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Abstract

This report develops constructions for cubic, quartic, and quintic Pythagorean

hodograph curves (PHC). The cubic construction is a rederivation of an earlier

cubic PHC construction, but in the real plane rather than the imaginary plane.

The quartic construction is also a rederivation of an earlier construction, again in

the real plane rather than the imaginary plane. In addition, the free parameter in

this quartic construction is used to interpolate curvature at one end of the curve.

The quintic construction builds a quintic PHC curve that interpolates the position,

tangent, and curvature at two points.

1 Introduction

Pythagorean-hodograph curves [Farouki] are a type of parametric, planar polynomial

curve whose “parametric speed” is a polynomial. Farouki [Farouki] notes that these

curves have several nice features:

For example, it is possible to compute their arc lengths, bending ener-

gies, and offset (parallel) curves in an essentially exact manner, without

recourse to approximations; and they are exceptionally well–suited to prob-

lems of real–time motion control and spatial path planning based on the

use of rotation–minimizing frames.
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Our interest here will be in testing if a cubic Bézier curve is a Pythagorean hodograph

curve; interactively constructing a parametric, C1, piecewise polynomial curve, where

each piece is a cubic Pythagorean-hodograph curve; and constructing a piecewise,

cubic geometric Hermite Pythagorean-hodograph curve to interpolate a set of points

and directions. Additionally, we will do similar constructions for quartic Pythagorean

hodograph curves, where an extra degree of freedom in the construction is used to

interpolate curvature at one end of the curve. Finally, I will develop a quintic PHC that

interpolates the position, tangent and curvature at two points.

There is previous work on constructing cubic, quartic, and quintic PHCs. Meek and

Walton Meek and Walton [MeekWalton97] showed how to construct a cubic geometric

Hermite Pythagorean hodograph curve. My construction (Section 2.2) differs from

theirs in that they were working in the imaginary plane while my construction is in the

real plane, although my result is essentially reproducing their work.

Similarly, Wang and Fang [WangFang09] gave conditions on the control points of

a quartic Bézier curve to be a PH curve (see below). They also gave a construction

for a G1 Hermite interpolant using quartic PH curves. Again, my work (Section 3.1)

is essentially reproducing their work. However, this quartic construction has a degree

of freedom in it, and I show how to use this degree of freedom to have the Hermite

interpolant interpolate curvature at one end of the curve.

My work on quintic PHC curves is based on the work of Hormann et al. [HRV24].

In their paper, they give several formulations of conditions on the control points of a

quintic Bézier curve for the curve to be a PHC. One set of these conditions uses similar

triangles; in Section 4, I use these conditions to find a set of equations that must hold

for a curve to interpolate the position, tangent, and curvature at two points and for the

curve to also be a PHC.

In this paper, I work in PGA (Point-Based Geometric Algebra) [DdK, Gunn11].

While this algebra is convenient for doing rotations, all the results hold in a standard

affine space. For more on PGA, see [DdK, LM25].
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1.1 Bézier curves

A degree n Bézier curve [Farin91] is a parametric polynomial curve with control points

Pi blended by the Bernstein polynomials Bn
i (t) =

(
n
i

)
(1− t)n−1ti:

B(t) =
n∑

i=0

PiB
n
i (t),

with a parameterization of [0, 1]. Note that 1 = ((1− t)+ t)n =
∑n

i=0

(
n
i

)
(1− t)(n−i)ti =∑n

i=0 B
n
i (t), so a Bézier curve is an affine combination of its control points. Further,

for t ∈ [0, 1], Bn
i (t) ≥ 0, and the curve is a convex combination of its control points.

The derivative of a Bézier curve B(t) at its end points is computed as the scaled

difference of the first (last) control points:

B′(0) = n(P1 − P0), B′(1) = n(Pn − Pn−1).

The second derivatives at the ends of the curve are

B′′(0) = n(n−1)
(
(P2−P1)−(P1−P0)

)
, B′′(1) = n(n−1)

(
(Pn−Pn−1)−(Pn−1−Pn−2)

)
.

For more details on Bézier curves, see, for example, Farin’s textbook [Farin91].

2 Cubic Pythagorean-Hodograph Curves

Mathematically, a curve B is a Pythagorean-hodograph (PH) curve if ||B′(t)|| = σ(t)

for some polynomial σ(t). All linear curves are Pythagorean-hodograph curves, but no

quadratic curves are Pythagorean-hodograph curves (other than those with colinear

control points). Our interest is in cubic Pythagorean-hodograph curves in Bézier form,

an example of which is shown in Figure 1, and later in quartic and quintic PH curves.

For a cubic Bézier curve B(t) =
∑e

i=3 PiB
3
i (t) to be a Pythagorean-hodograph curve,

the interior angles of the control polygon must be equal (the α’s in Figure 1) and the

edges lengths ℓi = ||Pi−Pi−1|| must be in a geometric progression; e.g., ℓ2/ℓ1 = ℓ3/ℓ2

in this figure. An equivalent condition to this second condition, that ℓlℓ3 = ℓ22, will be
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Figure 1: A cubic Pythagorean-hodograph curve. Edge lengths ℓ1, ℓ2, and ℓ3 are in a
geometric progression.

used in Section 2.2.

2.1 Creating a Piecewise, C1 Cubic Pythagorean Hodograph Curve

I first present an interactive construction to create a piecewise, C1, cubic PH curve.

The process is illustrated in Figure 2. As a first step, the user selects three points

on the screen (Figure 2(a)). From these points, we construct two lines, one through

P0, P1 and one through P1, P2 using join (Figure 2(b)), and compute the magnitudes

of these lines (the magnitude of the join of two points is the distance between the two

points):

>> ln1 = join(P0,P1); l1 = norm(ln1);

>> ln2 = join(P1,P2); l2 = norm(ln2);

We then compute the rotor that rotates line ln1 around the intersection of ln1 and ln2

by twice the angle between the two lines:

>> R = ln2/ln1/l1/l2;

Note that we needed to normalize the lines to get the rotation we want. We then apply

this rotor to l1:

>> ln3 = ln3 = R*ln1*inverse(R);

This gives us the green line in Figure 2(c).
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Figure 2: Creating a cubic Pythagorean-hodograph curve. (a) Three control points
selected by the user. (b) Lines ln1=join(P0,P1) and ln2=join(P1,P2). (c) Line ln3

created as the rotation of line ln1. (d) Line ln4 created as the translation of line ln3.
(e) Placement of control point P4 to create a Pythagorean-hodograph curve.
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By chance, for this problem, the rotor rotating by twice the angle between the two

lines was almost exactly what we wanted to construct the third leg of the Bézier control

polygon. However, we want the line parallel to ln3 that passes through P2. Thus,

we construct the translation from P1 to P2, and apply it to ln3 to get ln4, which we

normalize (Figure 2(d)):

>> T = gexp(-e0*hdual(P1-P2)/2);

>> ln4 = T*ln3*inverse(T); ln4 = ln4/norm(ln4);

By construction, the angle between ln1 and ln2 is equal to the angle between ln2

and ln4. Thus, our fourth Bézier control point needs to lie on ln4. Since we want the

distances between the control points to be in geometric progression, we set P3 to

>> P3=P2-(l2^2/l1)*(e0*ln4);

(see equation (19) of PGA4CS [DdK] for details on this equation). The final curve

appears in Figure 2(e).

The user can add additional PH segments, with each new segment meeting the

previous segment with C1 continuity. Requiring each segment to meet the previous

segment with C1 continuity sets the first two control points of the next segment. The

user then interactively sets the third control point, and the program computes the fourth

control point of the new segment to ensure that the segment is a PH curve in the same

manner as above. One caution: the geometric progression requirement essentially

gives exponential growth (up or down); placing additional points too close or too far

from existing points will likely give unwanted results.

2.2 G1 Piecewise Cubic Pythagorean Hodograph Curves

Meek and Walton [MeekWalton97] showed how to construct a cubic geometric Hermite

Pythagorean hodograph curve segment, that is, given two points P1 and P2 and two

vector v⃗0 and v⃗1, they show how to construct a cubic Pythagorean hodgraph curve

C such that C(0) = P1, C(1) = P2 and C ′(0) = α1v⃗1 and C ′(1) = α2v⃗2 for some

scalars α1, α2 > 0, where we can assume |v⃗1| = |v⃗2| = 1. Their approach expresses

the Pythagorean hodograph curve as a Bézier curve in complex number notation, and
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constructs the interior control points by rotating two vectors around the end control

points and solving a quadratic system to find the solution.

The approach taken here is somewhat different. Since we know that the two interior

angles of the Bézier control polygon must be equal, we construct the two lines, ln1 and

ln2, from the given positions and directions, and we construct the rotor that rotates

from ln1 to ln2 (around the intersection point ip of the two lines) but by half the angle

between the two lines. We apply this rotor to ln1 to get a line ln3 that is the “halfway”

line between ln1 and ln2. By constructing the interior edge of the Bézier control

polygon to be parallel to ln3, the Bézier curve will meet the equal angle constraint.

We then derive a quadratic equation to translate the interior edge of the Bézier control

polygon (ln3) so that the edge length ratio constraint of a Pythagorean hodograph

curve is met. This process is illustrated in Figure 3 and detailed in the rest of this

section.

We wish to construct Bézier control points cp(1),...,cp(4) so that the curve

interpolate the points P1 and P2 at its endpoints, and is tangent to v1,v2 at these

endpoints (see Figure 3(a)). The end control points are given by the data: cp(1)=P1

and cp(4)=P2. To find control points cp(2),cp(3) , we construct the lines ln1 and

ln2 through the given data (Figure 3(b)):

>> ln1 = galine(v1,p1); ln1 = ln1/norm(ln1);

>> ln2 = galine(v2,p2); ln2 = ln2/norm(ln2);

We now construct the rotor R=ln2/ln1 (which rotates by twice the angle between the

lines), and then construct the rotor Ra that rotates by half the angle between the two

lines, and apply this second rotor to ln1, to get ln3 (which will be parallel to the interior

leg of the Bézier control polygon, Figure 3(c)):

>> %...

>> R = ln2/ln1;

>> Ra = gexp(glog(R)/4);

>> ln3 = Ra*ln1*inverse(Ra);

>> ip = ip = e3^glog(R); ip = ip/norm(ip);



Curvature Continuous Pythagorean Hodograph Curves 8

-1 0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P0

P1

~v0

~v1

-1 0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P0

P1

ln1

ln2

(a) (b)

-1 0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P0

P1

ln1

ln2

ip

ln3

rdPerp

-1 0 1 2 3 4

-1

-0.5

0

0.5

1

1.5

2

2.5

3

P0

P1

ln1

ip

ln3

cp(1)

cp(2)

cp(3)

ln2

cp(4)

(c) (d)

Figure 3: Finding the interior points on a Pythagorean hodograph curve that interpo-
lates two positions and tangent directions. (a) The data. (b) Construct lines through
the data. (c) Construct a line ln3 that is half the rotation from ln1 to ln2 passing
through the intersection point of the two lines. (d) The goal is to find an amount to
translate ln3 so that the intersection of this translated line with ln1 and with ln2 gives
us the desired control points for a PH curve.
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Figure 4: Setting up the equations in t for translating ln3 to find locations of cp(2)
and cp(3) for a Pythagorean hodograph curve.. We have drawn v⃗1 mirrored along
both axes to better indicate ln

∥
3 and ln⊥

3 in the figure.

We now wish to translate ln3 in the direction perpendicular to ln3 until the intersec-

tion of the translated ln3 with ln1 and with ln2 are in the location to give the appro-

priate ratios for the control polygon segments to be in the correct location for a cubic

Pythagorean hodograph curve. The remaining steps are more algebraic, so we shift to

a more mathematical notation; hopefully the correspondence to the Matlab variables

is clear. See Figure 4 for an illustration of the quantities involved.

To find the correct amount of translation of ln3 we will use the condition that

ℓ1ℓ3 = ℓ22. We set up a local coordinate system relative to the direction of ln3 (d⃗∥)

and perpendicular to the direction of ln3 (d⃗⊥), and express the slope of ln1 (which

has direction v⃗1) relative to this coordinate system: s =
ln⊥

3

ln
∥
3

where ln⊥
3 = v⃗0 · d⃗⊥ and

ln
∥
3 = v⃗0 · d∥.

We will translate ln3 by a distance t in the direction d⊥,

ln4(t) = e−e0 t r⊥/2 ln3 e
e0 t r⊥/2,

and intersect ln4 with ln1 and ln2 to get cp(2) and cp(3). Let ℓ1 = |cp(1) − cp(2)|,
ℓ2 = |cp(2) − cp(3)|, and ℓ3 = |cp(3) − cp(4)|, and let l1 = |ip − cp(1)| and l2 =

|ip− cp(4)|.
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As we vary t, ℓ1, ℓ2, and ℓ3 will vary:

ℓ1 = l1 −
|v1|
ln⊥

3

t = l1 −
t

ln⊥
3

ℓ2 = 2t/s

ℓ3 = l2 −
|v1|
ln⊥

3

t = l2 −
t

ln⊥
3

since |v⃗1| = 1. Expanding the ratio condition ℓ1ℓ3 = ℓ22 gives us

(ℓ1 −
t

ln⊥
3

)(ℓ2 −
t

ln⊥
3

) =
(2
s
t
)2

⇒ ℓ1ℓ2 − (ℓ1 + ℓ2)
t

ln⊥
3

+

(
1

(ln⊥
3 )

2
− 4

s2

)
t2 = 0.

There are two solutions to this equation; one solution is typically preferred over the

other (for example, if one solution is positive and the other negative, then the negative

solution leads to a curve with a loop while the positive solution gives a simple arc; we

would generally prefer the positive solution in this case).

We then use the chosen t value to construct a translation rotor to apply to ln3,

>> %...

>> LT = gexp(-e0*(-rts(2))*rdPerp/2)

>> ln4 = LT*ln3*inverse(LT)

where rdPerp is the Euclidean vector perpendicular to ln3, and we then intersect ln4

with ln1 and with ln2 to get the interior control points of our interpolatory PH curve

(Figure 3(d)).

Figure 5 shows an example that fits four cubic Hermite PH curve segments to five

points and tangent directions. Figure 5 (e) shows the resulting curve if you switch

which root is used to construct each curve segment. Note the loops and note that last

segment meets the previous segment only C0 since the last curve segment’s end point

derivatives are reversed.

2.3 Discussion of cubic Pythagorean Hodograph Constructions

In Section 2.1, we constructed a piecewise, cubic PH curve where the pieces met

with C1 continuity, while in Section 2.2, we constructed a piecewise, cubic PH curve
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Figure 5: Constructing a cubic Hermite PH curve. (a) The data. (b) Construction of
the first segment. (c) Construction of all four segments. (d) Just the curve. (e) Same
data but choosing the other solution for each curve segment.
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where the pieces met with G1 continuity. The question is: why the weaker form of

continuity (G1) in the second construction? The answer has to do with the data being

interpolated and how it is processed.

In the first construction, the user sets the first three Bézier control points of a curve,

and the program sets the final control point to make the curve a PH curve. If a sec-

ond segment is desired, the program sets the first two control points of the second

segment, ensuring C1 continuity between the first and second segments. The user

then sets the third control point, and the program again sets the fourth control point to

ensure that the second Bézier curve segment is a PH curve.

In the second construction, the user gives a sequence of positions and tangent

lines to interpolate. The program then constructs a cubic PH curve between adjacent

points/tangents. In constructing each individual segment, there is only enough free-

dom to achieve G1 continuity (i.e., we can only interpolate tangent direction and not

the exact derivative vector).

Note that from a user interface stand point, the first construction is a poor way to

model a curve. I.e., the selection of the third control point (and only the third control

point) is a fairly poor way to specify the curve you want.

3 C1 Quartic Pythagorean Hodograph Curve

Wang and Fang [WangFang09] gave conditions on the control points of a quartic

Bézier curve to be a PH curve (see below). They also gave a construction for a

G1 Hermite interpolant using quartic PH curves. In this section, I give an alternate

construction for C1 Hermite interpolation using quartic PH curves.

Figure 6 illustrates Wang and Fang’s conditions for a quartic Bézier curve to be a

Pythagorean hodograph curve. Starting with control points cp((1:5)), we find the line

s1,s2 that passes through cp(3) and forms the same angle with the line cp(1),s1

as it forms with the line s2,cp(5), and where s1 lies on the line cp(1),cp(2) and

s2 lies on the line cp(4),cp(5). We then compute the control polygon edge lengths

Ei = |cp(i+1)-cp(i)|, as well as the lengths F0 = |s1-cp(2)|, F1 = |cp(3)-s1|,
F2 = |s2-cp(3)|, and F3 = |cp(5)-s2|. The curve is a Pythagorean hodograph curve
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Figure 6: A quartic PH curve.

if

E0F2 = 3F0F1

E3F1 = 3F2F3 (1)

F1F2 = 4F0F3.

3.1 Quartic G1 Pythagorean Hodograph Curves with F1 = F2

The problem with (1) is that these equations do not incorporate the geometry of Fig-

ure 6, since (1) only constrains ratios of distances and not distances. Thus, a solution

to these equations may not lead to a PH curve since the geometry constraints aren’t

satisfied. We add three geometry constraints, which are variations of the geometric

conditions we saw for cubics:

E0 + F0 = ℓ1 − t/hwl⊥

E3 + F3 = ℓ2 − t/hwl⊥

F1 + F2 = 2t
hwl∥
hwl⊥

.
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The first two constraints make E0 + F0 and E3 + F3 into distances, while the third

constraint make F1 + F2 into a distance.

At this point, we have six equations and seven unknowns (E0, E1, F0, F1, F2, F3, t),

i.e., the problem is under-constrained. For now, we arbitrarily add the restriction that

F1 = F2,

which places cp(3) at the midpoint of s1,s2 (we will discuss this constraint further,

and look at another alternative in Section 3.2).

The assumption that F12 ≡ F1 = F2 simplifies our equations to

E0 = 3F0 (2)

E3 = 3F3 (3)

F12 = t
hwl∥
hwl⊥

(4)

F 2
12 = 4F0F3 (5)

4F0 = ℓ1 − t/hwl⊥ (6)

4F3 = ℓ3 − t/hwl⊥ (7)

We can eliminate the variables E0, E1, F0, F1, F2, F3 from these equations, leaving a

quadratic equation in t:

0 = ℓ1ℓ2 −
(
ℓ1 + ℓ2
hwl⊥

)
t +

(
1

hwl2⊥
− 4

hwl∥
hwl2⊥

)
t2. (8)

We solve this quadratic equation for t; again, we will need to select the “better”

of the two solutions, which we do by constructing both solutions and choosing the

one that doesn’t yield a loop. There are multiple ways to compute the control points

cp(2),cp(3),cp(4) at this point. We chose to compute F1 = F2 = F12 from (4),

F0 and F1 from (6) and (7), and then compute E0 and E3 from (2) and (3). We now

compute

>> cp(2) = p1+hdual(E0*v1); cp(2) = cp(2)/norm(cp(2));

>> cp(4) = p2-hdual(E3*v2); cp(4) = cp(4)/norm(cp(4));
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Figure 7: Three quartic Pythagorean hodograph curves fit to four points and vectors.
The larger points are the data points (as well as the first/last control points of the
segments); the smaller points are the interior control points of the segments.

and finally compute cp(3) as the translation of ip by t in the d⃗⊥ direction. Alternatively,

we could have computed cp(2),cp(3),cp(4) by translating hwl by t (so that it passes

through what will be cp(3)), intersected this translated line with the lines P1,v1 and

P2,v2 to get the points s1 and s2, and then used E0, F0, F1, F2, F3 and E3 as weights

to compute cp(2),cp(3),cp(4) as affine combinations of P1, s1, s2, and P2.

Figure 7 gives an example of constructing three quartic segments to interpolate

four points, P1, P2, P3, P4, and four directions v⃗1, v⃗2, v⃗3, v⃗4. Note that the significant

difference in the lengths of the derivatives at the joint at P3, as expected at times with

G1 curves.

3.2 Quartic G2 Pythagorean Hodograph Curves

The problem with setting F1 = F2 in the previous section is that we are basically

wasting a degree of freedom. Potentially, there could be (and likely is) data that cannot

be interpolated by setting F1 = F2 but could be interpolated if we were to choose some

other relative setting of F1 to F2. Further, by setting F1 = F2, the resulting curve is

just a degree raised version of the cubic curve fit to the same data. Regardless, we

can make use of this extra degree of freedom to achieve other geometric goals. In

this section, we use this degree of freedom to obtain G2 continuity between segments
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while still interpolating the position and tangent directions at a sequence of points.

We start with the Pythagorean hodograph constraints of [WangFang09]:

#1 E0F2 = 3F0F1 ⇒ F0 = E0F2/(3F1)

#2 E3F1 = 3F2F3 ⇒ F3 = E3F1/(3F2)

#3 F1F2 = 4F0F3

Again let s =
hwl∥
hwl⊥

and h⊥ = hwl⊥, and add the geometric constraints of the last

section:

#4 F1 + F2 = 2st

#5 E0 + F0 = ℓ1 − t/h⊥

#6 E3 + F3 = ℓ2 − t/h⊥

Note that these constraints do two things: first, they enforce the geometry that accom-

panies the PH constraints, and second, they enforce the G1 interpolation conditions;

i.e., without these constraints, you can get solutions where the PHC curve satisfies the

constraints of Wang and Fang, but the curve fails to interpolate the tangent vectors.

We now add the G2 constraint. Since we only have one degree of freedom re-

maining after interpolating the two positions and tangents, we will only require that the

curvature of the curve at t = 0 interpolates a given value. The curvature k of a curve f

is given by the formula k = (f ′ × f ′′)/|f ′|3. Using the facts that f ′(0) = 4(cp2 − cp1) =

4E0v1, and cp3 − cp2 = |cp3 − cp2|(αv1 + γv⊥1 ) = F1γv
⊥
1 gives

k = (f ′ × f ′′)/|f ′|3

= 4(cp2 − cp1)× 12((cp3 − cp2)− (cp2 − cp1))/|4(cp2 − cp1)|3

= 3(E0v1)× F1γv
⊥
1 /(4E

3
0)

= 3F1γ/(4E
2
0),
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giving us our seventh equation,

#7 4kE2
0 = 3F1γ

Thus, we have seven equations in seven unknowns (E0,E3,F0,F1,F2,F3,t). Using

Maple, we eliminated F0,F3,F2,F1,E3,t (in that order), leaving a quartic equation in E0:

0 = 16k3E4
0 + 32γh⊥k

2sE3
0 + 4kγ2 − 36k2γh⊥l1sE

2
0 + (6kγ2)(l2 − l1)E0 + 3γ3h⊥l2s

We can now compute the remaining six variables in sequence as

t = −2/3kE0(2E0 − 3l1)h⊥/(γh⊥s+ 2kE0)

E3 = −12(E0h⊥ − h⊥l1 + t)E2
0k

2/(h⊥γ
2)

F1 = 4kE2
0/(3γ)

F2 = (4E0E3)/(9F1)

F3 = (E3F1)/(3F2)

F0 = (E0F2)/(3F1)

We can now construct a sequence of quartic Bézier curves that interpolate the

position and tangents at a sequence of points, where the segments meet with G2 con-

tinuity; we construct the first segment to interpolate the first two points and tangents,

and then construct each subsequent segment to interpolate the next two points and

tangents, as well as meet the previous segment with G2 continuity. Figure 8 shows an

example of three such segments.

This is approach is somewhat limited. In particular, quartic PHC’s do not have

inflection points. Thus, adding an inflection to to the curve sequence (e.g., to get the

curve to bend the other way) likely requires giving up G2 continuity at a joint point

where the inflection occurs.
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Figure 8: Three quartic segments that meet with G2 continuity. The blue line segments
point in the direction of the normal to the curve and are scaled by the curvature of the
curve at that point. The larger points are the interpolated data points as well as the
first/last control points of the curve segments; the smaller points are the interior control
points of the curve segments.
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4 Quintic PHC

Hormann et al. [HRV24] gave multiple characterizations of when a quintic curve is a PH

curve. Here we work with one of their geometric constructions. They later gave a C1

Hermite construction, interpolating two position and first derivative vectors [HRV25]. In

this section, we give a G2 construction, where our quintic PHC will interpolate position,

tangent direction, and curvature at two points.

The characterization of Hormann et al. that we use constructs a sequence of similar

triangles. Referring to Figure 9(b), we start with control points cp(1),...,cp(6).

We trisect the segment cp(2),cp(3) (giving s1 and s2) and we trisect the segment

cp(4),cp(5). (giving s3 and s4). We then construct q3 and q2 such that we have two

sets of similar triangles:

△s1, cp(3), q3 ∼ △cp(1), cp(2), cp(3)

△q2, cp(4), s4 ∼ △cp(4), cp(5), cp(6).

Then Hormann et al. showed that the curve is a PH curve if and only if

△q3, cp(4), s3 ∼ △cp(1), cp(2), cp(3)

△s2, cp(3), q2 ∼ △cp(4), cp(5), cp(6),

with the additional requirement that ℓ1, ℓ3 ̸= 0.

In short, starting from control points cp(1),...,cp(6), we trisect the segment cp(2),cp(3)

giving s1,s2, and we trisect the segment cp(4),cp(5) giving s3,s4 (see Figure 9).

We then construct q2 so that we have similar triangles △s1, cp3, q3 ∼ △cp1, cp2, cp3.

The first condition is that we have similar triangles △q3, cp4, s3 ∼ △cp1, cp2, cp3. Con-

structing q2 in an analogous way from the other end of the control polygon, the second

condition is that △q2, cp3, s2 ∼ △cp6, cp5, cp4.

Let ℓi−1 be the length of the edge ei−1 = cp(i+1)−cp(i) (e.g., the edge cp(1), cp(2)

is e0). If we want to interpolate positions P0, P1 and directions v̂0 and v̂1, then we have
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Figure 9: Quintic. (a) Given data sans ki with resulting control points; (b) Similar
triangles.

the following constraints:

cp1 = P0

cp2 = P0 + ℓ0v̂0

cp6 = P1

cp5 = P1 − ℓ4v̂1

We next add the PH constraints. We begin by first expressing cp(3) relative to cp(2)

and (implicitly) cp(1):

cp3 = cp2 + ℓ1(β0v̂0 + γ0v̂
⊥
0 )

cp4 = cp5− ℓ3(β1v̂1 + γ1v̂
⊥
1 )

where v̂⊥0 is the unit vector perpendicular to v̂0 and β2
i +γ2

i = 1 and thus e1 = ℓ1(β0v̂0+

γ0v̂
⊥
0 ) and e3 = ℓ3(β1v̂1 + γ1v̂

⊥
1 ), and define ê1 = β0v̂0 + γ0v̂

⊥
0 and ê⊥1 = −γ0v̂0 + β0v̂

⊥
0 ,
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and ê3 = β1v̂1 + γ1v̂
⊥
1 and ê⊥3 = −γ1v̂1 + β1v̂

⊥
1 .

To compute q3 (and similarly, q2), we use the β, γ weightings, but on ê1 and ê⊥1 and

scaled by 2/3 and by ℓ21/ℓ0:

q3 = cp3 +
2

3

ℓ21
ℓ0
(β0ê1 + γ0ê

⊥
1 )

q2 = cp4− 2

3

ℓ23
ℓ4
(β1ê3 + γ1ê

⊥
3 ).

where the 2
3

ℓ21
ℓ0

scaling is because we want the ratio of the lengths of the edge s1,cp(3)

to cp(3),q3 to be the same as the ratio between cp(1),cp(2) and cp(2),cp(3), or

ℓ0/ℓ1, with the distance scaled by 2/3 since the distance from s1 to cp(3) is 2/3 the

distance from cp(2) to cp(3).

Note that we can also express q3 and q2 “from the other side”. I.e., q3 can be

expressed relative to s3 and cp(4). Essentially, we need to express cp(1) in terms of

cp(2), ê1, and ê⊥1 and apply those weights to cp(4), ê3 and ê⊥3 .

We start with

cp1 = cp2− ℓ0v̂0.

We want to reexpress v̂0 in terms of ê1 and ê⊥1 . Since ê1 = β0v̂0 + γ0v̂
⊥
0 and ê⊥1 =

−γ0v̂0 + β0v̂
⊥
0 , we have

ê1 −
γ0
β0

ê⊥1 = β0v̂0 + γ0v̂
⊥
0 − γ0

β0

(−γ0v̂0 + β0v̂
⊥
0 )

= β0v̂0 + γ0v̂
⊥
0 +

γ2
0

β0

v̂0 − γ0v̂
⊥
0

=
β2
0 + γ2

0

β0

v̂0 =
1

β0

v̂0

⇒
v̂0 = β0ê1 − γ0ê

⊥
1 .

Thus,

cp1 = cp2− ℓ0(β0ê1 − γ0ê
⊥
1 ).
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We take a similar weighting of ê3 and ê⊥3 as an offset from cp(4) to get q3 ”from the

other side:”

q3 = cp4− 1

3
ℓ3
ℓ0
ℓ1
(β0ê3 − γ0ê

⊥
3 ),

where we have to rescale to get the appropriate similar triangle. Likewise, we can get

an expression for q2:

q2 = cp3 +
1

3
ℓ1
ℓ4
ℓ3
(β1ê1 − γ1ê

⊥
1 ).

Now equate the two q3’s and reexpress to eliminate the control points:

cp3 +
2

3

ℓ21
ℓ0
(β0ê1 + γ0ê

⊥
1 ) = cp4− 1

3
ℓ3
ℓ0
ℓ1
(β0ê3 − γ0ê

⊥
3 )

cp2 + ℓ1(β0v̂0 + γ0v̂
⊥
0 ) +

2

3

ℓ21
ℓ0
(β0ê1 + γ0ê

⊥
1 ) = cp5− ℓ3(β1v̂1 + γ1v̂

⊥
1 )−

1

3
ℓ3
ℓ0
ℓ1
(β0ê3 − γ0ê

⊥
3 )

P0 + ℓ0v̂0 + ℓ1(β0v̂0 + γ0v̂
⊥
0 ) +

2

3

ℓ21
ℓ0
(β0ê1 + γ0ê

⊥
1 ) = P1 − ℓ4v̂1 − ℓ3(β1v̂1 + γ1v̂

⊥
1 )

−1

3
ℓ3
ℓ0
ℓ1
(β0ê3 − γ0ê

⊥
3 )

ℓ0ℓ1P0 + ℓ20ℓ1v̂0 + ℓ0ℓ
2
1(β0v̂0 + γ0v̂

⊥
0 ) = ℓ0ℓ1P1 − ℓ0ℓ1ℓ4v̂1 − ℓ0ℓ1ℓ3(β1v̂1 + γ1v̂

⊥
1 )

+
2

3
ℓ31(β0ê1 + γ0ê

⊥
1 ) −1

3
ℓ3ℓ

2
0(β0ê3 − γ0ê

⊥
3 )

ℓ0ℓ1P0 + ℓ20ℓ1v̂0 + ℓ0ℓ
2
1(β0v̂0 + γ0v̂

⊥
0 ) = ℓ0ℓ1P1 − ℓ0ℓ1ℓ4v̂1 − ℓ0ℓ1ℓ3(β1v̂1 + γ1v̂

⊥
1 )

+
2

3
ℓ31(β0(β0v̂0 + γ0v̂

⊥
0 ) + γ0(−γ0v̂0 + β0v̂

⊥
0 )) −1

3
ℓ3ℓ

2
0(β0(β1v̂1 + γ1v̂

⊥
1 )− γ0(−γ1v̂1 + β1v̂

⊥
1 ))
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cp4− 2

3

ℓ23
ℓ4
(β1ê3 + γ1ê

⊥
3 ) = cp3 +

1

3
ℓ1
ℓ4
ℓ3
(β1ê1 − γ1ê

⊥
1 )

cp5− ℓ3(β1v̂1 + γ1v̂
⊥
1 )−

2

3

ℓ23
ℓ4
(β1ê3 + γ1ê

⊥
3 ) = cp2 + ℓ1(β0v̂0 + γ0v̂

⊥
0 ) +

1

3
ℓ1
ℓ4
ℓ3
(β1ê1 − γ1ê

⊥
1 )

P1 − ℓ4v̂1 − ℓ3(β1v̂1 + γ1v̂
⊥
1 )−

2

3

ℓ23
ℓ4
(β1ê3 + γ1ê

⊥
3 ) = P0 + ℓ0v̂0 + ℓ1(β0v̂0 + γ0v̂

⊥
0 )

+
1

3
ℓ1
ℓ4
ℓ3
(β1ê1 − γ1ê

⊥
1 )

ℓ4ℓ3P1 − ℓ24ℓ3v̂1 − ℓ4ℓ
2
3(β1v̂1 + γ1v̂

⊥
1 ) = ℓ4ℓ3P0 + ℓ4ℓ3ℓ0v̂0 + ℓ4ℓ3ℓ1(β0v̂0 + γ0v̂

⊥
0 )

−2

3
ℓ33(β1ê3 + γ1ê

⊥
3 ) +

1

3
ℓ1ℓ

2
4(β1ê1 − γ1ê

⊥
0 )

ℓ4ℓ3P1 − ℓ24ℓ3v̂1 − ℓ4ℓ
2
3(β1v̂1 + γ1v̂

⊥
1 ) = ℓ4ℓ3P0 + ℓ4ℓ3ℓ0v̂0 + ℓ4ℓ3ℓ1(β0v̂0 + γ0v̂

⊥
0 )

−2

3
ℓ33(β1(β1v̂1 + γ1v̂

⊥
1 ) + γ1(−γ1v̂1 + β1v̂

⊥
1 )) +

1

3
ℓ1ℓ

2
4(β1(β0v̂0 + γ0v̂

⊥
0 )− γ1(−γ0v̂0 + β0v̂

⊥
0 ))

We now add the G2 constraints. Again, starting from the formula for curvature, we

have at t = 0

k0 =
f ′ × f ′′

|f ′|3
= (5ℓ0)(20ℓ1γ0)|5ℓ0|3

= 4ℓ1γ0/(5ℓ
2
0)

⇒ 5ℓ20k0 = 4ℓ1γ0

and a similar derivation at t = 1,

k1 = (f ′ × f ′′)/|f ′|3

= 5(cp6 − cp5)× 20((cp6 − cp5)− (cp5 − cp4))/|5(cp6 − cp5)|3

= 5(cp6 − cp5)× 20(−(cp5 − cp4))/|5(cp6 − cp5)|3

= −4(ℓ4v̂1)× (ℓ3γ1v̂
⊥)/(5ℓ34)

= −4ℓ3γ1/(5ℓ
2
4)

gives

−5ℓ24k1 = 4ℓ3γ1.
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Note that in both G2 derivations that f ′ × f ′′ is a signed quantity; thus, the sign of

the curvature k0 is the same as the sign of γ1 and the sign of k1 is the opposite of γ1.

This correlation between these signs becomes important when giving initial conditions

for a numerical solver as detailed in the next section.

4.1 Solving the Equations

We now have eight unknowns, ℓ0, ℓ1, ℓ3, ℓ4, β0, β1, γ0, γ1, and eight equations:

ℓ0ℓ1P0 + ℓ20ℓ1v̂0 + ℓ0ℓ
2
1(β0v̂0 + γ0v̂

⊥
0 ) = ℓ0ℓ1P1 − ℓ0ℓ1ℓ4v̂1 − ℓ0ℓ1ℓ3(β1v̂1 + γ1v̂

⊥
1 )

+
2

3
ℓ31(β

2
0 v̂0 + β0γ0v̂

⊥
0 − γ2

0 v̂0 + β0γ0v̂
⊥
0 ) −1

3
ℓ3ℓ

2
0(β0β1v̂1 + β0γ1v̂

⊥
1 + γ0γ1v̂1 − γ0β1v̂

⊥
1 )

ℓ4ℓ3P1 − ℓ24ℓ3v̂1 − ℓ4ℓ
2
3(β1v̂1 + γ1v̂

⊥
1 ) = ℓ4ℓ3P0 + ℓ4ℓ3ℓ0v̂0 + ℓ4ℓ3ℓ1(β0v̂0 + γ0v̂

⊥
0 )

−2

3
ℓ33(β

2
1 v̂1 + β1γ1v̂

⊥
1 − γ2

1 v̂1 + γ1β1v̂
⊥
1 ) +

1

3
ℓ1ℓ

2
4(β1β0v̂0 + β1γ0v̂

⊥
0 + γ1γ0v̂0 − γ1β0v̂

⊥
0 )

γ2
0 + β2

0 = 1

γ2
1 + β2

1 = 1

5ℓ20k0 = 4ℓ1γ0

−5ℓ24k1 = 4ℓ3γ1.

where the first two equations are each two equations, one for x and one for y.

We could use the last two equations to eliminate γ0 and γ1 from the equations with

γ0 = 5ℓ20k0/(4ℓ1) and γ1 = −5ℓ24k1/(4ℓ3). Doing so would leave us with an equation

that is linear in β0 and another equation that is linear in β1. We could then eliminate

either of β0 or β1 from the equations, but not both, since after eliminating one of β0 or

β1 the resulting set of 5 equations are all non-linear in each of the variables.

Instead, I solved the system of 8 equations numerically using Matlab’s fsolve

function. As initial guesses for our unknowns, we need to be a bit careful with γ0 and

γ1, and make a choice that is consistent with the sign of the corresponding curvature.

Regardless, my choices for initial conditions were

ℓi = |P1 − P0|/5, β0 = β1 = 1, γ0 = ±1, γ1 = ±1.
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4.2 Examples

As a first example, I fit a cubic PH curve to two position and tangents,

P0 = (3, 3), v⃗0 = −
√
2/2 e1 +

√
2/2 e2, P1 = (0, 0), v⃗1 = −e2,

and then extracted the curvature at the end points of this PH curve to generated data

to interpolate with a quintic PH curve:

P0 = (3, 3), v⃗0 = −
√
2/2 e1 +

√
2/2 e2, k0 = 0.637558471367

P1 = (0, 0), v⃗1 = −e2, k1 = 0.129281976953.

I fit two quintic PH curves to this data, one with initial conditions taken from the cubic

PH interpolant,

ℓ0 = 0.86377538854, ℓ1 = 0.901938067008, ℓ2 = 1.3440710474, ℓ3 = 1.91819097627,

β0 = 0.751917396853, γ0 = 0.659257330873, β1 = 0.896820684934, γ1 = −0.442394234901,

and the other with initial conditions being those described in Section 4.1:

ℓ0 = ℓ1 = ℓ2 = ℓ3 = |P1 − P0|/5 = 0.8485, β0 = 1, γ0 = 1, β1 = 1, γ1 = −1.

As expected, the quintic PH curve constructed using “the solution” converged imme-

diately to the solution. The quintic PH curve constructed using the second set of

parameters also converged, but to a different PH curve. See Figure 10.

As a second example, I hand digitized the control points of a quintic PH curve in

Hormann talk; note that unlike the curve in Hormann’s talk, my hand digitized curve is

not a PH curve. I then evaluated this curve at its endpoints for position, tangent, and

curvature. I then found a quintic PH curve that interpolated this data. See Figure 11.

As a third example, in Figure 12, I fit three four curves to a fixed pair of points and

directions, and a fixed curvature on one end of the curve and varied the curvature on

the other end.
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Figure 10: (a) Cubic PH curve used to obtain curvature. (b) Quintic PH curve, starting
with parameters of curve in (a) constructs the degree raised version of the cubic PH
curve. (c) Quintic PH curve using “standard” parameters.
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Figure 11: (a) Quintic non-PH curve used to obtain curvature. (b) Quintic PH curve,
fit the end positions, tangents and curvature of curve in part (a). Figures (c) and (d)
show the construction of one of the similar triangle conditions for the curves in parts
(a) and (b).
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Figure 12: Quintic PH curves fit to: P0 = (0, 0), v⃗0 = e2, κ0 = 0.05; P1 = (3, 3), v⃗1 =√
(2)/2(e1 +−e2). Red: κ1 = 0.6. Green: κ1 = 0.8. Blue: κ1 = 1. Black: κ1 = 1.2

4.3 Discussion

Not all data will lead to a solution (or a reasonable solution) for this quintic, G2 Hermite

PH curve construction. For example, for the data in Figure 12, if κ1 is set to 0.5, then

end tangents of the resulting curve collapse to 0, and the resulting curve is a straight

line, although possibly different initial conditions would lead to a more reasonable so-

lution.

The example in Figure 12 (and in other tests I ran) suggest that for data that has

a solution, small variations on this data will also yield a solution. And the example in

Figure 11 suggests that sampling the data (positions, tangents, and curvatures) from

a “reasonable” curve should yield a reasonable quintic PHC that interpolates this data.

However, only a small number of examples were tested, and additional work remains

to determine conditions on the data that yields a solution.

Further, as shown in Figure 10, multiple solutions exist. Solving for and selecting a

“best” solution is also a venue for future work.
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