Communication-Efficient MPC for Branching Programs and Applications to PSI/PIR

Mohammad Hajiabadi

Based on work (past and ongoing) with Melissa Chase (MSR), Sanjam Garg (Berkeley) and Peihan Miao (Brown)

Secure Multi-Party Computation (MPC)

- Two-party computation for a function $f(X, Y)$

Focus:

- Two rounds
- Efficient communication: matching that of best insecure protocol $O(\operatorname{Min}(X, Y),|f(X, Y)|)+\lambda$, where λ is the security parameter.

Truly Laconic MPC implies FHE

- Super communication efficient MPC for all functions implies FHE.

- If $\int(X, Y)$ is small and we can support all functions f, this implies FHE.
- Goal: having communication-efficient MPC for special functions f and without using FHE.

Example 1: Private Information Retrieval (PIR)

- Requirement: |. $\quad|+|\quad| \ll$ database-size Alice doesn't learn anything about index i, and Bob doesn't learn anything beyond m_{i}.

Example 2: Unbalanced PSI

- Requirement: communication complexity $O(|m|, \lambda)$, and intendent of n
- General MPC techniques (and even most specific PSI techniques) result in communication that grows with n.
- General Theme: MPC for Branching Programs

Branching Programs

Branching Programs

MPC for Branching Programs

BP

- Requirement: communication complexity shouldn't grow with $|B P|$.

PIR as BP-MPC

- PIR database: $S=\{001,010,011,110,111\}$

Let ℓ length of each keyword
Size of $\mathrm{BP}=\Theta(\ell|S|)$
Depth of $\mathrm{BP}=\ell$

In general, $\ell \ll|S|$

Unbalanced PSI as BP-MPC

- Sender's set $S=\{001,010,011,110,111\}$

The senders holds $B P$, and the receiver wants to learn $B P(m)==1$?

BP-MPC Realizations

- Using generic MPC techniques (e.g., garbled circuits and OT) one can realize BP-MPC with communication that grows with the BP size.
- Insight: Using rate-1 OT, one can do BP-MPC with communication that grows only with depth of BP , and not its size.

Oblivious Transfer (OT) [Rabin81, EGL82, BCR86, Kilian88]

Two-Message OT [AIR01, NP01, PVw08, HK12, DGHMw20]

$$
b \in\{0,1\}
$$

Rate-1 OT [IP07, DGIMMO19, GHO20]

Why two-message? Why rate-1?
Reason: $2 \times 2=4$

Example: 1-out-of-4 OT

Why two-message? Why rate-1?
Nested OT with low communication

Applications of Rate-1 OT

$\operatorname{poly}(\log |D|, \lambda)$

Applications of Rate-1 OT

- Semi-compact homomorphic encryption for branching programs [IP07]
- Single-server private information retrieval (PIR) [KO97] with poly-logarithmic communication
- Unbalanced private set intersection (PSI) with poly-logarithmic communication in the size of the larger set
- Secure inference on decision trees with communication linear in the tree depth
- Lossy trapdoor functions [PW08, HO12] with optimal rate [DGIMMO19]

Can we achieve Rate-1 OT?

- Damgård-Jurik Cryptosystem [DJ01] from DCR
- Trapdoor Hash Functions [DGIMMO19] from DDH/QR/LWE/DCR
- Our results: rate-1 OT with better communication complexity for receivers.

Rate-1 OT [DJ01, DGIMMO19, GHO20]

$$
b \in\{0,1\}
$$

$$
\frac{\left|m_{0}\right|}{\mid \text { ots } \mid} \rightarrow 1 \quad(\text { as } n \rightarrow \infty)
$$

Receiver Communication?

Rate-1 OT from DDH [Dgimmo19]

Rate-1 OT from Power DDH [GHO20]

Power DDH: $\left(g, g^{t}, g^{t^{2}}, \ldots, g^{t^{n}}\right)$ is pseudorandom

Rate-1 OT from Power DDH [GHO20]

Rate-1 OT from Power DDH [GHO20]

Rate-1 OT from Power DDH [GHO20]

Example: 1-out-of-4 OT

1-out-of-4 OT from DDH [DGIMMO19]

1-out-of-4 OT from Power DDH [DGIMMO19]

Applications from Power DDH [GHO20]

\qquad

Reduce receiver communication?

\qquad

Our Results: Amortized Rate-1 OT

Our Results: Applications from Bilinear Power DDH

Our Results: Applications from Bilinear Power DDH

Summary

Problem	Work	Receiver Offline	Receiver Online	Assumption
Rate-1 OT	$[$ DGIMMO19]	N/A	$O\left(n^{2}\right)$	DDH
Amortized Rate-1 OT	Ours	$O\left(n^{2}\right)$	$O(1)$	Bilinear SXDH
Rate-1 OT	$[$ GHO20 $]$	N/A	$O(n)$	Power DDH
Amortized Rate-1 OT	Ours	$O(n)$	$O(1)$	Bilinear Power DDH
Single-Server PIR	$[$ GHO20]	N/A	$O\left(\lambda \cdot \log ^{2} N\right)$	Power DDH
Single-Server PIR	Ours	$O(\lambda \cdot \log N)$	$O\left(\log ^{2} N\right)$	Bilinear Power DDH
Unbalanced PSI	$[$ GHO20]	N/A	$O\left(\lambda \cdot \log ^{2} N \cdot m\right)$	Power DDH
Unbalanced PSI	Ours	$O(\lambda \cdot \log N)$	$O(\log N \cdot m)$	Bilinear Power DDH

More optimizations in the paper!

Open Problems

- Amortized Rate-1 OT from other assumptions
- Amortized Rate-1 OT extension (ongoing work)
- Applications
- More applications of amortized Rate-1 OT
- Concretely efficient implementation of the applications

Thank you!

