
9-1

Last time
□ IP addressing

♦ addressing, subnets, CIDR
♦ address aggregation

□ ARP
♦ Learning other hosts' MAC addresses
♦ Same LAN only

□ DHCP
♦ Learning your own IP address

□ ICMP
♦ Internet “error messages”
♦ How traceroute works

□ IPv6
♦ Differences from IPv4

9-2

This time

□ Transitioning to IPv6

□ Routing

♦ Link-state routing

♦ Distance-vector routing

9-3

Transitioning From IPv4 To IPv6

□ Not all routers can be upgraded simultaneously
♦ no “flag days”
♦ How will the network operate with mixed IPv4 and

IPv6 routers?

□ Tunneling: IPv6 carried as payload in IPv4
datagram among IPv4 routers

9-4

Tunneling
A B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:
A B E F

IPv6 IPv6 IPv6 IPv6IPv4 IPv4

9-5

Tunneling
A B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:
A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: X
Src: A
Dest: F

data

Flow: X
Src: A
Dest: F

data

Flow: X
Src: A
Dest: F

data

Src:B
Dest: E

Flow: X
Src: A
Dest: F

data

Src:B
Dest: E

A-to-B:
IPv6

E-to-F:
IPv6

B-to-C:
IPv6 inside

IPv4

B-to-C:
IPv6 inside

IPv4

Gateway

□ Interaction between IPv6 clients and IPv4
servers – or vice versa?
♦ tunneling does not help

□ Solution: special “IPv4” address range in IPv6
addresses

□ Need protocol gateway to convert between
IPv4 and IPv6

□ More complicated than tunneling

9-7

Chapter 4: Network Layer

□ 4. 1 Introduction
□ 4.2 Virtual circuit and

datagram networks
□ 4.3 What’s inside a

router
□ 4.4 IP: Internet Protocol

♦ Datagram format
♦ IPv4 addressing
♦ ICMP
♦ IPv6

□ 4.5 Routing algorithms
♦ Link state
♦ Distance Vector
♦ Hierarchical routing

□ 4.6 Routing in the
Internet
♦ RIP
♦ OSPF
♦ BGP

□ 4.7 Broadcast and
multicast routing

9-8

1

23

0111

value in arriving
packet’s header

routing algorithm

local forwarding table
header value output link

0100
0101
0111
1001

3
2
2
1

Interplay between routing, forwarding

9-9

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

Graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

Graph abstraction

Remark: Graph abstraction is useful in other network contexts

Example: P2P, where N is set of peers and E is set of TCP connections

9-10

Graph abstraction: costs

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5 • c(x,x’) = cost of link (x,x’)

 - e.g., c(w,z) = 5

• cost could always be 1, or
inversely related to bandwidth,
or directly related to congestion

Cost of path (x1, x2, x3,…, xp) = c(x1,x2) + c(x2,x3) + … + c(xp-1,xp)

Question: What’s the least-cost path between u and z ?

Routing algorithm: algorithm that finds least-cost path

9-11

Routing Algorithm classification

Global or decentralized
information?

Global:
□ all routers have complete

topology, link cost info
□ “link state” algorithms
Decentralized:
□ router knows physically-

connected neighbours, link
costs to neighbours

□ iterative process of
computation, exchange of
info with neighbours

□ “distance vector” algorithms

Static or dynamic?
Static:
□ routes change slowly

over time
Dynamic:
□ routes change more

quickly
♦ periodic update
♦ in response to link

cost changes

9-12

Chapter 4: Network Layer

□ 4. 1 Introduction
□ 4.2 Virtual circuit and

datagram networks
□ 4.3 What’s inside a

router
□ 4.4 IP: Internet Protocol

♦ Datagram format
♦ IPv4 addressing
♦ ICMP
♦ IPv6

□ 4.5 Routing algorithms
♦ Link state
♦ Distance Vector
♦ Hierarchical routing

□ 4.6 Routing in the
Internet
♦ RIP
♦ OSPF
♦ BGP

□ 4.7 Broadcast and
multicast routing

9-13

A Link-State Routing Algorithm

Dijkstra’s algorithm
□ net topology, link costs

known to all nodes
♦ accomplished via “link

state broadcast”
♦ all nodes have same info

□ computes least cost paths
from one node (“source”) to
all other nodes
♦ gives forwarding table for

that node
□ iterative: after k iterations,

know least cost path to k
destinations

Notation:
□ c(x,y): link cost from node x

to y; = ∞ if not direct
neighbours

□ D(v): current value of cost
of path from source to
destination v

□ p(v): predecessor node
along path from source to v

□ N': set of nodes whose least
cost path definitively known

9-14

Dijsktra’s Algorithm

1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

9-15

Dijkstra’s algorithm: example

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5

9-16

Dijkstra’s algorithm: example (2)

u

yx

wv

z

Resulting shortest-path tree from u:

v
x

y

w

z

(u,v)

(u,x)

(u,x)

(u,x)

(u,x)

destination link

Resulting forwarding table in u:

9-17

Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes
□ each iteration: need to check all nodes, w, not in N'
□ n(n+1)/2 comparisons: O(n2)
□ more efficient implementations possible: O(nlogn)

Oscillations possible:
□ e.g., link cost = amount of carried traffic

A

D

C

B
1 1+e

e0

e

1 1

0 0

A

D

C

B
2+e 0

00
1+e 1

A

D

C

B
0 2+e

1+e1
0 0

A

D

C

B
2+e 0

e0
1+e 1

initially
… recompute

routing
… recompute … recompute

9-18

Chapter 4: Network Layer

□ 4. 1 Introduction
□ 4.2 Virtual circuit and

datagram networks
□ 4.3 What’s inside a

router
□ 4.4 IP: Internet Protocol

♦ Datagram format
♦ IPv4 addressing
♦ ICMP
♦ IPv6

□ 4.5 Routing algorithms
♦ Link state
♦ Distance Vector
♦ Hierarchical routing

□ 4.6 Routing in the
Internet
♦ RIP
♦ OSPF
♦ BGP

□ 4.7 Broadcast and
multicast routing

9-19

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)
Define
dx(y) := cost of least-cost path from x to y

Then

dx(y) = min {c(x,v) + dv(y) }

where min is taken over all neighbours v of x

v

9-20

Bellman-Ford example

u

yx

wv

z
2

2

1
3

1

1

2

5
3

5
Clearly, dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
 c(u,x) + dx(z),
 c(u,w) + dw(z) }
 = min {2 + 5,
 1 + 3,
 5 + 3} = 4

Node that achieves minimum is next
hop in shortest path ➜ forwarding table

B-F equation says:

9-21

Distance Vector Algorithm

□ Dx(y) = estimate of least cost from x to y

□ Node x knows cost to each neighbour v:
 c(x,v)

□ Node x maintains distance vector
 Dx = [Dx(y): y є N]

□ Node x also maintains its neighbours’
distance vectors
♦ For each neighbour v, x maintains

Dv = [Dv(y): y є N]

9-22

Distance vector algorithm (4)

Basic idea:
□ Each node periodically sends its own distance vector

estimate to neighbours
□ When a node x receives new DV estimate from

neighbour, it updates its own DV using B-F equation:

Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

□ Under minor, natural conditions, the estimate Dx(y)
converges to the actual least cost dx(y)

9-23

Distance Vector Algorithm (5)

Iterative, asynchronous:
each local iteration caused
by:

□ local link cost change
□ DV update message from

neighbour

Distributed:
□ each node notifies

neighbours only when its DV
changes

♦ neighbours then notify their
neighbours if necessary

wait for (change in local link
cost or msg from neighbour)

recompute estimates

if DV to any dest has
changed, notify neighbours

Each node:

9-24

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fr
om

cost to

fr
om

fr
om

x y z

x
y
z

0

fr
om

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

time

x z
12

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
 Dy(z), c(x,z) + Dz(z)}
= min{2+1 , 7+0} = 3

32

9-25

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fr
om

cost to

fr
om

fr
om

x y z

x
y
z

0 2 3

fr
om

cost to
x y z

x
y
z

0 2 3

fr
om

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to
x y z

x
y
z

0 2 7

fr
om

cost to

x y z

x
y
z

0 2 3

fr
om

cost to

x y z

x
y
z

0 2 3

fr
om

cost to
x y z

x
y
z

0 2 7

fr
om

cost to

x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0

2 0 1

3 1 0

time

x z
12

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
 = min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) +
 Dy(z), c(x,z) + Dz(z)}
= min{2+1 , 7+0} = 3

9-26

Recap

□ Transitioning to IPv6
♦ Tunneling

♦ Gateways

□ Routing
♦ Graph abstraction

♦ Link-state routing
• Dijkstra's Algorithm

♦ Distance-vector routing
• Bellman-Ford Equation

9-27

Next time

□ Distance vector link cost changes

□ Hierarchical routing

□ Routing protocols

