
19-1

Last time

□ TCP

♦ Throughput

♦ Fairness

♦ Delay modeling

□ TCP socket programming

19-2

This time

□ NAT

□ Application layer

♦ Intro

♦ Web / HTTP

19-3

Chapter 4: Network Layer

□ 4. 1 Introduction
□ 4.2 Virtual circuit and

datagram networks
□ 4.3 What’s inside a

router
□ 4.4 IP: Internet Protocol

♦ Datagram format
♦ IPv4 addressing
♦ ICMP
♦ IPv6

□ 4.5 Routing algorithms
♦ Link state
♦ Distance Vector
♦ Hierarchical routing

□ 4.6 Routing in the
Internet
♦ RIP
♦ OSPF
♦ BGP

□ 4.7 Broadcast and
multicast routing

19-4

NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

Datagrams with source or
destination in this network

have 10.0.0/24 address for
source, destination (as usual)

All datagrams leaving local
network have same single source

NAT IP address: 138.76.29.7,
different source port numbers

19-5

NAT: Network Address Translation

□ Motivation: local network uses just one IP address as far as
outside world is concerned:
♦ range of addresses not needed from ISP: just one IP

address for all devices
♦ can change addresses of devices in local network

without notifying outside world
♦ can change ISP without changing addresses of devices

in local network
♦ devices inside local net not explicitly addressable, visible

by outside world (a security plus).

19-6

NAT: Network Address Translation

Implementation: NAT router must:

♦ outgoing datagrams: replace (source IP address, port #)
of every outgoing datagram to (NAT IP address, new
port #)
. . . remote clients/servers will respond using (NAT IP

address, new port #) as destination addr.

♦ remember (in NAT translation table) every (source IP
address, port #) to (NAT IP address, new port #)
translation pair

♦ incoming datagrams: replace (NAT IP address, new port
#) in dest fields of every incoming datagram with
corresponding (source IP address, port #) stored in NAT
table

19-7

NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1
sends datagram to
128.119.40.186, 80

NAT translation table
WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: Reply arrives
 dest. address:
 138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

19-8

NAT: Network Address Translation

□ 16-bit port-number field:
♦ 60,000 simultaneous connections with a single

LAN-side address!

□ NAT is controversial:
♦ routers should only process up to layer 3
♦ violates end-to-end argument

• NAT possibility must be taken into account by app
designers, eg, P2P applications

♦ address shortage should instead be solved by
IPv6

19-9

Chapter 2: Application layer

□ 2.1 Principles of
network applications

□ 2.2 Web and HTTP
□ 2.3 FTP
□ 2.4 Electronic Mail

♦ SMTP, POP3, IMAP

□ 2.5 DNS

□ 2.6 P2P file sharing
□ 2.7 Socket programming

with TCP
□ 2.8 Socket programming

with UDP
□ 2.9 Building a Web server

19-10

Some network apps

□ E-mail
□ Web
□ Instant messaging
□ Remote login
□ P2P file sharing
□ Multi-user network

games
□ Streaming stored video

clips

□ Internet telephone
□ Real-time video

conference
□ Massive parallel

computing

19-11

Creating a network app

Write programs that
♦ run on different end systems

and
♦ communicate over a

network.
♦ e.g., Web: Web server

software communicates with
browser software

Little software written for
devices in network core
♦ network core devices do not

run user application code
♦ application on end systems

allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

19-12

Chapter 2: Application layer

□ 2.1 Principles of
network applications

□ 2.2 Web and HTTP
□ 2.3 FTP
□ 2.4 Electronic Mail

♦ SMTP, POP3, IMAP

□ 2.5 DNS

□ 2.6 P2P file sharing
□ 2.7 Socket programming

with TCP
□ 2.8 Socket programming

with UDP
□ 2.9 Building a Web server

19-13

Application architectures

□ Client-server

□ Peer-to-peer (P2P)

□ Hybrid of client-server and P2P

19-14

Client-server architecture

server:
♦ always-on host
♦ permanent IP address
♦ server farms for scaling

clients:
♦ communicate with server
♦ may be intermittently

connected
♦ may have dynamic IP

addresses
♦ do not communicate

directly with each other

19-15

Pure P2P architecture

□ no always-on server
□ arbitrary end systems

directly communicate
□ peers are intermittently

connected and change IP
addresses

□ example: Gnutella

Highly scalable but difficult
to manage

19-16

Hybrid of client-server and P2P

Skype
♦ Internet telephony app
♦ Finding address of remote party: centralized server(s)
♦ Client-client connection is direct (not through server)

Instant messaging
♦ Chatting between two users can be P2P
♦ Presence detection/location centralized:

• User registers its IP address with central server when it comes
online

• User contacts central server to find IP addresses of buddies

19-17

Processes communicating

Process: program running
within a host.

□ within same host, two
processes communicate
using inter-process
communication (defined
by OS).

□ processes in different
hosts communicate by
exchanging messages

Client process: process that
initiates communication

Server process: process
that waits to be
contacted

□ Note: applications with
P2P architectures have
client processes &
server processes

19-18

App-layer protocol defines

□ Types of messages
exchanged,
♦ e.g., request, response

□ Message syntax:
♦ what fields in messages &

how fields are delineated

□ Message semantics
♦ meaning of information in

fields

□ Rules for when and how
processes send &
respond to messages

Public-domain protocols:
□ defined in RFCs
□ allows for

interoperability
□ e.g., HTTP, SMTP

Proprietary protocols:
□ e.g., KaZaA

19-19

What transport service does an app need?

Data loss
□ some apps (e.g., audio) can

tolerate some loss
□ other apps (e.g., file

transfer, telnet) require
100% reliable data transfer

Timing
□ some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth
□ some apps (e.g.,

multimedia) require
minimum amount of
bandwidth to be
“effective”

□ other apps (“elastic
apps”) make use of
whatever bandwidth
they get

19-20

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

19-21

Internet transport protocols services

TCP service:
□ connection-oriented: setup

required between client and
server processes

□ reliable transport between
sending and receiving process

□ flow control: sender won’t
overwhelm receiver

□ congestion control: throttle
sender when network
overloaded

□ does not provide: timing,
minimum bandwidth
guarantees

UDP service:
□ unreliable data transfer

between sending and
receiving process

□ does not provide:
connection setup, reliability,
flow control, congestion
control, timing, or
bandwidth guarantee

Q: why bother? Why is there a
UDP?

19-22

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Vonage,Dialpad)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

19-23

Chapter 2: Application layer

□ 2.1 Principles of
network applications
♦ app architectures
♦ app requirements

□ 2.2 Web and HTTP
□ 2.4 Electronic Mail

♦ SMTP, POP3, IMAP

□ 2.5 DNS

□ 2.6 P2P file sharing
□ 2.7 Socket programming

with TCP
□ 2.8 Socket programming

with UDP
□ 2.9 Building a Web server

19-24

Web and HTTP

First some jargon
□ Web page consists of objects
□ Object can be HTML file, JPEG image, Java applet,

audio file,…
□ Web page consists of base HTML-file which includes

several referenced objects
□ Each object is addressable by a URL
□ Example URL:

http://www.someschool.edu/someDept/pic.gif

host name path name

19-25

HTTP overview

HTTP: hypertext transfer
protocol

□ Web’s application layer
protocol

□ client/server model
♦ client: browser that

requests, receives,
“displays” Web objects

♦ server: Web server
sends objects in
response to requests

□ HTTP 1.0: RFC 1945
□ HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP re
sponse

19-26

HTTP overview (continued)

Uses TCP:
□ client initiates TCP connection

(creates socket) to server,
port 80

□ server accepts TCP
connection from client

□ HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web server
(HTTP server)

□ TCP connection closed

HTTP is “stateless”
□ server maintains no

information about past
client requests

Protocols that maintain “state”
are complex!

□ past history (state) must be
maintained

□ if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

19-27

HTTP connections

Nonpersistent HTTP
□ At most one object is

sent over a TCP
connection.

□ HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP
□ Multiple objects can be

sent over single TCP
connection between
client and server.

□ HTTP/1.1 uses
persistent connections
in default mode

19-28

Nonpersistent HTTP
Suppose user enters URL

http://www.someSchool.edu/someDept/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates that
client wants object
/someDept/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)

19-29

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

19-30

Non-Persistent HTTP: Response time

Definition of RTT: time to
send a small packet to
travel from client to server
and back.

Response time:
□ one RTT to initiate TCP

connection
□ one RTT for HTTP

request and first few bytes
of HTTP response to
return

□ file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

19-31

Persistent HTTP

Nonpersistent HTTP issues:
□ requires 2 RTTs per object
□ OS overhead for each TCP

connection
□ browsers often open parallel

TCP connections to fetch
referenced objects

Persistent HTTP
□ server leaves connection

open after sending response
□ subsequent HTTP messages

between same client/server
sent over open connection

Persistent without pipelining:
□ client issues new request

only when previous
response has been received

□ one RTT for each referenced
object

Persistent with pipelining:
□ default in HTTP/1.1
□ client sends requests as

soon as it encounters a
referenced object

□ as little as one RTT for all
the referenced objects

19-32

Recap

□ NAT

□ Application layer

♦ Intro

♦ Web / HTTP

19-33

Next time

□ Finish HTTP

□ FTP

□ SMTP (email)

