\[\alpha \overset{\text{def}}{=} (P(x,y,z) \land (\forall x (\exists y R(x,y,z)))) \]
\[t \overset{\text{def}}{=} f(x,y) \]

State \(\alpha [t/z] \)
(Replace every free occurrence of \(z \) in \(\alpha \) by the term \(t \) without changing the meaning of \(\alpha \))

Step 1: Find free occurrences of \(z \) in \(\alpha \).

We need to replace both occurrences of \(z \) in \(\alpha \) by \(t \).

Step 2: Perform the substitution.

(Draw the tree for step 3)
Careful Substitution to Avoid Capture 2/3

Step 3: Did any variable in \(t \) get captured by a quantifier in \(\alpha \)?

- These quantifiers captured some variables in \(t \).
- \(x \) got captured by the quantifier \(\forall x \).
- \(y \) got captured by \(\exists y \).
- \(y \) got captured by \(\exists y \).
- Bound! Bound!

Step 4: Resolve capture by renaming variables in \(\alpha \).

In \(\alpha \), for each quantifier \(\forall \) \(v \) that captured a variable \(v \) in \(t \),
(a) Select a variable \(v' \) that is in neither \(\alpha \) nor \(t \).
(b) Replace \(v \) by \(v' \) beside the quantifier \(\forall \) and in the scope of the quantifier \(\forall \).

Let's call this new formula \(\alpha' \).
Step 5: Perform the substitution with α'.

\[\alpha' \overset{\text{def}}{=} (P(x, y, z) \land (\forall u \exists w R(u, w, z)))) \]
\[t \overset{\text{def}}{=} f(x, y) \]
\[\alpha'[t/z] = (P(x, y, f(x, y)) \land (\forall u \exists w R(u, w, f(x, y)))) \]

The parse tree after the substitution.

Exercise: $\beta = (\forall x (\exists y ((x+y) = z)))$
\[\beta[y-1/z] = \beta'[y-1/z] \overset{\text{def}}{=} (\forall x (\exists w ((x+w) = (y-1)))) \]