Is there a positive integer n ≥ 2 and words u<sub>1</sub>, u<sub>2</sub>, ..., u<sub>n</sub> such that both equalities (u<sub>1</sub>u<sub>2</sub> ⋅⋅⋅ u<sub>n</sub>)<sup>2</sup> = u<sub>1</sub><sup>2</sup>u<sub>2</sub><sup>2</sup> ⋅⋅⋅ u<sub>n</sub><sup>2</sup>, (u<sub>1</sub>u<sub>2</sub> ⋅⋅⋅ u<sub>n</sub>)<sup>3</sup> = u<sub>1</sub><sup>3</sup>u<sub>2</sub><sup>3</sup>⋅⋅⋅ u<sub>n</sub><sup>3</sup> hold simultaneously and the words u<sub>i</sub>, i = 1, ..., n, do not pairwise commute (that is, u<sub>i</sub>u<sub>j</sub> ≠ u<sub>j</sub>u<sub>i</sub> for at least one pair of indices i,j∈{1,2,...,n })? For the solution an award of 100 € is promised. [[http://www.karlin.mff.cuni.cz/~holub/soubory/prizeproblem.pdf][Details here.]] -- Main.StepanHolub - 01 Aug 2011
This topic: CoWiki
>
WebHome
>
AdditionalOpenProblems
>
LocalGlobal
Topic revision: r2 - 2011-08-05 - JeffreyShallit
Copyright © 2008-2025 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki?
Send feedback