
18-1

Last time

□ Fast retransmit
♦ 3 duplicate ACKs

□ Flow control
♦ Receiver windows

□ Connection management
♦ SYN/SYNACK/ACK, FIN/ACK, TCP states

□ Congestion control
♦ General concepts

□ TCP congestion control
♦ AIMD, slow start, congestion avoidance

18-2

This time

□ TCP

♦ Throughput

♦ Fairness

♦ Delay modeling

□ TCP socket programming

18-3

TCP sender congestion control

SS or CA

SS or CA

SS or CA

Congestion
Avoidance
(CA)

Slow Start
(SS)

State

CongWin and Threshold
not changed

Increment duplicate ACK count
for segment being acked

Duplicate
ACK

Enter slow startThreshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Timeout

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Loss event
detected by
triple
duplicate
ACK

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

CongWin = CongWin+MSS *
(MSS/CongWin)

ACK receipt
for previously
unacked
data

Resulting in a doubling of
CongWin every RTT

CongWin = CongWin + MSS,
If (CongWin > Threshold)
 set state to “Congestion
 Avoidance”

ACK receipt
for previously
unacked
data

CommentaryTCP Sender Action Event

18-4

TCP Throughput

□ What’s the average throughout of TCP as a
function of window size and RTT?
♦ Ignore slow start

□ Let W be the window size when loss occurs.
□ When window is W, throughput is W/RTT
□ Just after loss, window drops to W/2,

throughput to W/2RTT.
□ Average throughout: .75 W/RTT

18-5

TCP Futures: TCP over “long, fat pipes”

□ Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

□ Requires window size W = 83,333 in-flight segments
□ Throughput in terms of loss rate:

□ ➜ L = 2·10-10 Wow
□ New versions of TCP for high-speed needed!

1.22⋅MSS
RTT L

18-6

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

TCP Fairness

18-7

Why is TCP fair?

Two competing sessions:
□ Additive increase gives slope of 1, as throughout increases
□ multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

18-8

Fairness (more)

Fairness and UDP
□ Multimedia apps often

do not use TCP
♦ do not want rate throttled

by congestion control

□ Instead use UDP:
♦ pump audio/video at

constant rate, tolerate
packet loss

□ Research area: TCP
friendly

Fairness and parallel TCP
connections

□ Nothing prevents app from
opening parallel
connections between 2
hosts.

□ Web browsers do this
□ Example: link of rate R

supporting 9 connections;
♦ new app asks for 1 TCP, gets

rate R/10
♦ new app asks for 11 TCPs,

gets R/2 !

18-9

Delay modeling

Q: How long does it take to
receive an object from a
Web server after sending a
request?

Ignoring congestion, delay is
influenced by:

□ TCP connection establishment
□ data transmission delay
□ slow start

Notation, assumptions:
□ Assume one link between

client and server of rate R
□ S: MSS (bits)
□ O: object size (bits)
□ no retransmissions (no loss,

no corruption)

Window size:
□ First assume: fixed

congestion window, W
segments

□ Then dynamic window,
modeling slow start

18-10

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK for

first segment in window
returns before window’s
worth of data sent

delay = 2RTT + O/R

18-11

Fixed congestion window (2)

Second case:
□ WS/R < RTT + S/R: wait

for ACK after sending
window’s worth of data
sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

18-12

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

Latency=2 RTTO
R
P [RTT SR]−2P−1 S

R

where P is the number of times TCP idles at server:

P=min {Q , K−1}

- where Q is the number of times the server idles
 if the object were of infinite size.

- and K is the number of windows that cover the object.

18-13

TCP Delay Modeling: Slow Start (2)

R T T

i n i t i a t e T C P
c o n n e c t i o n

r e q u e s t
o b j e c t

f i r s t w i n d o w
= S / R

s e c o n d w i n d o w
= 2 S / R

t h i r d w i n d o w
= 4 S / R

f o u r t h w i n d o w
= 8 S / R

c o m p l e t e
t r a n s m i s s i o no b j e c t

d e l i v e r e d

t i m e a t
c l i e n t

t i m e a t
s e r v e r

Example:
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection
estab and request
• O/R to transmit object
• time server idles due to
slow start

Server idles:
 P = min{K-1,Q} times

18-14

TCP Delay Modeling (3)

delay=O
R
2 RTT∑

p=1

P

idleTime p

¿O
R
2 RTT∑

k=1

P

[S
R
RTT−2k−1 S

R
]

¿O
R
2 RTTP [RTTS

R
]− 2P−1 S

R

[SRRTT−2k−1 S
R]



= idle time after the k th window

S
R
RTT=time from when server starts to send segment

 until server receives acknowledgement

2k−1 S
R
=time to transmit the kth window

R T T

i n i t i a t e T C P
c o n n e c t i o n

r e q u e s t
o b j e c t

f i r s t w i n d o w
= S / R

s e c o n d w i n d o w
= 2 S / R

t h i r d w i n d o w
= 4 S / R

f o u r t h w i n d o w
= 8 S / R

c o m p l e t e
t r a n s m i s s i o no b j e c t

d e l i v e r e d

t i m e a t
c l i e n t

t i m e a t
s e r v e r

18-15

TCP Delay Modeling (4)

Calculation of Q, number of idles for infinite-size object,
is similar (see text).

Recall K = number of windows that cover object

How do we calculate K ?

K=min {k :20S21 S⋯2k−1S≥O }
¿min {k :2021⋯2k−1≥O / S }

¿min {k :2k−1≥O
S
}

¿min {k :k≥log2
O
S
1 }

¿ ⌈ log2
O
S
1⌉

18-16

Chapter 2: Application layer

□ 2.1 Principles of
network applications

□ 2.2 Web and HTTP
□ 2.3 FTP
□ 2.4 Electronic Mail

♦ SMTP, POP3, IMAP

□ 2.5 DNS

□ 2.6 P2P file sharing
□ 2.7 Socket programming

with TCP
□ 2.8 Socket programming

with UDP
□ 2.9 Building a Web server

18-17

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one process
to another

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

18-18

Socket programming with TCP

Client must contact server
□ server process must first be

running
□ server must have created

socket that welcomes client’s
contact

Client contacts server by:
□ creating client-local TCP

socket
□ specifying IP address, port

number of server process
□ When client creates socket:

client TCP establishes
connection to server TCP

□ When contacted by client,
server TCP creates new
socket for server process to
communicate with client
♦ allows server to talk with

multiple clients
♦ source port numbers used

to distinguish clients

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

18-19

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket(x)

create socket,
connect to hostid, port=x
clientSocket = Socket(hostid, x)

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

18-20
ou

tT
oS

er
ve

r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

Stream jargon

□ A stream is a sequence of
characters that flow into or
out of a process.

□ An input stream is attached
to some input source for the
process, e.g., keyboard or
socket.

□ An output stream is attached
to an output source, e.g.,
monitor or socket.

18-21

Socket programming with TCP

Example client-server app:
1) client reads line from standard

input (inFromUser stream) ,
sends to server via socket
(outToServer stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to client
4) client reads, prints modified line

from socket (inFromServer
stream)

18-22

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server

Create
output stream

attached to socket

18-23

Example: Java client (TCP), cont.

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

18-24

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

18-25

Example: Java server (TCP), cont

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);

 connectionSocket.close();
 }
 }
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

18-26

Recap

□ TCP

♦ Throughput

♦ Fairness

♦ Delay modeling

□ TCP socket programming

18-27

Next time

□ NAT

□ Application layer

♦ Intro

♦ Web / HTTP

