Propositional Logic
Introduction and Syntax

Alice Gao

Lecture 2
Outline

Learning goals

Propositions and Connectives

Propositional Language

Revisiting the learning goals
Learning goals

By the end of the lecture, you should be able to

▶ Determine whether an English sentence is a proposition.
▶ Determine whether an English sentence is a simple or compound proposition.
▶ Determine whether a propositional formula is atomic and/or well-formed.
▶ Draw the parse tree of a well-formed propositional formula.
▶ Given a propositional formula with no parentheses, make it a well-formed formula by adding parentheses according to the precedence rules.
Outline

Learning goals

Propositions and Connectives

Propositional Language

Revisiting the learning goals
A proposition is a statement that is either true or false.

Meaningless statements, commands, and questions are not propositions.
CQ on proposition
Examples of propositions

- The sum of 3 and 5 is 8.
- The sum of 3 and 5 is 35.
- Goldbach’s conjecture: Every even number greater than 2 is the sum of two prime numbers.
Examples of non-propositions

▶ Question: Where shall we go to eat?
▶ Command: Please pass the salt.
▶ Sentence fragment: The dogs in the park
▶ Non-sensical: Green ideas sleep furiously.
▶ Paradox: This sentence is false.
A **compound** proposition is formed by means of logical connectives.

The commonly used logical connectives are “not”, “and”, “or”, “if, then”, and “iff”.

A **simple** proposition is not compound and cannot be further divided.
Interpreting a compound proposition

To interpret a compound proposition, we need to understand the meanings of the connectives.

Let A and B be arbitrary propositions.

We will use 1 and 0 to denote true and false respectively.
Negation

“Not A” is true if and only if A is false.

<table>
<thead>
<tr>
<th>A</th>
<th>not A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Conjunction

“A and B” is true if and only if both A and B are true.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A and B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Disjunction

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A or B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

“Or” may be interpreted in two ways

- The inclusive sense of “A or B or both”
- The exclusive sense of “A or B but not both”

In mathematics, the inclusive sense of “or” is commonly used.
Implication

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>if A then B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The only circumstance in which “if A then B” is false is when A is true and B is false.

Whenever A is false, “if A then B” is vacuously true.
Equivalence

"A iff B" is the same as "if A then B, and if B then A".

iff is pronounced as if and only if.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A iff B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
CQ on compound or simple propositions
Remarks on connectives

The arity of a connective:
- The negation is a unary connective. It only applies to one proposition.
- All other connectives are binary connectives. They apply to two propositions.

Is a connective symmetric?
- And, Or, and Equivalence are symmetric. The order of the two propositions does not affect the truth value of the compound proposition.
- Implication is not symmetric. If A then B, and if B then A have different truth values.
Outline

Learning goals

Propositions and Connectives

Propositional Language

Revisiting the learning goals
Propositional language L^p

The propositional language L^p consists of three classes of symbols:

- **Proposition symbols**: p, q, r,
- **Connective symbols**: \neg, \land, \lor, \rightarrow, \leftrightarrow.

Oral reading of logical connectives

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Oral Reading</th>
<th>Logical Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\neg</td>
<td>not</td>
<td>negation</td>
</tr>
<tr>
<td>\land</td>
<td>and</td>
<td>conjunction</td>
</tr>
<tr>
<td>\lor</td>
<td>or</td>
<td>(inclusive) disjunction</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>if, then (imply)</td>
<td>implication</td>
</tr>
<tr>
<td>\leftrightarrow</td>
<td>iff (equivalent to)</td>
<td>equivalence</td>
</tr>
</tbody>
</table>

- **Punctuation symbols**: (and).
Expressions of L^p

- **expressions** are finite strings of symbols. Examples: p, pq, (r), $p \land \rightarrow q$ and $\neg(p \land q)$.
- The **length** of an expression is the number of occurrences of symbols in it.
- **empty expression**: an expression of length 0, denoted by λ.
- two expressions u and v are **equal** if they are of the same length and have the same symbols in the same order.
- an expression is read from left to right.
Expression terminologies

- \(uv \) denotes the result of concatenating two expressions \(u, v \) in this order. Note that \(\lambda u = u \lambda = u \).

- \(v \) is a segment of \(u \) if \(u = w_1vw_2 \) where \(u, v, w_1, w_2 \) are expressions.

- \(v \) is a proper segment of \(u \) if \(v \) is non-empty and \(v \neq u \).

If \(u = vw \), where \(u, v, w \) are expressions, then \(v \) is an initial segment (prefix) of \(u \). Similarly, \(w \) is a terminal segment (suffix) of \(u \).
Atomic formulas

Definition ($Atom(L^p)$)

$Atom(L^p)$ is the set of expressions of L^p consisting of a proposition symbol only.
Well-formed propositional formulas

Definition \((\text{Form}(L^p))\)

An expression of \(L^p\) is a member of \(\text{Form}(L^p)\) if and only if its being so follows from (1) - (3):

1. \(\text{Atom}(L^p) \subseteq \text{Form}(L^p)\).
2. If \(A \in \text{Form}(L^p)\), then \((\neg A) \in \text{Form}(L^p)\).
3. If \(A, B \in \text{Form}(L^p)\), then \((A \ast B) \in \text{Form}(L^p)\) where \(\ast\) is one of the four binary connectives.

Note that \(\text{Form}(L^p)\) is the minimum set that satisfies the three conditions above.
CQ on the first symbol in a well-formed formula
CQ on well-formed propositional formulas
Example: Generating Formulas

The following expression is a formula.

\[((p \lor q) \rightarrow ((\neg p) \leftrightarrow (q \land r)))\]

How is it generated using the definition of well-formed propositional formulas? One can use parse trees to analyze formulas.
Example: Parse Tree

Draw the parse tree for the following formula.

\[((p \lor q) \rightarrow ((\neg p) \leftrightarrow (q \land r)))\]

Parse tree:

```
  ( (p \lor q) \rightarrow ((\neg p) \leftrightarrow (q \land r)) )
     / \       /   /
    p   q    (\neg p) (q \land r)
        /   /   /   /
      p q r
```
Exercise: Parse Trees

Draw the parse tree for the following formula.

$$(((\neg p) \land q) \rightarrow (p \land (q \lor (\neg r))))$$
Precedence rules: for humans

Consider the following sequence of connectives:

\[\neg, \land, \lor, \rightarrow, \leftrightarrow \]

Each connective on the left has priority over those on the right.

Examples: Add back the brackets based on the precedence rules.

- \(\neg p \lor q \)
- \(p \land q \lor r \)
- \(p \rightarrow q \leftrightarrow p \)
- \(\neg p \rightarrow p \land \neg q \lor r \leftrightarrow q \)
By the end of the lecture, you should be able to

▶ Determine whether an English sentence is a proposition.
▶ Determine whether an English sentence is a simple or compound proposition.
▶ Determine whether a propositional formula is atomic and/or well-formed.
▶ Draw the parse tree of a well-formed propositional formula.
▶ Given a propositional formula with no parentheses, make it a well-formed formula by adding parentheses according to the precedence rules.