
Safety Features in the Move Language

Meng Xu (University of Waterloo)1

January 23, 2023

1
All views personal and do not reflect the stance of my affliations.

Introduction Typing Verification

Outline

1 Introduction

2 Move type system

3 Move formal verification system

2 / 32

Introduction Typing Verification

Basics

Move is a programming language designed for safe and correct
modeling of state-transition systems.

- Its primary goal is to support smart contracts but the language has
more potential than that.

- The Move language is competing with mainly Ethereum Virtual
Machine based languages, including Solidity, Vyper, Yul, WASM, etc.

Move is live and evolving in real world.

- Aptos: Layer-1 blockchain, in mainnet
- Sui, Layer-1 blockchain, in devnet
- Starcoin, Layer-1 blockchain, in mainnet
- 0L, Layer-1 blockchain, in mainnet
- Pontem, DApp parachain, in testnet
- Celo, Layer-1 blockchain, not launched
- Diem, Layer-1 blockchain, sold to Silvergate
- ChainX, Layer-2 blockchain, in mainnet

3 / 32

Introduction Typing Verification

Basics

Move is a programming language designed for safe and correct
modeling of state-transition systems.

- Its primary goal is to support smart contracts but the language has
more potential than that.

- The Move language is competing with mainly Ethereum Virtual
Machine based languages, including Solidity, Vyper, Yul, WASM, etc.

Move is live and evolving in real world.

- Aptos: Layer-1 blockchain, in mainnet
- Sui, Layer-1 blockchain, in devnet
- Starcoin, Layer-1 blockchain, in mainnet
- 0L, Layer-1 blockchain, in mainnet
- Pontem, DApp parachain, in testnet
- Celo, Layer-1 blockchain, not launched
- Diem, Layer-1 blockchain, sold to Silvergate
- ChainX, Layer-2 blockchain, in mainnet

3 / 32

Introduction Typing Verification

Some fun facts

Move is developed and maintained by a small team: 18 in total

- Language design: 3
- Bytecode verifier: 2
- Virtual machine: 2
- Compiler: 2
- Formal verification: 5
- Tools and ecosystem: 4

Out of which 15 are from the Diem project. After Meta
discontinued Diem,

Aptos (valued at $4 billion): 6
Sui (valued at $2 billion): 6
Academia and research labs: 3

4 / 32

Introduction Typing Verification

Some fun facts

Move is developed and maintained by a small team: 18 in total

- Language design: 3
- Bytecode verifier: 2
- Virtual machine: 2
- Compiler: 2
- Formal verification: 5
- Tools and ecosystem: 4

Out of which 15 are from the Diem project. After Meta
discontinued Diem,

Aptos (valued at $4 billion): 6
Sui (valued at $2 billion): 6
Academia and research labs: 3

4 / 32

Introduction Typing Verification

Motivation

The goal of this talk is to advertise the language to other areas of
research in security and privacy field to see if the language has
anything to offer in other problem settings, such as:

Design and reason about correctness of security policies

Implement / prototype privacy-preserving protocols

Prevent certain type of programming bugs / vulnerabilities

......

5 / 32

Introduction Typing Verification

A tour about safety features in Move

Move type system

- Type safety
- Resource safety
- Reference safety

Move verification system

- Struct invariants
- Unit specification (per single function)

* Pre-conditoin
* Abort conditions
* Post-conditions

- State-machine specification

* Global invariants (single-state invariant)
* Global update invariants (two-state invariant)

6 / 32

Introduction Typing Verification

A tour about safety features in Move

Move type system

- Type safety
- Resource safety
- Reference safety

Move verification system

- Struct invariants
- Unit specification (per single function)

* Pre-conditoin
* Abort conditions
* Post-conditions

- State-machine specification

* Global invariants (single-state invariant)
* Global update invariants (two-state invariant)

6 / 32

Introduction Typing Verification

A tour about safety features in Move

Move type system

- Type safety
- Resource safety
- Reference safety

Move verification system

- Struct invariants
- Unit specification (per single function)

* Pre-conditoin
* Abort conditions
* Post-conditions

- State-machine specification

* Global invariants (single-state invariant)
* Global update invariants (two-state invariant)

6 / 32

Introduction Typing Verification

A tour about safety features in Move

Move type system

- Type safety
- Resource safety
- Reference safety

Move verification system

- Struct invariants
- Unit specification (per single function)

* Pre-conditoin
* Abort conditions
* Post-conditions

- State-machine specification

* Global invariants (single-state invariant)
* Global update invariants (two-state invariant)

6 / 32

Introduction Typing Verification

The Move programming language

Move is based on the concepts of

- borrow semantics (like Rust) and
- linear types (like the unique_ptr in C++)

Move supports high-order functions (in progress).

- a.k.a., dynamic dispatching
- Not all callsites have to be determined statically

A Move program interacts with external states through a small
and fixed set of APIs

Comes with a fully integrated specification language supporting
pre/post conditions and global state invariants

- Uses full first-order predicate calculus
- including universal and existential quantification

7 / 32

Introduction Typing Verification

Outline

1 Introduction

2 Move type system

3 Move formal verification system

8 / 32

Introduction Typing Verification

It’s all about capturing intention

At a philosophical level, both the Move type system and the formal
verification system (i.e., the Move Prover) aim to solicite and
formalize intentions from Move developers.

Tip of advice: Do not fight against the type system nor the Prover.

9 / 32

Introduction Typing Verification

It’s all about capturing intention

At a philosophical level, both the Move type system and the formal
verification system (i.e., the Move Prover) aim to solicite and
formalize intentions from Move developers.

Tip of advice: Do not fight against the type system nor the Prover.

9 / 32

Introduction Typing Verification

It’s all about capturing intention

At a philosophical level, both the Move type system and the formal
verification system (i.e., the Move Prover) aim to solicite and
formalize intentions from Move developers.

Tip of advice: Do not fight against the type system nor the Prover.

9 / 32

Introduction Typing Verification

Core components of the Move type system

Type safety

Resource safety

Reference safety

10 / 32

Introduction Typing Verification

Type safety

Summary: Move is a strongly/statically typed language with
strictly no type conversions.

In more details:

Every variable and expression in Move has one and only one type.

The type is known at compile time.

The type can never be changed whatsoever.

11 / 32

Introduction Typing Verification

Type safety

Summary: Move is a strongly/statically typed language with
strictly no type conversions.

In more details:

Every variable and expression in Move has one and only one type.

The type is known at compile time.

The type can never be changed whatsoever.

11 / 32

Introduction Typing Verification

Type safety

Summary: Move is a strongly/statically typed language with
strictly no type conversions.

In more details:

Every variable and expression in Move has one and only one type.

The type is known at compile time.

The type can never be changed whatsoever.

11 / 32

Introduction Typing Verification

Violations of type safety: an example

1 module 0x1::Account {

2 struct Coin has key {
3 balance: u64
4 }

5

6 public fun wrong1(acc: signer) {
7 let val = 1000;
8 move_to<Coin>(&acc, val);

9 }

10

11 public fun wrong2(acc: signer) {
12 let val = 1000;
13 let coin: Coin = val;
14 move_to<Coin>(&acc, coin);

15 }

16 }

12 / 32

Introduction Typing Verification

Resource safety

Summary: Move enforces fine-grained control on permissible
“behaviors” of all objects belong to a specific type.

In more details:

Scarcity of a resource via linear typing

- copy and drop ability

Longevity of a resource via interaction with the global storage

- key and store ability

Encapsulation of a resource via module-based access control

- Logic about a resource is encapsulated within a module

13 / 32

Introduction Typing Verification

Resource safety

Summary: Move enforces fine-grained control on permissible
“behaviors” of all objects belong to a specific type.

In more details:

Scarcity of a resource via linear typing

- copy and drop ability

Longevity of a resource via interaction with the global storage

- key and store ability

Encapsulation of a resource via module-based access control

- Logic about a resource is encapsulated within a module

13 / 32

Introduction Typing Verification

Resource safety

Summary: Move enforces fine-grained control on permissible
“behaviors” of all objects belong to a specific type.

In more details:

Scarcity of a resource via linear typing

- copy and drop ability

Longevity of a resource via interaction with the global storage

- key and store ability

Encapsulation of a resource via module-based access control

- Logic about a resource is encapsulated within a module

13 / 32

Introduction Typing Verification

Violations of resource scarcity: an example

1 module 0x1::Account {

2 // coin does not have `copy` nor `drop`
3 struct Coin has key { balance: u64 }
4

5 fun spend_coin(coin: Coin) {
6 let Coin { balance: _ } = coin;
7 }

8

9 fun dup_coin(coin: Coin) {
10 let new_coin = copy coin;
11 spend_coin(coin);

12 spend_coin(new_coin);

13 }

14

15 fun dup_coin_via_ref(coin: &Coin) {
16 let new_coin = *coin;
17 spend_coin(new_coin);

18 }

19

20 fun silent_drop_coin(_coin: Coin) {}
21 }

14 / 32

Introduction Typing Verification

Resource-safe pattern example: hot potatoes

1 module 0x1::Capability { struct HotPotato { value: u64 } }
2

3 module 0x1::Account {

4 use 0x1::Capability::HotPotato;
5 struct Wrap has key { potato: HotPotato }
6

7 fun cannot_drop(_potato: HotPotato) {}
8 fun cannot_copy(potato: HotPotato): (HotPotato, HotPotato) {
9 let new_potato = copy potato;

10 (potato, new_potato)

11 }

12 fun cannot_store(potato: HotPotato, account: signer) {
13 let wrap = Wrap { potato };
14 move_to(&account, wrap);

15 }

16 fun cannot_access(potato: HotPotato): HotPotato {
17 let _ = potato.value;
18 potato

19 }

20 fun cannot_destroy(potato: HotPotato) {
21 let HotPotato { value: _ } = potato;
22 }

23 fun must_return(potato: HotPotato): HotPotato { potato }
24 } 15 / 32

Introduction Typing Verification

Reference safety

Summary: Move ensures that there are no dangling references to
both function locals and global storage — via ownership rules.

In more details:

Any function local variable is uniquely owned at any time.

Any Global<T> is uniquely owned at any time.

By uniquely owned, it means that a slot has:

at most one writer and no readers, OR

N (≥ 0) readers and no writers.

16 / 32

Introduction Typing Verification

Reference safety

Summary: Move ensures that there are no dangling references to
both function locals and global storage — via ownership rules.

In more details:

Any function local variable is uniquely owned at any time.

Any Global<T> is uniquely owned at any time.

By uniquely owned, it means that a slot has:

at most one writer and no readers, OR

N (≥ 0) readers and no writers.

16 / 32

Introduction Typing Verification

Reference safety

Summary: Move ensures that there are no dangling references to
both function locals and global storage — via ownership rules.

In more details:

Any function local variable is uniquely owned at any time.

Any Global<T> is uniquely owned at any time.

By uniquely owned, it means that a slot has:

at most one writer and no readers, OR

N (≥ 0) readers and no writers.

16 / 32

Introduction Typing Verification

Outline

1 Introduction

2 Move type system

3 Move formal verification system

17 / 32

Introduction Typing Verification

Why do we need Move Prover given these typing rules?

There will be more complicated semantic / intention that cannot be
captured by the typing system.

18 / 32

Introduction Typing Verification

Why do we need Move Prover given these typing rules?

There will be more complicated semantic / intention that cannot be
captured by the typing system.

18 / 32

Introduction Typing Verification

Examples of such advanced semantics

Struct invariant

Unit specification (per single function)

- Pre-conditoin
- Abort conditions
- Post-conditions

State-machine specification

- Global invariants (single-state invariant)
- Global update invariants (two-state invariant)

19 / 32

Introduction Typing Verification

Struct invariant

Struct invariants allows you to specify complicated relations among
the fields of a struct type which have to hold at runtime.

20 / 32

Introduction Typing Verification

Struct invariant: example

1 module 0x1::Account {

2 struct NonZeroU64 {
3 value: u64
4 }

5 spec NonZeroU64 {

6 invariant value > 0;

7 }

8 }

1 module 0x1::Account {

2 ...

3

4 fun create_zero(): NonZeroU64 {
5 NonZeroU64 { value: 0 }

6 }

7

8 fun create_x_checked(x: u64): NonZeroU64 {
9 assert!(x != 0, 1);

10 NonZeroU64 { value: x }
11 }

12 }

21 / 32

Introduction Typing Verification

Struct invariant: example

1 module 0x1::Account {

2 struct NonZeroU64 {
3 value: u64
4 }

5 spec NonZeroU64 {

6 invariant value > 0;

7 }

8 }

1 module 0x1::Account {

2 ...

3

4 fun create_zero(): NonZeroU64 {
5 NonZeroU64 { value: 0 }

6 }

7

8 fun create_x_checked(x: u64): NonZeroU64 {
9 assert!(x != 0, 1);

10 NonZeroU64 { value: x }
11 }

12 }

21 / 32

Introduction Typing Verification

Struct invariant: example

1 module 0x1::Account {

2 struct SumIsConst {
3 a: u64,
4 b: u64,
5 }

6 spec SumIsConst {

7 invariant a >= b;

8 invariant a + b == 100;

9 }

10

11 fun create_valid(x: u64): SumIsConst {
12 assert!(x >= 50, 1);

13 SumIsConst { a: x, b: 100 - x }
14 }

15 }

22 / 32

Introduction Typing Verification

Function specification

For people not familiar with formal verification, function
specification can be loosely considered as exhaustive unit testing.

23 / 32

Introduction Typing Verification

Function specification: running example

1 module 0x1::Account {

2 struct Account has key { balance: u64 }
3

4 fun withdraw(account: address, amount: u64) acquires Account {
5 let ptr: &mut Account = borrow_global_mut<Account>(account);
6 ptr.balance = ptr.balance - amount;

7 }

8 }

24 / 32

Introduction Typing Verification

The unit testing joke

A software engineer walks up to an ATM and ...

- withdraw(@0x1, 10);

- withdraw(@0x1, 1000);

- withdraw(@0x1, 999999999999999999999999999);

- withdraw(@0x0, 0);

- withdraw(@0x0, 20);

- withdraw(@0xdeadbeef, -123);

- withdraw(@0xbaadf00d, 666 * 2);

Q: what is the engineering testing?

- On correct inputs, the system should finish with desired balance.

- On erroneous inputs, the system should abort the transaction.

25 / 32

Introduction Typing Verification

The unit testing joke

A software engineer walks up to an ATM and ...

- withdraw(@0x1, 10);

- withdraw(@0x1, 1000);

- withdraw(@0x1, 999999999999999999999999999);

- withdraw(@0x0, 0);

- withdraw(@0x0, 20);

- withdraw(@0xdeadbeef, -123);

- withdraw(@0xbaadf00d, 666 * 2);

Q: what is the engineering testing?

- On correct inputs, the system should finish with desired balance.

- On erroneous inputs, the system should abort the transaction.

25 / 32

Introduction Typing Verification

The unit testing joke

A software engineer walks up to an ATM and ...

- withdraw(@0x1, 10);

- withdraw(@0x1, 1000);

- withdraw(@0x1, 999999999999999999999999999);

- withdraw(@0x0, 0);

- withdraw(@0x0, 20);

- withdraw(@0xdeadbeef, -123);

- withdraw(@0xbaadf00d, 666 * 2);

Q: what is the engineering testing?

- On correct inputs, the system should finish with desired balance.

- On erroneous inputs, the system should abort the transaction.

25 / 32

Introduction Typing Verification

The unit testing joke

A software engineer walks up to an ATM and ...

- withdraw(@0x1, 10);

- withdraw(@0x1, 1000);

- withdraw(@0x1, 999999999999999999999999999);

- withdraw(@0x0, 0);

- withdraw(@0x0, 20);

- withdraw(@0xdeadbeef, -123);

- withdraw(@0xbaadf00d, 666 * 2);

Q: what is the engineering testing?

- On correct inputs, the system should finish with desired balance.

- On erroneous inputs, the system should abort the transaction.

25 / 32

Introduction Typing Verification

Abort conditions in the function specification

1 module 0x1::Account {

2 struct Account has key { balance: u64 }
3

4 fun withdraw(account: address, amount: u64) acquires Account {
5 let ptr: &mut Account = borrow_global_mut<Account>(account);
6 ptr.balance = ptr.balance - amount;

7 }

8 spec withdraw {

9 aborts_if !exists<Account>(account);

10 aborts_if global<Account>(account).balance < amount;

11 }

12 }

26 / 32

Introduction Typing Verification

Trick: abort condition discovery

1 module 0x1::Account {

2 struct Account has key { balance: u64 }
3

4 fun withdraw(account: address, amount: u64) acquires Account {
5 let ptr: &mut Account = borrow_global_mut<Account>(account);
6 ptr.balance = ptr.balance - amount;

7 }

8 spec withdraw {

9 // let the prover discover the abort conditions for you

10 aborts_if false;
11 }

12 }

27 / 32

Introduction Typing Verification

Trick: abort condition discovery

1 module 0x1::Account {

2 struct Account has key { balance: u64 }
3

4 fun withdraw(account: address, amount: u64) acquires Account {
5 let ptr: &mut Account = borrow_global_mut<Account>(account);
6 ptr.balance = ptr.balance - amount;

7 }

8 spec withdraw {

9 // let the prover discover the abort conditions for you

10 aborts_if false;
11 }

12 }

27 / 32

Introduction Typing Verification

Post conditions in the function specification

1 module 0x1::Account {

2 struct Account has key { balance: u64 }
3

4 fun withdraw(account: address, amount: u64) acquires Account {
5 let ptr: &mut Account = borrow_global_mut<Account>(account);
6 ptr.balance = ptr.balance - amount;

7 }

8 spec withdraw {

9 aborts_if !exists<Account>(account);

10 aborts_if global<Account>(account).balance < amount;

11

12 // on successful function return

13 ensures global<Account>(account).balance ==

14 old(global<Account>(account).balance) - amount;

15 }

16 }

28 / 32

Introduction Typing Verification

Post conditions in the function specification

1 module 0x1::Account {

2 struct Account has key { balance: u64 }
3

4 fun withdraw(account: address, amount: u64) acquires Account {
5 let ptr: &mut Account = borrow_global_mut<Account>(account);
6 ptr.balance = ptr.balance - amount;

7 }

8 spec withdraw {

9 aborts_if !exists<Account>(account);

10 aborts_if global<Account>(account).balance < amount;

11

12 // on successful function return

13 ensures global<Account>(account).balance ==

14 old(global<Account>(account).balance) - amount;

15 }

16 }

28 / 32

Introduction Typing Verification

Global invariant

Global invariants allow you to treat the entire global storage as a
state machine and express both:

Legal (and illegal) states AND

Legal (and illegal) state transitions.

NOTE: global invariants are higher-level constructs that allow you
directly specify the state machine you have in mind without knowing
the implementation details (i.e., functions).

29 / 32

Introduction Typing Verification

Global invariant

Global invariants allow you to treat the entire global storage as a
state machine and express both:

Legal (and illegal) states AND

Legal (and illegal) state transitions.

NOTE: global invariants are higher-level constructs that allow you
directly specify the state machine you have in mind without knowing
the implementation details (i.e., functions).

29 / 32

Introduction Typing Verification

Global invariant

Global invariants allow you to treat the entire global storage as a
state machine and express both:

Legal (and illegal) states AND

Legal (and illegal) state transitions.

NOTE: global invariants are higher-level constructs that allow you
directly specify the state machine you have in mind without knowing
the implementation details (i.e., functions).

29 / 32

Introduction Typing Verification

Global invariant: example

1 module 0x1::Account {

2 struct Account has key { balance: u64 }
3

4 spec module {

5 fun bal(a: address): u64 { global<Account>(a).balance }
6

7 // All accounts must have a minimal balance of 100

8 invariant forall a: address where exists<Account>(a):
9 bal(a) >= 100;

10

11 // Any withdraw cannot exceed the 10% value limit

12 invariant update forall a: address where exists<Account>(a):
13 old(bal(a)) - bal(a) <= old(bal(a)) / 10;
14 }

15 }

30 / 32

Introduction Typing Verification

Global invariant: example

1 module 0x1::Account {

2 struct Account has key { balance: u64 }
3 struct Cheque { value: u64 }
4

5 fun withdraw(account: address, amount: u64) acquires Account {
6 let ptr: &mut Account = borrow_global_mut<Account>(account);
7 ptr.balance = ptr.balance - amount;

8 }

9 fun make_cheque(account: address, amount: u64): Cheque acquires Account {
10 let ptr = borrow_global_mut<Account>(account);
11 ptr.balance = ptr.balance - amount;

12 Cheque { value: amount }
13 }

14

15 spec module {

16 fun bal(a: address): u64 { global<Account>(a).balance }
17

18 invariant forall a: address where exists<Account>(a):
19 bal(a) >= 100;
20

21 invariant update forall a: address where exists<Account>(a):
22 old(bal(a)) - bal(a) <= old(bal(a)) / 10;
23 }

24 } 31 / 32

Introduction Typing Verification

⟨ End ⟩

32 / 32

	Safety Features in the Move Language
	Introduction
	Move type system
	Move formal verification system

