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Abstract

As part of the trend towards Chip Multiprocessors (CMPs) for the
next leap in computing performance, many architectures have ex-
plored sharing the last level of cache among different processors
for better performance–cost ratio and improved resource alloca-
tion. Shared cache management is a crucial CMP design aspect
for the performance of the system. This paper first presents a new
classification of cache misses – CII: Compulsory, Inter-processor
and Intra-processor misses – for CMPs with shared caches to pro-
vide a better understanding of the interactions between memory
transactions of different processors at the level of shared cache
in a CMP. We then propose a novel approach, called set pinning,
for eliminating inter-processor misses and reducing intra-processor
misses in a shared cache. Furthermore, we show that an adaptive
set pinning scheme improves over the benefits obtained by the set
pinning scheme by significantly reducing the number of off–chip
accesses. Extensive analysis of these approaches with SPEComp
2001 benchmarks is performed using a full system simulator. Our
experiments indicate that the set pinning scheme achieves an aver-
age improvement of 22.18% in the L2 miss rate while the adaptive
set pinning scheme reduces the miss rates by an average of 47.94%
as compared to the traditional shared cache scheme. They also im-
prove the performance by 7.24% and 17.88% respectively.

Categories and Subject Descriptors B.3.2 [Memory Structures]:
Design Styles – Cache memory; C.4 [Performance of Systems]:
Design Studies

General Terms Management, Design, Performance, Experimen-
tation, Algorithms

Keywords Shared cache, Set pinning, CMP, Inter-processor, Intra-
processor
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1. Introduction

The most popular cache miss classification for uniprocessor archi-
tectures is the 3C miss classification (Compulsory, Capacity and
Conflict misses) (9; 10; 11). According to this classification, com-
pulsory misses are those misses caused by the first reference to
a datum. Cache size and associativity make no difference in the
number of compulsory misses. Prefetching can help here, as can
larger cache block sizes (which are a form of prefetching). Capac-
ity misses are those misses that occur regardless of associativity
or block size, solely due to the finite size of the cache. Conflict
misses are those misses that occur due to insufficient associativity
(i.e., they do not occur in a fully associative cache). This classifi-
cation was further refined by Sugumar, et.al. (28; 29). They pro-
vide subclasses of conflict misses which are further classified as
mapping misses, that are unavoidable given a particular degree of
associativity and replacement misses, which are caused by a sub–
optimal replacement policy. These classifications have helped re-
searchers analyze the reasons for various classes of cache misses
precisely. They have also aided the development of several per-
formance optimizations which target reduction of specific kinds
of cache misses and improve system performance in the case of
uniprocessors (7; 19; 32; 33; 35). Dubois, et.al. (8) discovered
a fourth category of misses in cache–coherent multiprocessors,
called coherence misses. These are the misses that occur due to in-
validation of cache entries shared between private caches in multi–
processors. Coherence misses themselves are further classified as
true–sharing misses and false–sharing misses based on whether the
coherence miss was exactly due to the word written by one of the
processors or due to independent words in the same cache block.

The latest versions of many architectures have chip multipro-
cessors (CMPs) with a shared L2/L3 cache (12; 15; 25). In these
CMPs, the processors compete for the shared cache. In the context
of CMPs with shared caches, the 3C classification of misses is in-
adequate to analyze the exact cause of misses and cannot model
the contention that exists among the processors in accessing the
shared cache. The ability to systematically characterize solutions
to reduce misses in shared caches using the existing classifications
is also limited. Coherence misses are used to model misses in multi-
processors with private caches. A new cache miss classification that
accounts for the interactions between the transactions from differ-
ent processors in a CMP is important in order to design schemes for
effective shared cache management. We make the following impor-
tant contributions in this paper:

• We provide a new classification of cache misses in the con-
text of CMPs with shared cache. Our classification, CII, clas-
sifies the cache misses in a CMP with shared cache as Com-
pulsory, Inter processor and Intra processor misses. Classifica-



Processor Access Action

PP11 Access location X Cold Miss, location X brought to cache

P1 Access location X Cache Hit, No change

P2 Access location X Cache Hit, No change

PP11 Access location Y Replace location X, Y brought to cache

P1 Access location X Cache Miss

(a) Miss due to eviction of memory element by the same processor.

Processor Access Action

PP11 Access location X Cold Miss, location X brought to cache

P1 Access location X Cache Hit, No change

P2 Access location X Cache Hit, No change

PP22 Access location Y Replace location X, Y brought to cache

P1 Access location X Cache Miss

(b) Miss due to eviction of memory element by a different proces-
sor.

Figure 1. Example transactions causing cache misses in a CMP with shared cache.

tion of non-compulsory cache misses in CII and 3C cache miss
classification are orthogonal to each other. The CII classifica-
tion helps us better understand the interactions between cache
transactions of multiple processors in a CMP at the level of the
shared cache.

• We propose a novel technique called set pinning which asso-
ciates cache sets with owner processors (ownership in this pa-
per refers to right of the processor to evict blocks within the set
on a cache miss) and redirects blocks that would lead to inter-
processor misses to a small Processor Owned Private (POP)
cache. Each core has its own POP cache. Set pinning elimi-
nates Inter-processor misses and reduces Intra-processor misses
in shared caches. We also provide a quantitative analysis of the
effect of set pinning on both inter-processor misses and intra-
processor misses in a shared cache.

• As an evolutionary improvement over the set pinning approach,
we propose a technique called adaptive set pinning which im-
proves the benefits obtained by set pinning, by adaptively re-
linquishing ownership of pinned sets. The adaptive set pinning
approach mitigates the effect of dominated ownership of sets by
a few processors that is observed in the set pinning approach.

• We extensively evaluate the above approaches using a full sys-
tem simulator and provide a characterization of the sensitivity
of performance to various configuration parameters. In addi-
tion, we compare our approach to a victim cache (13) like con-
figuration of POP cache. Adaptive set pinning achieves a perfor-
mance improvement of 14.19% over a comparable victim cache
configuration.

The remainder of the paper is organized as follows. Our CII
classification is explained in Section 2. Section 3 and Section 4
elaborate on the set pinning and adaptive set pinning approaches.
We present details about our simulation platform and benchmarks
in Section 5 and experimental results in Section 6. Related work is
described in Section 7, followed by our conclusions in Section 8.

2. A Taxonomy of Cache Misses in Chip

Multiprocessors

The motivation for our classification springs from the example
transactions depicted in Figure 1. Consider a CMP with two pro-
cessors, P1 and P2 and a fully associative shared L2 cache. Exam-

Replaced (P1)Referenced (P1)

Inter Processor MissNever Referenced

Referenced (P2)

Cache Hit

Replaced (P2)

Cache Hit Intra Processor Miss

Intra Processor Miss

Cold Miss

Cold Miss

P1 Ref                         P2 Ref                         P1 Replacement                         P2 Replacement             Any                                   

Figure 2. State diagram representing a memory element’s life cy-
cle in the shared cache. Non–compulsory misses are classified
based on the processor responsible for evicting the referenced
block. A non–compulsory miss is classified as Intra-processor
miss if it was evicted by the same processor that brought it into
the cache and Inter-processor miss if it was evicted by other pro-
cessors.

ples (a) and (b) in Figure 1 show two possible types of transactions
that could result in a miss in a shared cache. Example (a) depicts
a traditional capacity miss where the same processor P1 is respon-
sible for both first reference and eviction of the memory element
X. Example (b) also depicts a miss by P1, that occurs to a mem-
ory element X. The difference here is that X was brought into the
cache by an earlier reference by P1, but was evicted only because
of a reference to a different memory element Y that mapped to the
same cache block as X by P2.

Clearly, we would fail to understand the inherent differences
in the cause for such misses, by classifying both of these misses
as “capacity misses” (as in the 3C miss classification). The same
is true with conflict misses. We classify the misses similar to that
shown in (a) of Figure 1 as Intra-processor misses and ones similar
to that shown in (b) as Inter-processor misses. Thus our classifica-
tion, CII, classifies the cache misses in a CMP with a shared cache



into compulsory misses, intra-processor misses and inter-processor
misses.

In order to present a more formal understanding of the CII
classification, we can represent the life cycle of a memory element
as shown in the state diagram in Figure 2. This diagram depicts
the life cycle of a memory element in the shared cache during
the execution of a program accessing it, assuming the program is
executing on a dual core CMP. The same idea is easily extensible
to any number of processors. As seen from Figure 2, the memory
element under consideration is initially in the Never Referenced
state. The first access by P1 or P2 causes a compulsory (cold) miss
and the memory element enters the Referenced state for the first
time in the life cycle. Any subsequent references (by any processor)
to a memory element in the Referenced state leads to a cache
hit. Further, a replacement of the cache block takes the memory
element into the Replaced state. We tag the memory element with
the id of the processor which replaced the element. For instance,
a memory element which is evicted from the cache as a result of
a reference from P1 is in Replaced(P1) state. It is evident that all
non-compulsory cache misses to a memory element occur when it
is in the Replaced state. Our classification of the non-compulsory
misses is based on whether the cache miss is occurring because of
the block being replaced (at an earlier point in time) by the same
processor or a different processor. This is deciphered by comparing
the processor facing the miss with the tag of the memory element
in the Replaced state.

It is important to note that the classification of non-compulsory
misses into intra-processor misses and inter-processor misses in the
CII classification is orthogonal to the classification of the same as
capacity and conflict misses. For instance, the examples discussed
with reference to Figure 1, in case of a fully associative cache,
represent (a) capacity miss that is also an intra-processor miss
and (b) capacity miss that is also an inter-processor miss. Conflict
misses can also be classified as intra-processor misses and inter-
processor misses by the CII classification. Our CII classification
is more expressive; and more importantly, it is able to model the
interactions between transactions of multiple processors at the level
of the shared cache.

We measured the distribution of various classes of misses in
the CII classification. Figure 3 plots the distribution of compulsory,
inter-processor and intra-processor misses in our base system con-
figuration (see Section 5 for a detailed description of our baseline
configuration). The black portion of the stacked bars represents the
inter-processor misses, the spotted portion (in the middle) repre-
sents intra-processor misses and the striped portion represents the
compulsory misses. On an average, 40.3% of the misses are inter-
processor misses, 24.6% of the misses are intra-processor misses
and the remaining 35.1% are compulsory misses.

Characterization of CII classification. We vary L2 cache size,
L2 cache associativity and the number of processors individually
from the baseline configuration in order to measure their impact
on the distribution of various classes of CII cache misses. Graphs
(a) and (b) of Figure 4 plot the normalized miss rates of various
benchmarks by varying the size and associativity of the shared
L2 cache. The miss rates are normalized to the total L2 cache
miss rates of the respective benchmarks in the base configuration.
Although the number of inter-processor and intra-processor misses
in the L2 cache tend to decrease with increasing associativity and
the size of the L2 cache, the contribution of inter-processor misses
to the non–compulsory misses (as a percentage of non–compulsory
misses) increases and that of intra-processor misses decreases as
associativity and size increase. We also studied the impact of the
number of processors on the CII classification. In order to have
a fair comparison (the private L1 caches of a different number
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Figure 3. Distribution of CII misses in L2 cache misses for
SPEComp benchmarks on an 8 processor CMP with 32KB, 4–way
private instruction and data L1 caches and a 2MB 8–way associa-
tive shared unified L2 cache.

of processors lead to a different number of total L2 accesses)
after varying the number of processors, we plot the variation in
distribution of CII misses with the number of processors in Graph
(c) of Figure 4. The contribution of inter-processor misses also
increases with increasing number of processors. This is clearly
due to the increased interaction between memory transactions of
a higher number of processors in the shared L2 cache.

Reducing off–chip accesses is the key to a successful shared
cache management scheme in a CMP with large shared L2/L3
cache (16). The effect of compulsory misses can be reduced by
hiding their latency. This can be achieved by prefetching data
into the cache before it is accessed. There have been many recent
studies for reducing memory bandwidth and the number of off–chip
accesses through hardware/software data prefetching (17; 24; 27;
34). The focus of this paper is on developing techniques to reduce
inter-processor and intra-processor misses.

3. Set Pinning

CMPs with private caches for each processor have the advantage
that there are no inter-processor misses. However, due to a much
smaller fraction of aggregate L2 cache capacity being available to
individual processors, there can be a significant increase in intra-
processor misses (all cache misses in a private cache are intra-
processor misses), compared to a shared L2 cache of a much larger
(aggregate) capacity. Thus there is a motivation for shared caches
in CMPs. Increasing the associativity of the shared L2 cache is an-
other easy way of reducing intra-processor misses but, as seen from
Figure 4, inter-processor misses then become the bottleneck as far
as reducing non-compulsory misses is concerned. Higher associa-
tivity also results in higher power consumption, higher complexity
and increased latency overheads. We propose a novel shared cache
management scheme called set pinning to eliminate inter-processor
misses and to reduce intra-processor misses without incurring the
penalties of increasing associativity of the shared cache.

Set pinning is based on two crucial observations about the char-
acteristics of non–compulsory misses in the shared cache. We mea-
sured the number of distinct memory addresses in the references
that lead to inter-processor and intra-processor misses. The frac-
tion of the number of references to distinct memory addresses re-
sulting in inter-processor and intra-processor misses are plotted in
Graph (a) of Figure 5. The low fraction of distinct memory ad-
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(a) Sensitivity to L2 cache size.
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(b) Sensitivity to associativity.
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(c) Sensitivity to number of processors.

Figure 4. Sensitivity of distribution of compulsory, inter-processor and intra-processor misses in L2 cache to various parameters. All miss
rates are normalized w.r.t the total L2 cache miss rates of respective benchmarks in our baseline configuration.

dresses leading to inter-processor misses indicates that most of the
inter-processor misses happen due to a few hot blocks in the mem-
ory. We also measured the time interval in terms of the number of
intervening references between successive references to these hot
blocks and the result is plotted in Graph (b) of Figure 5. As seen
from this graph, most of these hot blocks are accessed over and over
again within 100 references 64.5% of the time on average. This in-
dicates that the hot blocks are also frequently accessed. Set pinning
is designed to exploit these two observations by disallowing the
large number of references for the few hot blocks responsible for
causing inter-processor misses, from evicting L2 cache blocks. In-
stead, these hot blocks are stored in very small regions of the L2
cache, confined to be written by individual processors, called Pro-
cessor Owned Private (POP) caches.

Set pinning is a cache management scheme where every proces-
sor acquires replacement ownership of a certain number of sets in
the shared cache. Only the processor that has replacement owner-
ship of the set being accessed can replace entries in that set. There-
fore, in set pinning, all references that could potentially cause an
inter-processor miss, i.e., all references from different processors,
could never evict each other even if they index to the same set. The
small number of such hot–blocks that would have been responsible
for inter-processor misses are stored instead in the POP cache of
the processor that first references them.

The block diagram of the proposed set pinning architecture for
L2 cache is shown in Figure 6. As seen from the figure, we need
a field in each cache set to store the identifier of the current owner
processor of the set. This field is log n bits for n processors per
cache set which corresponds to less than 0.6% overhead for our
baseline configuration. The large shared L2 cache is organized into
a large set pinned cache along with small POP caches, one for each
processor. The set pinned L2 cache behavior is unchanged from the
traditional shared cache behavior in case of a cache hit. Look up
also happens in parallel in all the POP caches and on a cache miss
in the set pinned L2 cache; if there is a hit in any of the POP caches,
the cache request is satisfied from the POP cache.

3.1 Cache Miss Policy.

When there is no tag match in either the indexed set of the set
pinned L2 cache or any of the POP caches, it is an L2 cache miss.
There are three possible cases under which a cache miss can occur:

1. The indexed set in the L2 cache is not owned by any processor.

2. The indexed set in the L2 cache is owned by the processor
responsible for the current reference.

3. The indexed set in the L2 cache is owned by a processor other
than the one responsible for the current reference.
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Figure 5. (a) Fraction of references to distinct memory addresses leading to intra-processor misses and inter-processor misses in the set
pinning architecture, (b) Temporal locality of references leading to inter-processor misses, (c) Domination of ownership in set pinning.
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O(p4)

L2 CacheCores Memory

A1

A2

A3

A4

A3

A2

A1

Figure 6. Block diagram explaining the working of our set pinning
architecture.

In case 1, the indexed set is in its pristine state and is not owned
by any processor. Therefore, in addition to bringing the referenced
data from memory, the owner field also needs to be set. Consider
the reference to A3 by P3 in Figure 6. Since the address indexes
to a block in a set owned by no processor (indicated by o(xx)), the
ownership of the set is claimed by P3 and the referenced data is
brought into the set from memory.

In case 2, the indexed set is used as in the traditional cache
schemes, i.e., the data from memory evicts the least recently used
cache block in that set. Intra-processor misses can be significantly
reduced because of reduced number of references that are eligible
to evict data (limited to references from the owner processor). The
reference to A2 by P2 in Figure 6 is an example of this case. Since
the address indexes to a set owned by P2, an LRU block is evicted
from the indexed set and replaced by the referenced data.

In case 3, where the indexed set is owned by a processor dif-
ferent from the one making the reference, data cannot be evicted

from the indexed set. This reduces the inter-processor misses which
could only occur if the eviction had taken place. The POP cache
owned by that processor is instead used to store the referenced data
by evicting the LRU entry from that processor’s POP cache. Con-
sidering Figure 6 once more, let us focus on A1 referenced by P1

which indexes to a set owned by P3. In this case, P1 stores A1
in POP-1 cache, by evicting a block selected using LRU from the
POP1 cache.

It is important to note that, in the set pinning architecture, there
is no replication or migration of cache blocks between the set-
pinned L2 cache and the POP caches. Every cache block is present
in either the set pinned L2 cache or the POP cache of the processor
which references it first. Also, the set pinning architecture does not
impose any limitations on optimizing the L2 cache organization,
i.e., popular techniques such as multi–banking as well as migration
and replication techniques within the L2 cache can be used to re-
duce costly off–chip accesses or power consumption. A detailed
analysis of the impact of set pinning on inter-processor misses,
intra-processor misses and overall performance is presented in Sec-
tion 6.

4. Adaptive Set Pinning

The policy of allocating ownership of sets to processors that is
described in the previous section is based on a first–come first–
serve allocation policy. This simple policy could potentially result
in an unfair division of the sets in the set pinned L2 cache. The
issue of fairness in acquiring ownership is addressed by our next
approach called adaptive set pinning described here in detail.

4.1 Dominated Ownership of Sets

The simple first–come first–serve policy favors the processors that
first access the set. This can lead to acquirement of ownership of
a large number of sets by the first few active processors. Such a
domination in ownership of sets by a few processors leaves few sets
for the other processors and hence over stresses the POP caches of
those processors. In order to study the degree of such domination,
we measured the percentage of sets owned by each processor at
the end of execution (after they acquire ownership of maximal
sets) with this simple first–come first–serve policy of allocating
ownership. The results obtained are plotted in Graph (c) of Figure
5. As seen from this figure, a few processors dominate ownership
of most sets. Consequentially, a fairer adaptive policy needs to be
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Figure 7. Flow chart explaining the logic of the adaptive set pinning scheme.

adopted by processors in acquiring ownership, so that they do not
harm the interests of the performance of the system as a whole.

4.2 Relinquishing Ownership

The problem in domination of set ownership arises because the
sets, once owned by a processor can never be owned by any other
processor, irrespective of the activity level of that processor in the
shared L2 cache. In the adaptive set pinning scheme, we overcome
this limitation with a policy where processors dynamically relin-
quish ownership of sets.

Hardware Support. The relinquishing of sets by an owner proces-
sor is based on a confidence counter for each set, which indicates
the confidence of the system that the current processor should be
the owner of the set. The confidence counter is a saturating counter
which is incremented on every cache hit occurring on the set. It
is decremented for every reference by a processor, that (i) indexes
into the set, (ii) is not the owner of the set, and (iii) is a cache miss
(the reference is a cache miss in the indexed cache set as well as
the POP caches). A cache miss due to a reference indexing into a
set owned by the processor responsible for the reference does not
change the value of the confidence counter.

When the confidence counter becomes zero, the processor iden-
tity bits are cleared and the set again becomes available to the next
processor whose reference indexes into it. The initial value of the
confidence counter is set to half of the saturating value. Note that
any change in ownership of sets only means a change in the pro-
cessor which can evict blocks from the cache set. A change in own-
ership does not invalidate any cache blocks. It also does not affect
references from other processors to already existing cache blocks
(unless they are evicted by the new owner).

The flow chart for the logic in the adaptive set pinning scheme
is shown in Figure 7. Along with the processor identifier field
for the set pinning architecture, the total additional hardware cost,
assuming 4–bit confidence counters per set is about 1.36% of the
L2 cache in our baseline configuration. 4 bit confidence counters
were used after experimenting with a range of values from 2 to 16
and finding 4 bits was sufficient to account for the longest duration
of ownership without frequent saturations.

5. Experimental Setup

In this section we describe our evaluation methodology. All our re-
sults are obtained with the baseline configuration system described
below.

Base System Configuration. We evaluate both set pinning and
adaptive set pinning on an eight processor CMP with processors

Table 1. Experimental setup.
Processors 8 Processors with private L1 data and instruction

caches, each processor is single threaded

Processor Model Each processor is a 4–way fetch and issue in–order
processor, 1GHz frequency

Private L1 D–Caches Direct mapped, 32KB, 64 bytes block size, 3 cycle
access latency

Private L1 I–Caches Direct mapped, 32KB, 64 bytes block size, 3 cycle
access latency

Shared L2 Cache 8–way set associative, 2MB (reduced to 1920 KB in
presence of POP caches), 64 bytes block size, 15 cycle
access latency

Memory 4GB, 200 cycle off–chip access latency

POP Cache 8–way set associative, 16KB per processor, 64 bytes
block size

based on the SPARC V9 architecture. The baseline configuration
is given in Table 1. All configurations involving the evaluation of
set pinning architecture have been evaluated with a reduced L2
cache capacity in order to match the total capacity in the schemes
being compared.1 We simulate the entire system using Simics full
system simulator (18). A detailed analysis of the characteristics of
CII misses by varying parameters such as cache size, associativity
and number of processors was presented in Figure 4 and discussed
in detail in Section 2.

Table 2. Important characteristics of the SPEComp benchmark
programs.

Cache miss rates

Benchmark L1 L2 Memory Footprint (MB)

310.wupwise m 1.6 13.2 1480

312.swim m 8.1 25.4 1580

314.mgrid m 11.3 18.2 450

316.applu m 0.8 14.9 1510

318.galgel m 1.1 11.3 370

320.equake m 2.4 9.7 860

324.apsi m 8.4 7.6 1650

326.gafort m 6.8 13.5 1680

328.fma3d m 4.1 8.3 1020

330.art m 0.9 43.1 2760

332.ammp m 0.6 5.9 160

Benchmarks. To quantitatively analyze the CII classification and
to evaluate the effectiveness of set pinning and adaptive set pinning
on CMPs, we used all the programs from the SPEComp 2001
benchmark suite (1). All the benchmark programs use the reference
input set and are fast forwarded to the beginning of the main loops.

1 Reduced to 1.92 MB to account for a total of 128 KB of POP cache
capacity. The effect of hashing is considered but could be avoided in real
cache systems that are designed with POP cache.
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Figure 8. Evaluation of important metrics measuring the effectiveness of our schemes.

We warm up caches for approximately 1 billion instructions and
collect statistics until the end of the loop iterations. The cache miss
characteristics and memory footprints of the benchmark programs
using our baseline configuration (without POP cache) are provided
in Table 2.

6. Experimental Results

In this section, we present a detailed experimental study of the
impact of set pinning and adaptive set pinning on inter-processor
misses, intra-processor misses and the performance of the bench-
mark programs. We further show how our schemes perform with
a varying number of processors. Finally, we compare our schemes
with a victim cache (13) configuration of POP cache of similar size.

6.1 Cache Miss Rates

Both set pinning and adaptive set pinning do not influence the num-
ber of compulsory cache misses as explained earlier. Set pinning
eliminates inter-processor misses, but they may manifest as a few
additional intra-processor misses in the POP caches. Therefore, the
effective number of misses in our schemes are the misses that occur
in both the set pinned L2 cache and the POP caches. The effective
L2 cache miss rate in the set pinning scheme and adaptive set pin-

ning scheme is defined as follows:

MReff =
SetP innedL2 misses

T

POPcache misses

Total L2 accesses

The effective L2 cache miss rates for set pinning and adaptive set
pinning normalized with miss rates of the traditional shared cache
scheme (base configuration) are plotted in graph (a) of Figure 8.
In some benchmarks like 318.galgel m and 330.art m, the effective
miss rate in the case of set pinning is higher than that of the tradi-
tional shared cache scheme. This happens due to dominated own-
ership of sets by a few processors in the set pinning scheme. Con-
fidence counter based relinquishing of ownership in the adaptive
set pinning scheme is effective in reducing the miss rates in both
these cases. The set pinning scheme achieves an average improve-
ment of 22.18% in the effective L2 miss rate, while the adaptive set
pinning scheme reduces the miss rates by an average of 47.94%, as
compared to the traditional shared cache scheme.

Another important metric that determines the performance of
our schemes is the effective hit rate of the POP caches. We define
this metric as:

POP hit rate =
Total hits in POP caches

Misses in SetP innedL2

The effective hit rates in POP caches in set pining and adaptive set
pinning are shown in graph (b) of Figure 8. The POP cache hit rates
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Figure 9. (a) Sensitivity to number of processors. (b) Sensitivity to POP cache capacity. (c) Comparison to victim cache

are found to improve significantly with adaptive set pinning, with
an average of 94.23% across all benchmarks, which is about 11.7%
better than the hit average rate in the set pinning scheme.

6.2 Performance

Set pinning and adaptive set pinning significantly improve the per-
formance of the workloads where they significantly reduce misses.
Graph (c) of Figure 8 plots the speedups achieved by set pinning
relative to traditional shared caches. Set pinning alone improves the
performance by an average of 7.24%. The benchmarks influenced
by dominated ownership of sets, like 318.galgel m and 330.art m,
face a small hit on the performance (5.93% and 0.90% respec-
tively) in case of the baseline set pinning approach. Adaptive set
pinning significantly improves performance of all the benchmarks
with speedups ranging from 12.17% to 25.31%, with an average
speedup of 17.88% across all evaluated benchmarks.

6.3 Sensitivity Analysis

Number of processors. Graph (a) of Figure 9 plots the speedups
obtained by set pinning and adaptive set pinning schemes relative to
the traditional shared cache scheme with 4, 8 and 12 processors for
a representative set of programs. The adaptive set pinning scheme
clearly performs better with increasing number of processors. The

adaptive scheme achieves an average of 3.3% and 6.7% additional
speedups across benchmarks with 12 processors, as compared to 4
processors and 8 processors, respectively.

POP cache capacity. The sensitivity of performance in various
schemes to the aggregate capacity of POP caches (and accompany-
ing reduction in capacity of set pinned L2) is captured in Graph (b)
of Figure 9. The values plotted represent the performance speedups
of programs with set pinning and adaptive set pinning relative to
the performance of the programs with traditional shared cache with
baseline configuration (2 MB shared cache). Both 8KB and 32KB
POP cache (per processor) result in smaller speedups compared to
using the 16 KB per POP cache. POP cache miss rates increase
with reduced POP cache capacity, leading to reduced speedups. An
increase in POP cache size is also detrimental to the performance
speedups. The 32KB POP cache per processor achieves speedups
close to the 16KB configurations (smaller by 2%). The major factor
for the reduction in performance with increased POP cache capac-
ity is the reduction in the available set pinned L2 capacity.

6.4 Comparison with Victim Cache

In this section, we briefly compare the performance of our set pin-
ning schemes with POP caches to using a victim cache. Many pro-



posed cache partitioning schemes are not as dynamic as adaptive
set pinning and hence not directly comparable. A Victim cache
(13) is an approach used to reduce capacity and conflict misses
by storing the victims of the replacement policy in a small buffer.
The subtle, but important difference between our approach and
the victim cache is that the victim cache caches the victims after
they are evicted by the replacement policy, while we modify the
replacement policy such that the cache blocks that would victim-
ize other processor’s elements (causing inter-processor misses) are
themselves cached in the POP caches. In order to create as real-
istic a match as possible and to have a fair comparison in terms
of the total cache capacity as well as the parameters involved like
set associativity, we compare with identical aggregate POP cache
capacity and victim cache capacity of 128 KB. We also have 64
way associativity for the victim cache. This is to match the effec-
tive associativity of the 8 POP caches for the 8 different processors.
Graph (c) of Figure 9 plots the speedups obtained by our set pinning
schemes and victim cache scheme relative to the performance of
traditional shared cache scheme. The set pinning scheme performs
marginally better than the victim cache scheme (better by 1.07%
on average), while the adaptive set pinning scheme achieves sig-
nificant speedups over the victim cache scheme (14.19% on aver-
age). This significant improvement in the speedup can be explained
based on the following intuitive reasoning. The victim cache is
responsible for caching both inter-processor and intra-processor
misses, while the POP caches handle only those references which
would cause inter-processor misses. As seen earlier, from graph
(a) of Figure 5, the number of distinct memory elements that face
an intra-processor miss is far higher than those facing an inter-
processor miss. Consequently, the victim cache is responsible for
caching many more entries than a corresponding POP cache config-
uration. This results in an average victim cache miss rate of 19.1%
across the benchmarks, which is 1.6% and 13.3% more than in case
of set pinning and adaptive set pinning, respectively. Comprehen-
sive comparisons with other cache miss reduction schemes are not
presented here due to space constraints.

7. Related Work

In this section, we briefly review the most directly related studies
and describe how our contributions differ from them or supplement
them.

Shared Cache Management in CMPs. Recently, many researchers
have explored hybrid CMP cache designs that attempt to achieve
the low access latency advantages of private L2 caches and the low
off-chip miss rates of shared L2 caches (3; 5; 6; 36). Static and
dynamic shared cache partitioning schemes have been explored
in order to provide for isolation (4; 14; 21; 22; 30). Researchers
have also explored in depth similar problems in distributed VOD
systems (26).

Zhang and Asanovic (36) present victim replication which is a
variant of the shared scheme that attempts to keep copies of local
primary cache victims within the local L2 cache slice but allows
multiple copies of a cache block to co-exist in different L2 slices of
the shared L2 cache.

Chang and Sohi (5) propose cooperative caching which uses co-
operation mechanisms between private L2 caches to reduce costly
off–chip accesses. One of the mechanisms used by cooperative
caching is to put a locally evicted block in another on-chip L2 cache
that may have spare capacity, rather than evict it from the on-chip
hierarchy entirely. In set–pinning and adaptive set–pinning, we in-
stead put the blocks which would cause an existing block to be
evicted in the POP cache to reduce off–chip accesses thereby elim-
inating inter-processor misses and reducing intra-processor misses
in CMPs.

Beckmann and Wood (2) have proposed Adaptive Selective
Replication (ASR), a mechanism that dynamically monitors work-
load behavior to control replication. ASR replicates cache blocks
when it estimates that the benefit of replication in terms of lower
L2 hit latency exceeds the cost due to increased L2 misses. Adap-
tive Selective Replication can be used along with our schemes to
improve the L2 hit latency.

Petoumenos (14) has studied modeling of cache sharing or
partitioning similar to the cache decay model. Their model known
as StatShare directly describes capacity misses and can estimate
cold misses but fails to take into account conflict misses. Our
model is complementary to this and most importantly, set pinning
and adaptive set pinning help in reducing conflicts among multiple
processors in the cache.

CMP shared cache management schemes at the software level
have also been researched in the recent past. Rafique (23) proposes
an OS scheme that consists of a hardware cache quota management
mechanism, an OS interface and a set of OS level quota orchestra-
tion policies for greater flexibility in policies. Tam (31) proposes
a software mechanism in the OS that allows for partitioning of the
shared L2 cache by guiding the allocation of physical pages. Any
such software scheme provides higher flexibility at the cost of re-
stricted applicability as compared to a hardware scheme.

Cache Miss Classifications. A detailed description of related work
in classifying cache misses was presented in Section 1. To the best
of our knowledge, ours is the first work which systematically clas-
sifies the cache misses in CMPs with shared cache based on the
interaction between memory transactions from different proces-
sors.

Conflict Miss Reduction. Reduction of cache conflict misses in
private caches of uniprocessors has been a hot topic of research for
more than two decades now and there have been several important
works that address this problem for uniprocessors in both hardware
and software (7; 13; 20; 32; 33; 35). Collins and Tullsen (7) sug-
gested the use of a hardware miss classification table that enables
the processor or memory controller to identify each cache miss as
either a conflict miss or a capacity (non-conflict) miss. The miss
classification table works by storing part of the tag of the most re-
cently evicted block of a cache set. If the next miss to that cache
set has a matching tag, it is identified as a conflict miss. Their work
also highlights the significance of classification of misses to op-
timizations specifically targeting them. Our work does not directly
address conflict misses (or capacity misses), but it is the first to view
these misses from a different perspective in order to understand the
inherent reason behind such misses in a CMP with a shared cache.

8. Conclusions and Future Work

The proposed CII scheme of classification of shared L2 cache
misses helps us to better understand the interactions between cache
transactions of multiple processors in a CMP. Architectural tech-
niques exploiting this understanding to improve the performance
of the system are also proposed. The set pinning and adaptive set
pinning schemes are proposed with improvement of performance
as the primary objective. As a result, a few components like the
parallel tag comparators in POP caches and the confidence coun-
ters in adaptive set pinning scheme have not been optimized for
power consumption. Work in this direction is underway. Evaluation
of performance benefits obtained for multiprogrammed workloads
with our schemes is also being conducted. Exploring the possibility
of a collection of processors owning a set (instead of just one) is an-
other interesting problem being explored. The adaptive set pinning
scheme is shown to be effective in improving the performance by
reducing costly off–chip accesses. The set pinning scheme achieves



an average improvement of 22.18% in the miss rate while the adap-
tive set pinning scheme reduces the miss rates by an average of
47.94% as compared to the traditional shared cache scheme lead-
ing to a performance improvement of 17.88% on an average.
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