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Abstract

This report develops constructions for cubic, quartic, and quintic Pythagorean
hodograph curves (PHC). The cubic construction is a rederivation of an earlier
cubic PHC construction, but in the real plane rather than the imaginary plane.
The quartic construction is also a rederivation of an earlier construction, again in
the real plane rather than the imaginary plane. In addition, the free parameter in
this quartic construction is used to interpolate curvature at one end of the curve.
The quintic construction builds a quintic PHC curve that interpolates the position,
tangent, and curvature at two points.

1 Introduction

Pythagorean-hodograph curves [ ] are a type of parametric, planar polynomial
curve whose “parametric speed” is a polynomial. Farouki [ ] notes that these
curves have several nice features:

For example, it is possible to compute their arc lengths, bending ener-
gies, and offset (parallel) curves in an essentially exact manner, without
recourse to approximations; and they are exceptionally well—suited to prob-
lems of real-time motion control and spatial path planning based on the
use of rotation—minimizing frames.
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Our interest here will be in testing if a cubic Bézier curve is a Pythagorean hodograph
curve; interactively constructing a parametric, C'!, piecewise polynomial curve, where
each piece is a cubic Pythagorean-hodograph curve; and constructing a piecewise,
cubic geometric Hermite Pythagorean-hodograph curve to interpolate a set of points
and directions. Additionally, we will do similar constructions for quartic Pythagorean
hodograph curves, where an extra degree of freedom in the construction is used to
interpolate curvature at one end of the curve. Finally, | will develop a quintic PHC that
interpolates the position, tangent and curvature at two points.

There is previous work on constructing cubic, quartic, and quintic PHCs. Meek and
Walton Meek and Walton [ ] showed how to construct a cubic geometric
Hermite Pythagorean hodograph curve. My construction (Section 2.2) differs from
theirs in that they were working in the imaginary plane while my construction is in the
real plane, although my result is essentially reproducing their work.

Similarly, Wang and Fang [ ] gave conditions on the control points of
a quartic Bézier curve to be a PH curve (see below). They also gave a construction
for a G' Hermite interpolant using quartic PH curves. Again, my work (Section 3.1)
is essentially reproducing their work. However, this quartic construction has a degree
of freedom in it, and | show how to use this degree of freedom to have the Hermite
interpolant interpolate curvature at one end of the curve.

My work on quintic PHC curves is based on the work of Hormann et al. | I
In their paper, they give several formulations of conditions on the control points of a
quintic Bézier curve for the curve to be a PHC. One set of these conditions uses similar
triangles; in Section 4, | use these conditions to find a set of equations that must hold
for a curve to interpolate the position, tangent, and curvature at two points and for the
curve to also be a PHC.

In this paper, | work in PGA (Point-Based Geometric Algebra) [ , ]
While this algebra is convenient for doing rotations, all the results hold in a standard
affine space. For more on PGA, see | , ]-
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1.1 Beézier curves

A degree n Bézier curve | ] is a parametric polynomial curve with control points
P; blended by the Bernstein polynomials By (t) = (7)(1 — t)"~'¢":

B =3 PBIL)

with a parameterization of [0, 1]. Note that 1 = ((1—¢)+6)" = >, (%) (1 —¢)™ 9t =

> oo B (t), so a Bézier curve is an affine combination of its control points. Further,

fort € [0, 1], B!(t) > 0, and the curve is a convex combination of its control points.
The derivative of a Bézier curve B(t) at its end points is computed as the scaled

difference of the first (last) control points:
B'(0)=n(P,— F), B(1)=n(P,— P,_1).
The second derivatives at the ends of the curve are
B"(0) = n(n—1)((Pa—P)—(Pi—Fy)), B"(1) =n(n—1)((Pa—Py-1)—(Paro1—Po2)).

For more details on Bézier curves, see, for example, Farin’s textbook [ ]

2 Cubic Pythagorean-Hodograph Curves

Mathematically, a curve B is a Pythagorean-hodograph (PH) curve if || B'(t)|| = o(t)
for some polynomial o (t). All linear curves are Pythagorean-hodograph curves, but no
quadratic curves are Pythagorean-hodograph curves (other than those with colinear
control points). Our interest is in cubic Pythagorean-hodograph curves in Bézier form,
an example of which is shown in Figure 1, and later in quartic and quintic PH curves.
For a cubic Bézier curve B(t) = > 7 , P,B}(t) to be a Pythagorean-hodograph curve,
the interior angles of the control polygon must be equal (the «’s in Figure 1) and the
edges lengths ¢; = || P,— P,_|| must be in a geometric progression; e.g., ¢y /{1 = {3/{3
in this figure. An equivalent condition to this second condition, that ¢,¢3 = ¢2, will be
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Figure 1: A cubic Pythagorean-hodograph curve. Edge lengths ¢4, {5, and /5 are in a
geometric progression.

used in Section 2.2.

2.1 Creating a Piecewise, C' Cubic Pythagorean Hodograph Curve

| first present an interactive construction to create a piecewise, C!, cubic PH curve.
The process is illustrated in Figure 2. As a first step, the user selects three points
on the screen (Figure 2(a)). From these points, we construct two lines, one through
Py, P, and one through Py, P, using join (Figure 2(b)), and compute the magnitudes
of these lines (the magnitude of the join of two points is the distance between the two

points):
>> 1nl = join(PO,P1); 11 = norm(lnl);
>> 1n2 = join(P1,P2); 12 = norm(1ln2);

We then compute the rotor that rotates line 1n1 around the intersection of 1n1 and 1n2
by twice the angle between the two lines:

>> R = 1n2/1n1/11/12;

Note that we needed to normalize the lines to get the rotation we want. We then apply
this rotor to 11:

>> 1n3 = 1n3 = Rxlnl*inverse(R);

This gives us the green line in Figure 2(c).
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Figure 2: Creating a cubic Pythagorean-hodograph curve. (a) Three control points
selected by the user. (b) Lines 1n1=join(P0,P1) and 1n2=join(P1,P2). (c) Line 1n3
created as the rotation of line 1n1. (d) Line 1n4 created as the translation of line 1n3.
(e) Placement of control point P4 to create a Pythagorean-hodograph curve.
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By chance, for this problem, the rotor rotating by twice the angle between the two
lines was almost exactly what we wanted to construct the third leg of the Bézier control
polygon. However, we want the line parallel to 1n3 that passes through P2. Thus,
we construct the translation from P1 to P2, and apply it to 1n3 to get 1n4, which we
normalize (Figure 2(d)):

>> T = gexp(-e0*hdual (P1-P2)/2);
>> 1n4 = T*1n3*inverse(T); 1n4 = 1ln4/norm(1ln4);

By construction, the angle between 1n1 and 1n2 is equal to the angle between 1n2
and 1n4. Thus, our fourth Bézier control point needs to lie on 1n4. Since we want the
distances between the control points to be in geometric progression, we set P3 to

>> P3=P2-(1272/11)*(e0*1n4) ;

(see equation (19) of PGA4CS | ] for details on this equation). The final curve
appears in Figure 2(e).

The user can add additional PH segments, with each new segment meeting the
previous segment with C* continuity. Requiring each segment to meet the previous
segment with C'* continuity sets the first two control points of the next segment. The
user then interactively sets the third control point, and the program computes the fourth
control point of the new segment to ensure that the segment is a PH curve in the same
manner as above. One caution: the geometric progression requirement essentially
gives exponential growth (up or down); placing additional points too close or too far
from existing points will likely give unwanted results.

2.2 (' Piecewise Cubic Pythagorean Hodograph Curves

Meek and Walton | ] showed how to construct a cubic geometric Hermite
Pythagorean hodograph curve segment, that is, given two points P; and P, and two
vector vy and v, they show how to construct a cubic Pythagorean hodgraph curve
C such that C'(0) = P, C(1) = P, and C'(0) = ;07 and C'(1) = ayv, for some
scalars ay, ay > 0, where we can assume |v;| = |U,| = 1. Their approach expresses
the Pythagorean hodograph curve as a Bézier curve in complex number notation, and
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constructs the interior control points by rotating two vectors around the end control
points and solving a quadratic system to find the solution.

The approach taken here is somewhat different. Since we know that the two interior
angles of the Bézier control polygon must be equal, we construct the two lines, 1n1 and
1n2, from the given positions and directions, and we construct the rotor that rotates
from 1n1 to 1n2 (around the intersection point ip of the two lines) but by half the angle
between the two lines. We apply this rotor to 1n1 to get a line 1n3 that is the “halfway”
line between 1n1 and 1n2. By constructing the interior edge of the Bézier control
polygon to be parallel to 1n3, the Bézier curve will meet the equal angle constraint.
We then derive a quadratic equation to translate the interior edge of the Bézier control
polygon (1n3) so that the edge length ratio constraint of a Pythagorean hodograph
curve is met. This process is illustrated in Figure 3 and detailed in the rest of this
section.

We wish to construct Bézier control points cp(1),...,cp(4) so that the curve
interpolate the points P1 and P2 at its endpoints, and is tangent to v1,v2 at these
endpoints (see Figure 3(a)). The end control points are given by the data: cp(1)=P1
and cp(4)=P2. To find control points cp(2),cp(3) , we construct the lines 1n1 and
1n2 through the given data (Figure 3(b)):

>> 1nl
>> 1n2

1nl/norm(1nl);
1n2/norm(1n2);

galine(vl,pl); 1nl

galine(v2,p2); 1n2

We now construct the rotor R=1n2/1n1 (which rotates by twice the angle between the
lines), and then construct the rotor Ra that rotates by half the angle between the two
lines, and apply this second rotor to 1n1, to get 1n3 (which will be parallel to the interior
leg of the Bézier control polygon, Figure 3(c)):

>> Y.

>> R = 1n2/1ni;

>> Ra = gexp(glog(R)/4);

>> 1n3 = Ra*lnl*inverse(Ra);

>> ip = ip = e37glog(R); ip = ip/norm(ip);
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Figure 3: Finding the interior points on a Pythagorean hodograph curve that interpo-
lates two positions and tangent directions. (a) The data. (b) Construct lines through
the data. (c) Construct a line 1n3 that is half the rotation from 1n1 to 1n2 passing
through the intersection point of the two lines. (d) The goal is to find an amount to
translate 1n3 so that the intersection of this translated line with 1n1 and with 1n2 gives
us the desired control points for a PH curve.
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Figure 4: Setting up the equations in ¢ for translating 1n3 to find locations of cp(2)
and cp(3) for a Pythagorean hodograph curve.. We have drawn ¢, mirrored along
both axes to better indicate ln! and Inz in the figure.

We now wish to translate 1n3 in the direction perpendicular to 1n3 until the intersec-
tion of the translated 1n3 with 1n1 and with 1n2 are in the location to give the appro-
priate ratios for the control polygon segments to be in the correct location for a cubic
Pythagorean hodograph curve. The remaining steps are more algebraic, so we shift to
a more mathematical notation; hopefully the correspondence to the Matlab variables
is clear. See Figure 4 for an illustration of the quantities involved.

To find the correct amount of translation of 1n3 we will use the condition that
(103 = (5. We set up a local coordinate system relative to the direction of 1n3 (d])
and perpendicular to the direction of 1n3 (cﬁ), and express the slope of 1n1 (which
has direction v7) relative to this coordinate system: s = % where ln:,f = - cﬁ and
Il =, dl. 3

We will translate 1n3 by a distance ¢ in the direction d |,
ln4(t) — e—eotrL/2 ln3 eeotrl/Q’

and intersect 1n4 with 1n1 and 1n2 to get cp(2) and cp(3). Let 1 = |ep(1) — ep(2)],
ly = |ep(2) — ep(3)], and U3 = |ep(3) — ep(4)], and let Iy = |ip — ep(1)] and [y =
lip — cp(4)].
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As we vary t, {1, {5, and {3 will vary:

v t
0 = ll—%t:ll—@
by = 2t/s
[ | R
Ing Ing

since |v;| = 1. Expanding the ratio condition ¢,/3 = (% gives us

t t . (272 t 1 4\ 5
(el—m)(ez—m>_(-t) = 5182_<€1”2)zn3¢+<(m3+)2_ >t_0.

S 52

There are two solutions to this equation; one solution is typically preferred over the
other (for example, if one solution is positive and the other negative, then the negative
solution leads to a curve with a loop while the positive solution gives a simple arc; we
would generally prefer the positive solution in this case).

We then use the chosen ¢ value to construct a translation rotor to apply to 1n3,

>> oo
>> LT = gexp(-e0*(-rts(2))*rdPerp/2)

>> 1n4 = LT*1n3*inverse(LT)

where rdPerp is the Euclidean vector perpendicular to 1n3, and we then intersect 1n4
with 1n1 and with 1n2 to get the interior control points of our interpolatory PH curve
(Figure 3(d)).

Figure 5 shows an example that fits four cubic Hermite PH curve segments to five
points and tangent directions. Figure 5 (e) shows the resulting curve if you switch
which root is used to construct each curve segment. Note the loops and note that last
segment meets the previous segment only C° since the last curve segment’s end point
derivatives are reversed.

2.3 Discussion of cubic Pythagorean Hodograph Constructions

In Section 2.1, we constructed a piecewise, cubic PH curve where the pieces met
with C'! continuity, while in Section 2.2, we constructed a piecewise, cubic PH curve
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Figure 5: Constructing a cubic Hermite PH curve. (a) The data. (b) Construction of
the first segment. (c) Construction of all four segments. (d) Just the curve. (e) Same
data but choosing the other solution for each curve segment.
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where the pieces met with G' continuity. The question is: why the weaker form of
continuity (G*') in the second construction? The answer has to do with the data being
interpolated and how it is processed.

In the first construction, the user sets the first three Bézier control points of a curve,
and the program sets the final control point to make the curve a PH curve. If a sec-
ond segment is desired, the program sets the first two control points of the second
segment, ensuring C'* continuity between the first and second segments. The user
then sets the third control point, and the program again sets the fourth control point to
ensure that the second Bézier curve segment is a PH curve.

In the second construction, the user gives a sequence of positions and tangent
lines to interpolate. The program then constructs a cubic PH curve between adjacent
points/tangents. In constructing each individual segment, there is only enough free-
dom to achieve G continuity (i.e., we can only interpolate tangent direction and not
the exact derivative vector).

Note that from a user interface stand point, the first construction is a poor way to
model a curve. l.e., the selection of the third control point (and only the third control
point) is a fairly poor way to specify the curve you want.

3 (' Quartic Pythagorean Hodograph Curve

Wang and Fang | ] gave conditions on the control points of a quartic
Bézier curve to be a PH curve (see below). They also gave a construction for a
G'! Hermite interpolant using quartic PH curves. In this section, | give an alternate
construction for C'* Hermite interpolation using quartic PH curves.

Figure 6 illustrates Wang and Fang’s conditions for a quartic Bézier curve to be a
Pythagorean hodograph curve. Starting with control points cp((1:5)), we find the line
s1,s2 that passes through cp(3) and forms the same angle with the line cp(1),s1
as it forms with the line s2,cp(5), and where s1 lies on the line cp(1),cp(2) and
s2 lies on the line cp(4),cp(5). We then compute the control polygon edge lengths
E; = |cp(i+1)-cp(i)|, as well as the lengths Fy = [s1-cp(2)|, F} = |cp(3)-s1]|,
F; = |s2-cp(3)|, and F; = |cp(5)-s2|. The curve is a Pythagorean hodograph curve
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13

| cp(1)

Figure 6: A quartic PH curve.

EoFy = 3FyFy
EsFy, = 3FyF3
F1F2 = 4FOF3.

3.1 Quartic G' Pythagorean Hodograph Curves with F;, = F,

The problem with (1) is that these equations do not incorporate the geometry of Fig-

ure 6, since (1) only constrains ratios of distances and not distances. Thus, a solution

to these equations may not lead to a PH curve since the geometry constraints aren'’t

satisfied. We add three geometry constraints, which are variations of the geometric

conditions we saw for cubics:

E0+F0 = El—t/hwlL

E3—|—F3 = EQ —t/hwlL
hle
h’LUlJ_'

F1—|—F2 - 2t
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The first two constraints make Ey + Fy and Es + F3 into distances, while the third
constraint make I + F5 into a distance.

At this point, we have six equations and seven unknowns (Ey, E, Fy, Fy, F5, F3, 1),
i.e., the problem is under-constrained. For now, we arbitrarily add the restriction that

F1:F27

which places cp(3) at the midpoint of s1,s2 (we will discuss this constraint further,
and look at another alternative in Section 3.2).
The assumption that F, = I} = F, simplifies our equations to

Ey = 3F (2)
E3 — 3F3 (3)
Py = ¢2h (4)
2T Thwl,
F, = AFyF; (5)
4F0 = 61 - t/hU)lL (6)
4F3 = 63 — t/hle_ (7)

We can eliminate the variables Ey, E1, Fy, I, F», F3 from these equations, leaving a
quadratic equation in ¢:

hwl
0=0,0y —(£1+€2>t +< Ly “’”)t? (8)

hwl | huﬂi hudi

We solve this quadratic equation for ¢; again, we will need to select the “better”
of the two solutions, which we do by constructing both solutions and choosing the
one that doesn’t yield a loop. There are multiple ways to compute the control points
cp(2),cp(3),cp(4) at this point. We chose to compute F;, = F, = Fj, from (4),
Fy and Fy from (6) and (7), and then compute E, and E5 from (2) and (3). We now
compute

>> cp(2)
>> cp(4)

pl+hdual (EO*v1); cp(2)
p2-hdual (E3*v2); cp(4)

cp(2) /norm(cp(2));
cp(4) /norm(cp(4));
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= v4

Figure 7: Three quartic Pythagorean hodograph curves fit to four points and vectors.
The larger points are the data points (as well as the first/last control points of the
segments); the smaller points are the interior control points of the segments.

and finally compute cp(3) as the translation of ip by ¢ in the d | direction. Alternatively,
we could have computed cp(2) ,cp(3) ,cp(4) by translating hwl by ¢ (so that it passes
through what will be cp(3)), intersected this translated line with the lines P1,v1 and
P2,v2 to get the points s1 and s2, and then used £y, Fy, F1, Fy, F3 and E3 as weights
to compute cp(2),cp(3),cp(4) as affine combinations of P1, s1, s2, and P2.

Figure 7 gives an example of constructing three quartic segments to interpolate
four points, P, P», P53, P;, and four directions v, vs, U3, ¥4. Note that the significant
difference in the lengths of the derivatives at the joint at P3, as expected at times with
G! curves.

3.2 Quartic G? Pythagorean Hodograph Curves

The problem with setting F; = F5 in the previous section is that we are basically
wasting a degree of freedom. Potentially, there could be (and likely is) data that cannot
be interpolated by setting F; = F5 but could be interpolated if we were to choose some
other relative setting of F; to F;. Further, by setting Fy = F5, the resulting curve is
just a degree raised version of the cubic curve fit to the same data. Regardless, we
can make use of this extra degree of freedom to achieve other geometric goals. In
this section, we use this degree of freedom to obtain G? continuity between segments



Curvature Continuous Pythagorean Hodograph Curves 16

while still interpolating the position and tangent directions at a sequence of points.
We start with the Pythagorean hodograph constraints of | I:

#1 EyFy =3FyFy, = Fy= EOFQ/(SFI)
#2 EsFy =3FF; = F3= E3F1/(3F2)
#3 F1F2 - 4FOF3

Again let s = % and h; = hwl,, and add the geometric constraints of the last
section:

#4F1+F2 = 2st
45 B+ Fy = 6 —t/hy
46 By + Fy = lo—t/hy

Note that these constraints do two things: first, they enforce the geometry that accom-
panies the PH constraints, and second, they enforce the G interpolation conditions;
i.e., without these constraints, you can get solutions where the PHC curve satisfies the
constraints of Wang and Fang, but the curve fails to interpolate the tangent vectors.

We now add the G? constraint. Since we only have one degree of freedom re-
maining after interpolating the two positions and tangents, we will only require that the
curvature of the curve at t = 0 interpolates a given value. The curvature k of a curve f
is given by the formula & = (f’ x f”)/|f'|>. Using the facts that f'(0) = 4(cpy — cp1) =
4Eqgvy, and cps — cps = |eps — cpa|(avy + yoi) = Fiyvi gives

ko= (< M/IfP°
— Aepa— 1) x 12((eps — cpa) — (epa — p))/A(epn — )]
= 3(Eov1) x Fiyvy /(4E})
= 3Fv/(4Ep),
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giving us our seventh equation,
#7 AKE? = 3Fy

Thus, we have seven equations in seven unknowns (Ey,Fs,Fo, F1,F5, F3,t). Using
Maple, we eliminated Fy, F3,Fs, F,E3,t (in that order), leaving a quartic equation in Ey:

0 = 16k° Ej + 32vh, k*s Ej + 4ky* — 36k*vh  11s B + (6k7%)(lo — 11) Eg + 3v°h lys
We can now compute the remaining six variables in sequence as

t = —2/3kEy(2Ey — 311)h. /(vh.s + 2kEy)
Es = —12(Eghy — h Il +t)EZK?/(h,~?)
P = 4kE;/(37)
Fy = (4EyE3)/(9F,)
Fy = (E3F)/(3F)
Fy = (Eok»)/(3FY)

We can now construct a sequence of quartic Bézier curves that interpolate the
position and tangents at a sequence of points, where the segments meet with G con-
tinuity; we construct the first segment to interpolate the first two points and tangents,
and then construct each subsequent segment to interpolate the next two points and
tangents, as well as meet the previous segment with G? continuity. Figure 8 shows an
example of three such segments.

This is approach is somewhat limited. In particular, quartic PHC’s do not have
inflection points. Thus, adding an inflection to to the curve sequence (e.g., to get the
curve to bend the other way) likely requires giving up G? continuity at a joint point
where the inflection occurs.
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Figure 8: Three quartic segments that meet with G? continuity. The blue line segments
point in the direction of the normal to the curve and are scaled by the curvature of the
curve at that point. The larger points are the interpolated data points as well as the
first/last control points of the curve segments; the smaller points are the interior control
points of the curve segments.
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4 Quintic PHC

Hormann et al. [ ] gave multiple characterizations of when a quintic curve is a PH
curve. Here we work with one of their geometric constructions. They later gave a C*
Hermite construction, interpolating two position and first derivative vectors | ]- In
this section, we give a G? construction, where our quintic PHC will interpolate position,
tangent direction, and curvature at two points.

The characterization of Hormann et al. that we use constructs a sequence of similar
triangles. Referring to Figure 9(b), we start with control points cp(1),...,cp(6).
We trisect the segment cp(2),cp(3) (giving s1 and s2) and we trisect the segment
cp(4),cp(5). (giving s3 and s4). We then construct g3 and g2 such that we have two
sets of similar triangles:

As1,ep(3),q3 ~ Acep(l),ep(2), ep(3)
AQ2an(4)vs4 ~ Acp(4),cp(5),cp(6).

Then Hormann et al. showed that the curve is a PH curve if and only if

Ags,ep(4),s3 ~ Aep(l),ep(2), ep(3)
Ass,cp(3),qo ~ Acp(4),ep(5), cp(6),

with the additional requirement that ¢,, /3 # 0.

In short, starting from control points cp(1),...,cp(6), we trisect the segment cp(2) ,cp(3)
giving s1,s2, and we trisect the segment cp(4),cp(5) giving s3,s4 (see Figure 9).
We then construct g2 so that we have similar triangles Asl, ¢p3, ¢3 ~ Acpl, cp2, cp3.
The first condition is that we have similar triangles A¢3, cp4, s3 ~ Acpl, cp2, cp3. Con-
structing g2 in an analogous way from the other end of the control polygon, the second
condition is that Ag2, cp3, s2 ~ Acpb, cpb, cp4.

Let ¢;_; be the length of the edge ¢;_1 = ¢p(i+1)—cp(i) (e.g., the edge cp(1), cp(2)
is eg). If we want to interpolate positions F,, P, and directions vy and o1, then we have
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__ Boto + 00y
,

Figure 9: Quintic. (a) Given data sans k; with resulting control points; (b) Similar

triangles.

the following constraints:

cpl
cp2
cpb
cpd

Fo
Po + oo
Py
P — Uy

We next add the PH constraints. We begin by first expressing cp(3) relative to cp(2)

and (implicitly) cp(1):

cp3 = cp2+ £1(Bovo + 70@(#)
Cp4 = Cp5 — Eg(ﬁﬂ?l + ’Yl@f_)

where 4" is the unit vector perpendicular to ¢y and 52 +~? = 1 and thus e; = ¢1(By0o +
’yof}oL) and €3 = 63(51@1 + ’71’{]%), and define él = 50'&0 + ’}/O@OL and éll = —’70’80 + ﬂoTA}OL,
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and ég = 61@1 + ’71’0% and éé‘ = —’71@1 + 51@%
To compute g3 (and similarly, g2), we use the 3,y weightings, but on ¢, and é{ and
scaled by 2/3 and by ¢3 /{y:

2

2¢
g3 = cp3+=L(Boér +oér)
34

2

2/ R .
2 = cpd— Z2(Biés +méy).
34,

where the %ﬁ—i scaling is because we want the ratio of the lengths of the edge s1,cp(3)

to cp(3),93 to be the same as the ratio between cp (1) ,cp(2) and cp(2),cp(3), or
¢y /¢y, with the distance scaled by 2/3 since the distance from s1 to cp(3) is 2/3 the
distance from cp(2) to cp(3).

Note that we can also express g3 and g2 “from the other side”. l.e., 93 can be
expressed relative to s3 and cp(4). Essentially, we need to express cp(1) in terms of
cp(2), é1, and éi and apply those weights to cp(4), é3 and é;-.

We start with

cpl = cp2 — lyvy.

We want to reexpress 9y in terms of ¢; and é-. Since é; = Bty + Y0y and é; =
—’)/0170 + BOQA]OL, we have

A Y0 A N N Yo N .
e1— —61L = Boto + VOUOL — — (=000 + 50?1&)
Bo Bo
N A1 73 N A1
= Bobo + Yol + ﬁ_UO — YoVg
0
B+, 1.
Bo Bo
=
o = Bor — ’Voéf-

Thus,

cpl = p2 — ly(Boér — ’yoéf).
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We take a similar weighting of é; and é3 as an offset from cp(4) to get q3 *from the
other side:”

1 7/ R
q3 = 0p4——€3 O(ﬁoeg Y0€3),

where we have to rescale to get the appropriate similar triangle. Likewise, we can get
an expression for q2:

1, 4y

2 = p3+ ~li—(Brér — nér).
3 Y

Now equate the two g3’s and reexpress to eliminate the control points:

2 52 .
cp3 + 5%(5061 +06y) = cpd— —53 (5063 Yoé3)

2

34

. . . 202 . . . .
Py + Loto + €1 (Lot + %UOL) + 56_1(6061 + 70€1L) = P, — {0, — (3(5100 + 71Uf)
0

1 7
——53 0(5063 7063)

= Loty Py — Lol1 L4ty — Lolyls(Brdy + 7107)
1 . .
——535(2)(5063 - 706:?)

. R . R 1 by, , . .
cp2 + 61 (ﬁovo + YoV ) (6061 + ")/061 ) = cp5 — 63(51111 + ’yﬂ)f‘) — 5636—0(5063 — ’}/Oeé')
1

lolr Py + €315 + 5052(50110 + Y00q
+5 g 1(Boé1 + Yoé1

")
31! ) 3
€0£1P0 + € 611)0 + €0£ (ﬁovo + ’}/o'U ) = 5051131 — 606164@1 — goglgg(ﬁlf}l + "}/1’{)%)
2 . ) 1 R N R N
+§5§’(50(50"Uo +7085) + Yo(—000 + Body)) —55353(30(5101 +07) — Yo(=m01 + Bio1))
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2

203
cpd — —_(5163 + 7163 )

34

2

34,

2

cpb — l3(Br0r + 7117%)

N N . 205
Py — 0,0, — 53(51111 + 711 ) - —_(5163 + 7163 )

34

€4£3P1 — g €3U1 — €4£ (511)1 -+ ’71’01

—gf (B1é3 + ’716

£4€3P1 — €2€3U1 €4£ (611)1 + ’711}

2
—553(51(&111 + M0 ) + 71( Y101 + 51?]1 )

3 (Bréz + Y163 3)

cp3 + 361 ‘s (5161 ’Ylé%)

cp2 + £1(Bovo + Yovp ) + 51 (5161 71é1l)
Py + Lo + 41 (Boto + oty )

+3£1 A (5161 M€y )
€4€3P0 + 646360?}0 -+ 646361 (ﬁg?}o + ’}/0173')
+= fl 1(Brér — miey)
mgpo + L4l3LoDo + L4301 (BoDo + Yoby )

1 . . . .
+§€1€Z(51(5ovo + Y08y) — 71 (=000 + Body))

We now add the G? constraints. Again, starting from the formula for curvature, we

haveatt =0

f/ X f//
F?

= (5£0)<20€1’Y@)|5€0|3

= 45170/(5%)
= 5@%]{0 = 461’}/0

and a similar derivation at ¢t = 1,

ko= (f' < /NP

= 5(eps — cps) X 20((cpg — cps) —

(cps — cpa))/I5(cps — cps) |

= 5(eps — eps) X 20(—(cps — cpa))/|5(cps — cps)|*

= —4(lyDy) x (L3y0h)/(503)
= —4lm/(503)

gives

—5&21]{31 = 463’}/1 .
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Note that in both G2 derivations that ' x f” is a signed quantity; thus, the sign of
the curvature k is the same as the sign of 7, and the sign of &, is the opposite of ~;.
This correlation between these signs becomes important when giving initial conditions
for a numerical solver as detailed in the next section.

4.1 Solving the Equations

We now have eight unknowns, ¢y, ¢4, (3, {4, B9, 51, Y0, 71, and eight equations:

ol Py + 5(2361@0 + go@(ﬁoﬁo + Y00 = Lol1 Py — loly 040y — Lolyls (P11 + ’Ylfhl)

iR
)
9 ) A A A 1 A ) A A
+§€?(B§vo + Bovoly — Yato + Boyody) —gﬁsﬁg(ﬁoﬁlvl + Bomti + yondr — YoB19y)
L
)

Cyls Py — bzt — L4l3(B10y + m107) = Lylz Py + Lalsloty + L4€361(Boto + o0y )

2 R . R . 1 . R R R
_563(5501 + 51’Y1U1L - 7%7}1 + ’Vlﬁwf) +§€1€z2;(ﬁ1507}0 + ﬁl’YovoL + Y17Y0v0 — 71607}3_)
NHs =1
n+6 =1

568]6‘0 = 461’)/0

where the first two equations are each two equations, one for x and one for y.

We could use the last two equations to eliminate v, and v; from the equations with
Yo = Hl3iko/(441) and v, = —502k; /(4¢3). Doing so would leave us with an equation
that is linear in 5, and another equation that is linear in 5;. We could then eliminate
either of 5, or 5, from the equations, but not both, since after eliminating one of 3, or
5 the resulting set of 5 equations are all non-linear in each of the variables.

Instead, | solved the system of 8 equations numerically using Matlab’s fsolve
function. As initial guesses for our unknowns, we need to be a bit careful with ~, and
v1, and make a choice that is consistent with the sign of the corresponding curvature.
Regardless, my choices for initial conditions were

€1:|P1_P0|/57 50:51:17 70::|:17 ’yl:j:]-
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4.2 Examples

As a first example, | fit a cubic PH curve to two position and tangents,
Py=(3,3), Uo=—V2/2e1+V2/2es, PL=(0,0), &1 = —es,

and then extracted the curvature at the end points of this PH curve to generated data
to interpolate with a quintic PH curve:

Py = (3,3), To=—V2/2e1 +V2/2e,, ko= 0.637558471367
P = (0,0), ¥, =—ey, ki =0.129281976953.

| fit two quintic PH curves to this data, one with initial conditions taken from the cubic
PH interpolant,

ly = 0.86377538854, ¢; = 0.901938067008, ¢5 = 1.3440710474, {3 = 1.91819097627,
Bo = 0.751917396853, 7o = 0.659257330873, 31 = 0.896820684934, v; = —0.442394234901,

and the other with initial conditions being those described in Section 4.1:
60 :€1 = 62 263 = |P1 —P0|/5208485,60 = 1,’)/0 = ].,ﬁl = 1, Y1 = —1.

As expected, the quintic PH curve constructed using “the solution” converged imme-
diately to the solution. The quintic PH curve constructed using the second set of
parameters also converged, but to a different PH curve. See Figure 10.

As a second example, | hand digitized the control points of a quintic PH curve in
Hormann talk; note that unlike the curve in Hormann’s talk, my hand digitized curve is
not a PH curve. | then evaluated this curve at its endpoints for position, tangent, and
curvature. | then found a quintic PH curve that interpolated this data. See Figure 11.

As a third example, in Figure 12, | fit three four curves to a fixed pair of points and
directions, and a fixed curvature on one end of the curve and varied the curvature on
the other end.
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(@)

(c)

Figure 10: (a) Cubic PH curve used to obtain curvature. (b) Quintic PH curve, starting
with parameters of curve in (a) constructs the degree raised version of the cubic PH
curve. (c) Quintic PH curve using “standard” parameters.

20

Figure 11: (a) Quintic non-PH curve used to obtain curvature. (b) Quintic PH curve,
fit the end positions, tangents and curvature of curve in part (a). Figures (c) and (d)

show the construction of one of the similar triangle conditions for the curves in parts
(@) and (b).
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Figure 12: Quintic PH curves fit to: Py = (0,0), Uy = €2, ko = 0.05; P, = (3,3),7; =
V/(2)/2(e1 + —e5). Red: k; = 0.6. Green: k; = 0.8. Blue: k; = 1. Black: k; = 1.2

4.3 Discussion

Not all data will lead to a solution (or a reasonable solution) for this quintic, G* Hermite
PH curve construction. For example, for the data in Figure 12, if x; is set to 0.5, then
end tangents of the resulting curve collapse to 0, and the resulting curve is a straight
line, although possibly different initial conditions would lead to a more reasonable so-
lution.

The example in Figure 12 (and in other tests | ran) suggest that for data that has
a solution, small variations on this data will also yield a solution. And the example in
Figure 11 suggests that sampling the data (positions, tangents, and curvatures) from
a “reasonable” curve should yield a reasonable quintic PHC that interpolates this data.
However, only a small number of examples were tested, and additional work remains
to determine conditions on the data that yields a solution.

Further, as shown in Figure 10, multiple solutions exist. Solving for and selecting a
“best” solution is also a venue for future work.
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