Last time

Distance vector link cost changes

- Count-to-infinity, poisoned reverse
- □ Hierarchical routing
 - Autonomous Systems
 - Inter-AS, Intra-AS routing
- Routing protocols
 - Intra-AS
 - RIP
 - OSPF
 - Inter-AS
 - BGP

- □ BGP policy
- Broadcast / multicast routing
- Link virtualization: ATM & MPLS

BGP routing policy

- □ A,B,C are provider networks
- X,W,Y are customers (of provider networks)
- X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C

BGP routing policy (2)

- □ A advertises to B the path AW
- B advertises to X the path BAW
- □ Should B advertise to C the path BAW?
 - No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers
 - B wants to force C to route to w via A
 - B wants to route *only* to/from its customers!

Why different Intra- and Inter-AS routing ?

Policy:

- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed
 Scale:
- hierarchical routing saves table size, reduced update traffic

Performance:

- □ Intra-AS: can focus on performance
- □ Inter-AS: policy may dominate over performance

Chapter 4: Network Layer

- □ 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

□ 4.5 Routing algorithms

- Link state
- Distance Vector
- Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Broadcast Routing

Deliver packets from source to all other nodes
 Source duplication is inefficient:

source duplication

in-network duplication

Source duplication: how does source determine recipient addresses?

In-network duplication

- Flooding: when node receives broadcast packet, it sends a copy to all neighbours
 - Problems: cycles & broadcast storm
- Controlled flooding: node only broadcasts packet if it hasn't broadcast the same packet before
 - Node keeps track of packet ids already broadcasted
 - Or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- Spanning tree
 - No redundant packets received by any node

Spanning Tree

- □ First construct a spanning tree
- Nodes forward copies only along spanning tree

Spanning Tree: Creation

- □ Center node
- □ Each node sends unicast join message to center node
 - Message forwarded until it arrives at a node already belonging to the spanning tree

(a) Stepwise construction of spanning tree

(b) Constructed spanning tree

Multicast Routing: Problem Statement

- Goal: find a tree (or trees) connecting routers having local multicast group members
 - <u>tree</u>: not all paths between routers used
 - <u>source-based</u>: different tree from each sender to receivers
 - <u>shared-tree</u>: same tree used by all group members

Shared tree

Source-based trees

Approaches for building mcast trees

Approaches:

- source-based tree: one tree per source
 - shortest path trees
 - reverse path forwarding
- group-shared tree: group uses one tree
 - minimal spanning
 - center-based trees

...we look at basic approaches; specific protocols are in the text

Shortest Path Tree

mcast forwarding tree: tree of shortest path routes from source to all receivers

Dijkstra's algorithm

LEGEND

router with attached group member

- router with no attached group member
- link used for forwarding,
 i indicates order link
 added by algorithm

Reverse Path Forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- □ each router has simple forwarding behavior:

if (mcast datagram received on incoming link on shortest path back to center)
 then flood datagram onto all other outgoing links
 else ignore datagram

Reverse Path Forwarding: example

LEGEND

router with attached group member

Fouter with no attached group member

datagram will be forwarded

datagram will not be forwarded

- result is a source-specific reverse SPT
 - may be a bad choice with asymmetric links

Reverse Path Forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - "prune" msgs sent upstream by router with no downstream group members

LEGEND

router with attached group member

- router with no attached group member
 - prune message
 - links with multicast forwarding

Center-based trees

- □ single delivery tree shared by all
- □ one router identified as *"center"* of tree
- □ to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg "processed" by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by *join-msg* becomes new branch of tree for this router

Center-based trees: an example

Suppose R6 chosen as center:

LEGEND

router with attached group member

router with no attached group member

path order in which join messages generated

Tunneling

Q: How to connect "islands" of multicast routers in a "sea" of unicast routers?

physical topology

logical topology

- mcast datagram encapsulated inside "normal" (non-multicastaddressed) datagram
- normal IP datagram sent through "tunnel" via regular IP unicast to receiving mcast router
- □ receiving mcast router unencapsulates to get mcast datagram

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3Multiple access protocols
- 5.4 Link-LayerAddressing
- □ 5.5 Ethernet

- □ 5.6 Hubs and switches
- □ 5.7 PPP
- 5.8 Link Virtualization: ATM and MPLS

Virtualization of networks

Virtualization of resources: a powerful abstraction in systems engineering:

- Computing examples: virtual memory, virtual devices
 - Virtual machines: e.g., Java
 - IBM VM OS from 1960's/70's
- Layering of abstractions: don't sweat the details of the lower layer; only deal with lower layers abstractly

The Internet: virtualizing networks

Gateway: Internetwork layer (IP): "embed internetwork packets in local packet format or extract addressing: internetwork appears as a single, uniform entity, despite underlying local network them' heterogeneity route (at internetwork level) to next gateway network of networks \mathbf{X} gateway satellite net ARPAnet

Cerf & Kahn's Internetwork Architecture

What is virtualized?

- Two layers of addressing: internetwork and local network
- New layer (IP) makes everything homogeneous at internetwork layer
- Underlying local network technology
 - cable
 - satellite
 - 56K telephone modem
 - today: ATM, MPLS

... "invisible" at internetwork layer. Looks like a link layer technology to IP!

ATM and MPLS

- ATM, MPLS separate networks in their own right
 - different service models, addressing, routing from Internet
- Viewed by Internet as logical link connecting IP routers
 - just like dialup link is really part of separate network (telephone network)

Asynchronous Transfer Mode: ATM

- 1990's/00 standard for high-speed (155Mbps to 622 Mbps and higher) *Broadband Integrated Service Digital Network* architecture
- Goal: integrated, end-end transport of carry voice, video, data
 - meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
 - "next generation" telephony: technical roots in telephone world
 - packet-switching (fixed length packets, called "cells") using virtual circuits

ATM: network or link layer?

- Vision: end-to-end transport: "ATM from desktop to desktop"
 - ATM is a network technology
- Reality: used to connect IP backbone routers
 - "IP over ATM"
 - ATM as switched link layer, connecting IP routers

Multiprotocol label switching (MPLS)

- Initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding
 - borrowing ideas from Virtual Circuit (VC) approach
 - but IP datagram still keeps IP address!

MPLS capable routers

□ a.k.a. label-switched router

- Forwards packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- □ Signaling protocol needed to set up forwarding
 - RSVP-TE
 - forwarding possible along paths that IP alone would not allow (e.g., source-specific routing) !!
 - use MPLS for traffic engineering
- Must co-exist with IP-only routers

□ BGP policy

Broadcast / multicast routing

- Spanning trees
 - Source-based, group-shared, center-based
- Reverse path forwarding, pruning
- Tunneling
- Link virtualization
 - Whole networks can act as an Internet link layer
 - ATM, MPLS

- □ Router internals
- □ Mobility
- □ Mobile IP