Last time

□ P2P

Security

- Intro
- Principles of cryptography

This time

- Message integrity
- □ Authentication
- Key distribution and certification

Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Authentication
- 8.4 Message integrity
- 8.5 Key Distribution and certification
- 8.6 Access control: firewalls
- 8.7 Attacks and counter measures
- 8.8 Security in many layers

Digital Signatures

Cryptographic technique analogous to handwritten signatures.

- Sender (Bob) digitally signs document, establishing he is document owner/creator.
- Verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Digital Signatures

Simple digital signature for message m:

□ Bob signs m by encrypting with his private <u>signature</u> key S_B , creating "signed" message, $S_B(m)$

Bob also has a public <u>verification</u> key $V_{_B}$ such that $V_{_B}(S_{_B}(m)) = m$.

Digital Signatures (more)

- □ Suppose Alice receives msg m, digital signature $S_B(m)$
- □ Alice verifies m signed by Bob by applying Bob's public verification key V_B to $S_B(m)$ then checks $V_B(S_B(m)) = m$.
- □ If $V_B(S_B(m)) = m$, whoever signed m must have used Bob's private key.

Alice thus verifies that:

- Bob signed m.
- No one else signed m.
- Bob signed m and not m'.

Non-repudiation:

• Alice can take m, and signature $S_B(m)$ to court and prove that Bob signed m.

Message Digests

Computationally expensive to public-key sign long messages

- Goal: fixed-length, easyto-compute digital "fingerprint"
- Apply hash function H to m, get fixed size message digest, H(m).

Hash function properties:

- □ many-to-1
- produces fixed-size msg digest (fingerprint)
- given message digest x, computationally infeasible to find m such that x = H(m), or two messages m1, m2 with H(m1)=H(m2)

Internet checksum: poor crypto hash function

Internet checksum has some properties of hash function:

- produces fixed length digest (16-bit sum) of message
- ▶ is many-to-one

But given message with given hash value, it is easy to find another message with same hash value:

<u>message</u>	ASCII format	messa	<u>ge</u>	<u>AS</u>	<u>SCII</u>	<u>format</u>
I O U 1	49 4F 55 31	ΙΟU	<u>9</u>	49	4 F	55 <u>39</u>
00.9	30 30 2E 39	00.	<u>1</u>	30	30	2E <u>31</u>
9 B O B	<u>39 42 4F 42</u>	9 B O	В	39	42	4F 42
	B2 C1 D2 AC	different messages ut identical checksur		-B2	C1	D2 AC

23-9

Digital signature = signed message digest

Bob sends digitally signed message:

large H: Hash message signed H(m) function m msg digest $S_{R}(H(m))$ digital Bob's large signature private message Bob's digital (sign) key S_B m public signature key (verify) H: Hash R signed function msg digest $S_{B}(H(m))$ H(m) H(m) equal

Alice verifies signature and

message:

integrity of digitally signed

Hash Function Algorithms

□ Traditionally: MD5 hash function (RFC 1321)

- computes 128-bit message digest in 4-step process.
- arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x.
- it's been figured out how to make collisions!
- Newer: SHA-1
 - US standard [NIST, FIPS PUB 180-1]
 - 160-bit message digest
 - many people think collisions are imminent!
- □ Starting to switch to SHA-256
 - Newer US standard [NIST, FIPS PUB 180-2]
 - 256-bit message digest

Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Authentication
- 8.4 Integrity
- 8.5 Key Distribution and certification
- 8.6 Access control: firewalls
- 8.7 Attacks and counter measures
- 8.8 Security in many layers

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

Failure scenario??

Authentication

Goal: Bob wants Alice to "prove" her identity to him

Protocol ap1.0: Alice says "I am Alice"

in a network, Bob can not "see" Alice, so Trudy simply declares herself to be Alice

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Protocol ap2.0: Alice says "I am Alice" in an IP packet containing her source IP address

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Protocol ap3.0: Alice says "I am Alice" and sends her secret password to "prove" it.

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Protocol ap3.1: Alice says "I am Alice" and sends her encrypted secret password to "prove" it.

Goal: avoid playback attack

Nonce: number (R) used only once-in-a-lifetime

ap4.0: to prove Alice "live", Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key

Authentication: ap5.0

ap4.0 requires shared symmetric key
can we authenticate using public key techniques?
<u>ap5.0</u>: use nonce, public key cryptography

ap5.0: security hole

Man (woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

ap5.0: security hole

Man (woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice)

$$\underbrace{ \left(\begin{array}{c} & & & \\ & & \\ & & \\ & & \end{array} \right) \left(\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \end{array} \right) \left(\begin{array}{c} & & & \\$$

Difficult to detect:

- Bob receives everything that Alice sends, and vice versa. (e.g., so Bob, Alice can meet one week later and recall conversation)
- The problem is that Trudy receives all messages as well!

Chapter 8 roadmap

- 8.1 What is network security?
- 8.2 Principles of cryptography
- 8.3 Authentication
- 8.4 Integrity
- 8.5 Key distribution and certification
- 8.6 Access control: firewalls
- 8.7 Attacks and counter measures
- 8.8 Security in many layers

Trusted Intermediaries

Symmetric key problem:

 How do two entities establish shared secret key over network?

Solution:

 trusted key distribution center (KDC) acting as intermediary between entities

Public key problem:

 When Alice obtains Bob's public key (from web site, e-mail, diskette), how does she know it is Bob's public key, not Trudy's?

Solution:

 trusted certification authority (CA)

Key Distribution Center (KDC)

- □ Alice, Bob need shared symmetric key.
- KDC: server shares different secret key with each registered user (many users)
- □ Alice, Bob know own symmetric keys, K_{A-KDC} , K_{B-KDC} , for communicating with KDC.

Key Distribution Center (KDC)

Q: How does KDC allow Bob, Alice to determine shared symmetric secret key to communicate with each other?

Alice and Bob communicate: using R1 as session key for shared symmetric encryption

Certification Authorities

- Certification authority (CA): binds public key to particular entity, E.
- □ E (person, router) registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - certificate containing E's public key digitally signed by CA CA says "this is E's public key"

Certification Authorities

When Alice wants Bob's public key:

- gets Bob's certificate (Bob or elsewhere).
- apply CA's public key to Bob's certificate, get Bob's public key

A certificate contains:

Serial number (unique to issuer)

 info about certificate owner, including algorithm and key value itself (not shown)

💥 Edit A Certification Authority - Netscape	
This Certificate belongs to:	This Certificate was issued by:
Class 1 Public Primary Certification	Class 1 Public Primary Certification
Authority	Authority
VeriSign, Inc.	VeriSign, Inc.
US	US
Serial Number: 00:CD:BA:7F:56:F0:DF	
This Certificate is valid from Sun Jan Certificate Fingerprint:	28, 1996 to Tue Aug 01, 2028
97:60:E8:57:5E:D3:50:47:E5:43:0C:94	1·36·8A·B0·62
This Certificate belongs to a Certifying A	Authority
Accept this Certificate Authority for	
Accept this Certificate Authority for	
	. 2
Accept this Certificate Authority for	Certifying software developers
Warn before sending data to sites ce	ertified by this authority
	OK Cancel

 info about certificate issuer
 valid dates
 digital signature by issuer

- Message Integrity
- □ Authentication
- Key distribution and certification

- □ Firewalls
- Attacks and countermeasures
- Security in many layers