
22-1

Last time

□ SMTP (email)

□ DNS

22-2

This time

□ P2P

□ Security

22-3

Chapter 2: Application layer

□ 2.1 Principles of
network applications
♦ app architectures
♦ app requirements

□ 2.2 Web and HTTP
□ 2.4 Electronic Mail

♦ SMTP, POP3, IMAP

□ 2.5 DNS

□ 2.6 P2P file sharing
□ 2.7 Socket programming

with TCP
□ 2.8 Socket programming

with UDP
□ 2.9 Building a Web server

22-4

P2P file sharing

Example
□ Alice runs P2P client

application on her
notebook computer

□ Intermittently connects
to Internet; gets new IP
address for each
connection

□ Asks for “Hey Jude”
□ Application displays

other peers that have
copy of Hey Jude.

□ Alice chooses one of
the peers, Bob.

□ File is copied from
Bob’s PC to Alice’s
notebook: HTTP

□ While Alice downloads,
other users uploading
from Alice.

□ Alice’s peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

22-5

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
♦ IP address
♦ content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

22-6

P2P: problems with centralized directory

□ Single point of failure
□ Performance bottleneck
□ Copyright infringement

 file transfer is
decentralized, but
locating content is
highly centralized

22-7

Query flooding: Gnutella

□ Fully distributed
♦ no central server

□ Public domain protocol
□ Many Gnutella clients

implementing protocol

Overlay network: graph
□ Edge between peer X

and Y if there’s a TCP
connection

□ All active peers and
edges is overlay net

□ Edge is not a physical
link

□ Given peer will typically
be connected with < 10
overlay neighbors

22-8

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP□ Query message

sent over existing TCP
connections
□ Peers forward
Query message
□ QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

22-9

Gnutella: Peer joining

1. Joining peer X must find some other peer in
Gnutella network: use list of candidate peers

2. X sequentially attempts to make TCP with peers on
list until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping
message.

4. All peers receiving Ping message respond with
Pong message

5. X receives many Pong messages. It can then setup
additional TCP connections

22-10

Exploiting heterogeneity: KaZaA

□ Each peer is either a
group leader or assigned
to a group leader.
♦ TCP connection between

peer and its group leader.
♦ TCP connections between

some pairs of group
leaders.

□ Group leader tracks the
content in all its children.

o r d i n a r y p e e r

g r o u p - l e a d e r p e e r

n e i g h o r i n g r e l a t i o n s h i p s
i n o v e r l a y n e t w o r k

22-11

KaZaA: Querying

□ Each file has a hash and a descriptor
□ Client sends keyword query to its group

leader
□ Group leader responds with matches:

♦ For each match: metadata, hash, IP address
□ If group leader forwards query to other group

leaders, they respond with matches
□ Client then selects files for downloading

♦ HTTP requests using hash as identifier sent to
peers holding desired file

22-12

KaZaA tricks

□ Limitations on simultaneous uploads

♦ Request queuing

□ Incentive priorities

□ Parallel downloading

22-13

BitTorrent
□ Peers in P2P leave often

♦ bad if Alice leaves while Bob is downloading a (huge) file
from her

□ BitTorrent breaks files into segments (256 KB) and
shares segments instead
♦ peers request segments that are rare early on to increase

their availability

□ BitTorrent does not provide mechanism for locating
content
♦ assumes that clients have a “.torrent” file, listing name of

“tracker server”, which keeps track of peers having
segments

22-14

Chapter 8: Network Security

Chapter goals:
□ Understand principles of network security:

♦ cryptography and its many uses beyond
“confidentiality”

♦ authentication
♦ message integrity
♦ key distribution

□ Security in practice:
♦ firewalls
♦ security in application, transport, network, link layers

22-15

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

22-16

What is network security?

Confidentiality: only sender, intended receiver should
“understand” message contents
♦ sender encrypts message
♦ receiver decrypts message

Authentication: sender, receiver want to confirm identity
of each other

Message Integrity: sender, receiver want to ensure
message not altered (in transit, or afterwards) without
detection

Access and Availability: services must be accessible
and available to users

22-17

Friends and enemies: Alice, Bob, Trudy

□ Well-known in network security world
□ Bob, Alice (lovers?) want to communicate “securely”
□ Trudy (intruder) may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control
messages

data data

Alice Bob

Trudy

22-18

Who might Bob, Alice be?

□ … well, real-life Bobs and Alices!
□ Web browser/server for electronic

transactions (e.g., on-line purchases)
□ On-line banking client/server
□ DNS servers
□ Routers exchanging routing table updates
□ Other examples?

22-19

There are bad guys (and girls) out there!

Q: What can a “bad guy” do?
A: a lot!

♦ eavesdrop: intercept messages
♦ actively insert messages into connection
♦ impersonation: can fake (spoof) source address in

packet (or any field in packet)
♦ hijacking: “take over” ongoing connection by

removing sender or receiver, inserting himself in
place

♦ denial of service: prevent service from being used
by others (e.g., by overloading resources)

more on this later ……

22-20

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

22-21

The language of cryptography

symmetric key crypto: sender, receiver keys identical
public-key crypto: encryption key public, decryption key

secret (private)

plaintext plaintextciphertext

K
A

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

K
B

22-22

Symmetric key cryptography

substitution cipher: substituting one thing for another
♦ monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Q: How hard to break this simple cipher?:
□ brute force (how hard?)
□ other?

22-23

Symmetric key cryptography

symmetric key crypto: Bob and Alice share know same
(symmetric) key: K

□ e.g., key is knowing substitution pattern in mono
alphabetic substitution cipher

□ Q: how do Bob and Alice agree on key value?

plaintextciphertext

KA-B

encryption
algorithm

decryption
algorithm

A-B

KA-B

plaintext
message, m

E (m)
A-B

 (m)
A-B

m = D (E)
A-B

22-24

Symmetric key crypto: DES

DES: Data Encryption Standard
□ US encryption standard [NIST 1993]
□ 56-bit symmetric key, 64-bit plaintext input
□ How secure is DES?

♦ DES Challenge: 56-bit-key-encrypted phrase
decrypted (brute force) in 22 hours 15 minutes

♦ no known “backdoor” decryption approach
□ Making DES more secure:

♦ use three keys sequentially (3-DES) on each datum

22-25

AES: Advanced Encryption Standard

□ Newer (Nov. 2001) symmetric-key NIST
standard, replacing DES

□ Processes data in 128 bit blocks

□ 128, 192, or 256 bit keys

□ Brute force decryption (try each key) taking 1
sec on DES, takes 149 trillion years for
AES-128

22-26

Public Key Cryptography

Symmetric key crypto
□ Requires sender,

receiver know shared
secret key

□ Q: how to agree on key
in first place (particularly
if never “met”)?

Public key cryptography
□ Radically different

approach [Diffie-
Hellman76, RSA78]

□ Sender, receiver do
not share secret key

□ Public encryption key
known to all

□ Private decryption key
known only to receiver

22-27

Public key cryptography

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
encryption key

plaintext
messageE (m)

B

E
B

Bob’s private
decryption key

D
B

m = D (E (m))BB

22-28

Public key encryption algorithms

need E () and D () such that
B B
. .

given public key E , it should be
“impossible” to compute private
key D B

B

Requirements:

1

2

RSA: Rivest, Shamir, Adleman algorithm

D (E (m)) = m
BB

22-29

RSA: Choosing keys

1. Choose two large prime numbers p, q.
 (e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
 with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is exactly divisible by z.
 (in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

E
B

D
B

22-30

RSA: Encryption, decryption

0. Given (n,e) and (n,d) as computed above

1. To encrypt bit pattern, m, compute

c = m mod ne (i.e., remainder when m is divided by n)e

2. To decrypt received bit pattern, c, compute

m = c mod nd (i.e., remainder when c is divided by n)d

m = (m mod n)e mod ndMagic
happens!

c

22-31

RSA example:

Bob chooses p=5, q=7. Then n=35, z=24.
e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z.

letter m me c = m mod ne

L 12 1524832 17

c m = c mod nd

17 481968572106750915091411825223071697 12
cd

letter

L

encrypt:

decrypt:

22-32

Recap

□ P2P

□ Security

♦ Intro

♦ Principles of cryptography

22-33

Next time

□ Message Integrity

□ Authentication

□ Key distribution and certification

