid.
Proof:
Consider the valuation below.

▶ 𝐷 = {1, 2}
▶ 𝐹𝑣 = {1}

Since 1 ∈ 𝐹𝑣, 𝐹(𝑢)𝑣(𝑢/1) = 1. Thus, (∃𝑥 𝐹(𝑥))𝑣 = 1.
Since 2 ∉ 𝐹𝑣, 𝐹(𝑢)𝑣(𝑢/2) = 0. Thus. (∀𝑥 𝐹(𝑥))𝑣 = 0.
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Revisiting the learning goals

By the end of this lecture, you should be able to:
▶ Define a valuation.
▶ Determine the value of a term given a valuation.
▶ Determine the truth value of a formula given a valuation.
▶ Give a valuation that makes a formula true or false.
▶ Determine and justify whether a formula is satisfiable and/or

valid.
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