Predicate Logic: Syntax

Alice Gao

Lecture 12

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

CS 245 Logic and Computation

By the end of this lecture, you should be able to

- Define the set of terms inductively.
- Define the set of formulas inductively.
- > Determine whether a variable in a formula is free or bound.
- Prove properties of terms and formulas by structural induction.
- Draw the parse tree of a formula.

The Language of Predicate Logic

- Domain: a non-empty set of objects.
- Individuals: concrete objects in the domain.
- ▶ Variables: placeholders for concrete objects in the domain.
- Functions: takes objects in the domain as arguments and returns an object of the domain.
- Relations: takes objects in the domain as arguments and returns true or false. They describe properties of objects or relationships between objects.
- Quantifiers: for how many objects in the domain is the statement true?

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

CS 245 Logic and Computation

${\sf Predicate \ Language \ } L$

Eight classes of symbols:

- ▶ Individual symbols: *a*, *b*, *c*.
- ▶ Relation symbols: F, G, H. A special equality symbol ≈
- Function symbols: f, g, h.
- Free variable symbols: u, v, w.
- Bound variable symbols: x, y, z.
- Connective symbols: \neg , \land , \lor , \rightarrow , \leftrightarrow .
- ▶ Quantifier symbol: \forall , \exists .
- Punctuation symbols: '(', ')', and ','

Free and Bound Variables

In a formula $\forall x \ A(x)$ or $\exists x \ A(x)$, the scope of a quantifier is the formula A(x).

A quantifier binds its variable within its scope.

An occurrence of a variable in a formula

- is bound if it lies in the scope of some quantifier of the same variable.
- is free, otherwise.

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

CS 245 Logic and Computation

Two Kinds of Expressions

Two kinds of expressions:

- A term refers to an object in the domain.
- ► A formula evaluates to 1 or 0.

Terms

The set of terms Term(L) is defined below:

- 1. An individual symbol a standing alone is a term.
- 2. A free variable symbol u standing alone is a term.
- 3. If t_1,\ldots,t_n are terms and f is an n-ary function symbol, then $f(t_1,\ldots,t_n)$ is a term.
- 4. Nothing else is a term.

Examples of Terms

Terms:

- $\blacktriangleright a, b, c, u, v, w$
- $\blacktriangleright \ f(b), \ g(a,f(b)), \ g(u,b), \ f(g(f(u),b))$

A term with no free variable symbols is called a closed term. Which one(s) of the above are closed terms?

CQ: Which expressions are terms?

Which of the following expressions is a term? If there are multiple correct answers, choose your favourite one.

(A) w(B) g(a, u)(C) F(f(u, v), a)(D) f(u, g(v, w), a)(E) g(u, f(v, w), a)

Individual symbols: aRelation symbols: F is a binary relation symbol. Function symbols: f is a binary function symbol and g is a 3-ary function symbol.

Free variable symbols: u, v, w.

Defining the set of terms inductively

The set of terms can be inductively defined as follows:

- The domain set X: The set of finite sequences of symbols of L
- The core set C: The set of all individual symbols and free variable symbols
- The set of operations P: The set of all function symbols

Structural induction on terms

Theorem: Every term has a property P.

Proof by structural induction:

Base cases:

The term is an individual symbol. The term is a free variable symbol.

Inductive cases:

The term is $f(t_1, \ldots, t_n)$ where f is an n-ary function and t_1, \ldots, t_n are terms. Induction hypotheses: Assume that t_1, \ldots, t_n all have the property P. We need to show that $f(t_1, \ldots, t_n)$ has the property P.

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

CS 245 Logic and Computation

The set of atomic formulas Atom(L) is defined below:

- ▶ If F is an n-ary relation symbol and $t_1, \ldots, t_n \ (n \ge 1)$ are terms, then $F(t_1, \ldots, t_n)$ is an atomic formula.
- \blacktriangleright If t_1,t_2 are terms, then $\approx (t_1,t_2)$ is an atomic formula.
- Nothing else is an atomic formula.

Examples of Atomic Formulas

Terms:

- $\blacktriangleright \ a,b,c,\ u,v,w$
- $\blacktriangleright \ f(b), \ g(a,f(b)), \ g(u,b), \ f(g(f(u),b))$

Atomic formulas:

$$\textbf{ F}(a,u,f(b),f(w),g(v,f(a))) \\ \textbf{ }\approx (b,w)$$

Well-Formed Formulas

The set of well-formed formulas Form(L) is defined below:

- 1. An atomic formula is a well-formed formula.
- 2. If A is a well-formed formula, then $(\neg A)$ is a well-formed formula.
- 3. If A and B are well-formed formulas and \star is one of \land , \lor , \rightarrow , and \leftrightarrow , then $(A \star B)$ is a well-formed formula.
- 4. If A(u) is a well-formed formula and x does not occur in A(u), then $\forall x A(x)$ and $\exists x A(x)$ are well-formed formulas.
- 5. Nothing else is a well-formed formula.

If A(u) is a well-formed formula and x does not occur in A(u), then $\forall x A(x)$ and $\exists x A(x)$ are well-formed formulas.

- ► A(u) is a well-formed formula where u is a free variable in the formula. We want to quantify u.
- In order to do so, we need to choose a symbol for a bound variable, e.g. x. We need to make sure that our choice of the bound variable symbol does not already occur in A(u).

Examples for Case 4

- ► We are allowed to generate the formula ∀yF(y, y). Start with F(u, u). If we quantify u by replacing it with y, we get ∀yF(y, y).
- We are not allowed to generate the formula ∃y∀yF(y, y). Start with ∀yF(y, y). If we want to add the ∃ quantifier, we will need to choose a bound variable symbol that is not y because y already appears in ∀y F(y, y). So, there is no way for us to generate ∃y∀yF(y, y).
- ▶ We are allowed to generate the formula $\exists xG(x) \lor \forall xH(x)$. Start with G(u) and H(v) separately. We can quantify u by replacing it with x since x does not appear in G(u)). We get $\exists xG(x)$. We can quantify v by replacing it with x since x does not appear in H(v). We get $\forall xH(x)$. Connecting the two formulas using \lor , we get $\exists xG(x) \lor \forall xH(x)$.

Well-Formed Formulas:

- $\blacktriangleright \ F(a,b), \ \forall y \ F(a,y), \ \exists x \forall y \ F(x,y)$
- $\blacktriangleright \ F(u,v) \text{, } \exists y \, F(u,y)$

A formula with no free variable symbols is called a closed formula or a sentence.

Which formulas above are closed formulas?

Determine whether a formula is well-formed

Which of the following is a well-formed formula?

$$\begin{array}{ll} \mbox{(A)} & f(u) \to F(u,v) \\ \mbox{(B)} & \forall x \; F(m,f(x)) \\ \mbox{(C)} & F(u,v) \to G(G(u)) \\ \mbox{(D)} & G(m,f(m)) \\ \mbox{(E)} & F(m,f(G(u,v))) \end{array}$$

Individual symbols: m. Free Variable Symbols: u, v. Bound Variable symbols: x. Relation symbols: F and G are binary relation symbols. Function symbols: f is a unary function.

Defining the set of formulas inductively

The set of formulas can be inductively defined as follows:

- The domain set X: The set of finite sequences of symbols of L
- ▶ The core set *C*:

The set of all atomic formulas.

▶ The set of operations *P*: $f_1(x) = (\neg x)$ $f_2(x,y) = (x * y)$ where * is one of \land , \lor , \rightarrow , and \leftrightarrow . $f_3(A(u)) = \forall x A(x), f_4(A(u)) = \exists x A(x)$ where x does not occur in A(u).

Structural induction on formulas

Theorem: Every formula has a property P.

Proof by structural induction:

 Base cases: The formula is an atomic formula.

 Inductive cases: The formula is (¬A) where A is a formula. The formula is (A * B) where A and B are formulas and * is a binary connective. The formula is ∀x A(x) and ∃x A(x) where A(u) is a formula and x does not occur in A(u).

Comparing the Definitions of Well-Formed Formulas

Let's compare the set of predicate formulas to the set of propositional formulas.

Questions to think about:

- Which parts of the two definitions are the same? The cases for negation and binary connectives are the same.
- Which parts of the two definitions are different? Atomic formulas are different.
 - ► Atomic propositional formulas are propositional variables.
 - ▶ Atomic predicate formulas are relations applied to terms.

Predicate formulas have one additional case for quantifiers.

Outline

Learning goals

Symbols

Terms

Formulas

Parse Trees

Revisiting the learning goals

CS 245 Logic and Computation

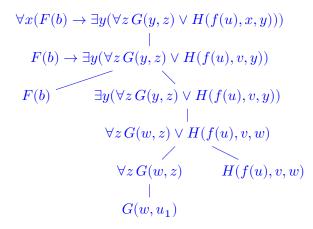
Parse Trees of Predicate Formulas

- ▶ The leaves are atomic formulas.
- Every quantifier has exactly one child (namely the formula which is its scope).

 $\mathsf{Example:} \ \forall x(F(b) \to \exists y(\forall z \, G(y,z) \lor H(f(u),x,y)))$

Parse tree

$$\label{eq:Example: stample: def} \begin{split} & \mathsf{Example: } \forall x(F(b) \to \exists y(\forall z\, G(y,z) \lor H(f(u),x,y))) \\ & \mathsf{Parse tree: } \end{split}$$



A few notes on parse trees

- While constructing the parse tree, when removing a quantifier, we change the bound variable symbol to one of the free variable symbols that hasn't appeared in the parse tree. For example, When removing ∀x, we changed x to v. When removing ∃y, we changed y to w.
- 2. Th quantifiers have higher precedence than any other connective. Each quantifier modifies the formula that is immediately after it.

For example, $\forall z \text{ modifies } G(w,z)$ instead of $G(w,z) \lor H(f(u),v,w).$

Revisiting the learning goals

By the end of this lecture, you should be able to

- Define the set of terms inductively.
- Define the set of formulas inductively.
- > Determine whether a variable in a formula is free or bound.
- Prove properties of terms and formulas by structural induction.
- Draw the parse tree of a formula.