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Abstract. Lexically scoping effect handlers is a language-design idea that equips algebraic effects with a
modular semantics: it enables local-reasoning principles without giving up on the control-flow expressiveness
that makes effect handlers powerful. However, we observe that existing implementations risk incurring costs
akin to the run-time search for dynamically scoped handlers. This paper presents a compilation strategy for
lexical effect handlers, adhering to the lexical scoping principle and targeting a language with low-level control
over stack layout. Key aspects of this approach are formalized and proven correct. We embody the ideas in a
language called Lexa: the Lexa compiler translates high-level effect handling to low-level stack switching.
We evaluate the Lexa compiler on a set of benchmarks; the results suggest that it generates efficient code,
reducing running-time complexity from quadratic to linear in some cases.

Note. This technical report is an extended version of Ma et al. [20]:
Cong Ma, Zhaoyi Ge, Edward Lee, and Yizhou Zhang. Lexical effect handlers, directly. Proc. of the
ACM on Programming Languages (PACMPL), 8(OOPSLA2), 2024. https://doi.org/10.1145/3689770

1 Introduction
Effect handlers [24, 25] are an attractive language abstraction for organizing control flow. They
subsume a variety of linguistic features for nonlocal control flow such as exception handling and
coroutine iterators. They provide a nice separation between the code that raises an effect and the
code that handles it. They also afford a principled way to program continuations, with applications
in cooperative multitasking, probabilistic programming, and more.

Conventionally, effect handlers are dynamically scoped : when an effect is raised, the dynam-
ically closest enclosing handler is chosen to handle the effect. But recent work has found that
dynamic scoping threatens abstraction safety and makes it hard to reason modularly about effectful
programs [35, 3, 33].

In response to these challenges, lexical effect handlers have emerged as a promising design where
effect handlers are lexically scoped [35, 33, 4, 6, 27]. A handler acts as a lexically scoped capability:
only code holding the capability (i.e., code within the lexical scope of the handler or code that has
been passed the capability) is authorized to raise effects to the handler. It is shown that this lexical
scoping semantics recovers strong reasoning principles while preserving the expressiveness of
effect handlers.

This development in language design leads to the question for compiler writers: how might
lexical effect handlers be implemented?

One way to implement lexical effect handlers is to piggyback on dynamically scoped handlers.
This approach is taken by Genus [35] for compiling lexically scoped exception handlers to Java’s
exception handlers, which are dynamically scoped [12]. This approach necessarily inherits from
Java the overhead of searching the stack for a matching handler at run time when an exception is
raised.

Another approach is employed by the Effekt language, whose compiler also targets high-level
languages. For example, one of Effekt’s back ends performs a continuation-passing style (CPS)
transformation to compile an intermediate language with lexical effect handlers to an ordinary
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functional language without handlers [27]. Before this CPS transformation can happen, the Effekt
compiler first performs a lift inference to determine how many handlers have to be jumped over
until the right handler is found [22]. It is believed that the lifting information computed by the lift
inference saves the CPS-transformed code from the overhead of searching for handlers at run time.
As we will see, this claim is not entirely accurate. The inferred lifting information effectively causes
the generated code to walk the stack to locate the right handler.

In a certain sense, both approaches are rather roundabout. Lexical scoping is all about static
reasoning. It is about knowing at compile time which handler in the lexical context will handle
an effect raised at a given program point. Having to walk the stack at run time to locate the right
handler seems at odds with the spirit of lexical scoping in theory—and can be a source of inefficiency
in practice.

This insight begets the question: in a compiler targeting a low-level language that enables control
over stack layout, can lexical effect handlers be implemented in a direct way that is faithful to the
lexical scoping discipline, thus truly eliminating the need for the run-time search for handlers?

Our idea is a natural one. The low-level representation of a handler in scope is no different from
that of any lexically scoped local variable. When an effect is raised, the control transfer target is
directly available—no run-time search is needed to identify the handler. In addition, the suspended
computation (aka resumption) is captured directly as stacks or stack frames without search.

Our idea is a natural one, also in the sense that it is hinted by the connection between lexical
effect handlers and multi-prompt delimited control [13]. Prior work suggests a connection in
semantics [33, 7, 36]. This work shows that the connection extends to implementation: our approach
is reminiscent of native implementations of multi-prompt delimited control such as libmprompt [17],
while incorporating optimizations not present in these implementations.

We proceed as follows. Section 2 reviews the design of lexical effect handlers and identifies a
potential source of inefficiency in existing implementations. Section 3 defines two core languages:
Lexa, an intermediate language with lexical effect handlers, and Salt, an assembly-like language
with control over stack layout. Section 4 describes the translation from Lexa to Salt, and Section 5
describes optimizations for tail-resumptive and abortive handlers. Section 6 establishes the cor-
rectness of the translation. Section 7 describes the implementation of the Lexa compiler. Section 8
presents an empirical evaluation, comparing Lexa with other implementations of effect handlers.

2 Lexical Effect Handlers: A Tale of Two Schedulers
We use the example in Figure 1 to review the ideas of lexical effect handlers.The example, adapted

from prior work [28], implements a cooperative lightweight multitasking scheduler. The example is
written in an OCaml-like syntax. The type system is similar to OCaml, too, in that it does not track
effects [28]. It would be straightforward to define a type-and-effect system for lexical handlers; the
problem is well studied [35, 33, 4, 6, 36] and orthogonal to the focus of this paper.

Process is an effect signature containing two effect operations, yield and fork. The scheduler
uses an effect handler to interpret these operations.

The scheduler operates on a queue of continuations (aka resumptions). Initially, the queue is
empty (line 25). The function spawn starts a computation f of the type Process→unit. As f may
raise Process effects, spawn handles them by installing a handler for Process (lines 18–22).

Raising yield suspends the current job and hands control back to the scheduler. Raising fork

additionally requests the scheduler to run a new job concurrently. The new job may itself raise
Process effects. Specifically, when yield is raised, the remaining computation in the handle body
is captured as a continuation k, which is entered into the scheduler queue, to be resumed later.
When fork is raised, the handler additionally calls spawn recursively to run the new job.
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1 (* library code *)

2 effect Process =

3 | yield : unit → unit

4 | fork : (Process → unit) → unit

5

6 effect Exn =

7 | throw : ’a

8

9 def driver q =

10 handle

11 val k = dequeue E q;

12 resume k ();

13 driver q

14 with E : Exn =

15 | throw k ⇒ log ”all continuations done”

16

17 def spawn (f : Process → unit) q =

18 handle

19 f P

20 with P : Process =

21 | yield _ k ⇒ enqueue k q

22 | fork g k ⇒ enqueue k q; spawn g q

23

24 def scheduler (f : Process → unit) =

25 val q = mk_queue ();

26 spawn f q;

27 driver q

28 (* client code *)

29 def job P =

30 · · ·
31 raise P.yield ();

32 · · ·
33

34 effect Tick =

35 | tick : unit

36

37 def jobs P T n_jobs =

38 if n_jobs = 0 then

39 ()

40 else

41 raise T.tick;

42 raise P.fork job;

43 jobs P T (n_jobs - 1)

44

45 def main () =

46 val c = ref 0;

47 handle

48 scheduler (fun P → jobs P T 1000)

49 with T : Tick =

50 | tick k ⇒

51 c ^:= !c + 1;

52 printf ”forking job %d\n” !c;

53 resume k ()

Figure 1. Lightweight cooperative multitasking via lexical effect handlers.

After spawn returns, the scheduler calls driver to run the queued continuations (line 27). The
function driver dequeues a continuation, resumes it, and recursively calls itself to run the next
continuation (lines 10–15). If there is no more continuations to run (i.e., the queue is empty), an
exception is thrown from the call to dequeue, and driver handles it by logging a message before
exiting. Exn is the effect signature for exceptions, and throw is the effect operation for raising
exceptions (lines 6–7).

We adopt the standard deep handler semantics [15]: when an effect is raised to a handler, the
captured continuation contains the very handler in its outermost layer. At line 12, resuming a
queued continuation may raise yield or fork. They are handled by the Process handler that is in
the outermost layer of the continuation, namely the same handler that enqueued the continuation
in the first place.

Handlers in this example are lexical. A handle expression binds a variable representing the
handler in the handle body. For instance, the handle expression in spawn binds a handler named P

(line 20), which is then used as an argument of f to handle the Process effects raised by f (line 19).
A raise expression explicitly mentions the handler to which the effect is raised. For instance, the
raise expression at line 42 specifies that the fork effect is raised to the handler named P, which
is an argument of the function jobs. Although all uses of handlers are explicitly named in this
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example, prior work has shown that explicitly named handlers are not necessary in many cases; a
lighter-weight syntax is possible by allowing omitted handler annotations to be resolved to handler
bindings in the lexical context via a straightforward translation [33, 6].

The main function uses scheduler to run a jobs function, which further spawns 1000 jobs by
raising fork effects. Each job may voluntarily yield to the scheduler (line 31).

In addition to running jobs, the programmer of the main function wants to keep count of how
many times fork has been raised. This can be done by raising a Tick effect right before each fork

in jobs (line 41). The main function handles Tick by incrementing a counter.

The costly tick. It is believed that Effekt [6, 22, 27], a language that most prominently features
lexical effect handlers, does not require a run-time search for handlers when an effect is raised. So
raising and handling effects should be cheap, comparable to function calls. As a result, it appears
that the running time of the program should be proportional to the number of jobs.

We create a similar scheduler program in Effekt. Figure 2 shows how the running time scales.
Surprisingly, we observe super-linearly increasing running time. Interestingly, if the Tick effect is
turned off, linear scaling is restored. The seemingly innocuous Tick effect drastically changes the
performance of the program!

Why are the Tick effects expensive for this scheduler implemented in Effekt? This experiment
uses a back end of the Effekt compiler that translates control effects into a monadic framework for
multi-prompt delimited control [9]. When an effect is raised, a sequence of prompt markers—each
corresponding to a handler in the surrounding evaluation context—is traversed to find the right
handler. In the scheduler program, a Tick effect is propagated through the entire call chain to
the handler in main. The call chain, which is deep due to the recursive nature of driver, happens
to contain as many Exn handlers as the recursion depth. So the asymptotic time complexity of
handling a Tick effect is $ (=), where = is the number of jobs forked. Thus, the total running time
of the program has $ (=2) complexity.

Effekt also has a back end that first performs a lift inference [22] before a CPS translation to
MLton. Unfortunately, this back end does not support the scheduler program due to a conflict
between MLton’s monomorphization requirement and the typed CPS translation. But even if the
scheduler program could be compiled, it would not scale well. The lift inference generates a series
of function applications that, at run time, effectively traverse the surrounding evaluation context
to find the right handler for an effect.

Hence, both of these compilation strategies share a common inefficiency: although there is no
run-time search of the call stack for handlers—there is not a call stack to begin with, as the compiler
back ends do not need or manipulate call stacks—raising and handling an effect incurs a cost similar
to that required of a stack walk. We consider these compilation strategies as lift-based : they employ
run-time computations to lift an effect out of the dynamic extents of handlers until the right handler
is found.

Although quadratic scaling can be avoided by carefully adjusting the lexical scope of the exception
handler so that only one exception handler is installed in the evaluation context at any time, it
would be ideal if the programmer did not have to concern themself with such details. Furthermore,
there exist useful programs for which deep stacks of handlers are unavoidable. For such programs,
the scalability issue cannot be addressed merely by hand-tuning the scopes of handlers.

To lift, or not to lift? A lift-based approach is perhaps necessary for a compiler targeting a
high-level language, but one may wonder if the run-time cost is avoidable for a compiler targeting
a language that allows low-level control over the call stack. In a certain sense, lift goes against the
grain of lexical handlers. The lift construct of Biernacki et al. [3] is a related language mechanism
introduced to tame dynamically scoped handlers so that they do not compromise abstraction safety.



5

0 1000 2000 3000

Input size

0

500

1000

1500

2000

Scheduler program in Effekt

without Tick
with Tick

0 1000 2000 3000

Input size

0.0

0.1

0.2

0.3

Scheduler program in Lexa

without Tick
with Tick

Ru
nn

in
g
tim

e
(s)

1Figure 2. Scaling behaviors of the scheduler programs implemented in Effekt and in Lexa

The abstraction-safety problem does not arise in the context of lexical handlers [33], so lift ought
to be unnecessary! This paper offers a strategy to compile lexical handlers without lift. As Figure 2
shows, the running time of the scheduler implemented in Lexa scales linearly, with or without
Tick effects.

3 Two Core Languages: Lexa and Salt
We want to formalize the key aspects of the compilation of lexical effect handlers to a stack-based
low-level language. Towards this goal, we define two core languages, Lexa and Salt. Sections 4–6
will define a translation from Lexa to Salt and prove its correctness. Lexa is a compiler intermediate
language with support for lexical handlers. Salt is an assembly-like language with support for
low-level control over memory and stack layout.

We use Lexa and Salt to capture the core ideas of how we compile lexical handlers; it is not a
goal of this paper to formally verify a realistic compiler. Our compiler implementation described in
Section 7 largely follows the formalism and supports additional features and optimizations. We
have also implemented the formalism in Sections 3–5 faithfully in Racket, including the translation
and an interpreter for the target assembly language; they can be found in the supplementary
material.

3.1 Source Language: Lexa
Lexa programs use lexically scoped variables to identify handlers. Lexa is intended as a compiler
intermediate language, where every use of a handler explicitly refers to the variable that binds
the handler in the lexical context. A surface language can provide a lighter-weight syntax, by
resolving uses of handlers to variables in scope, as described and formalized in prior work [33, 6].
To simplify the formalization, programs in Lexa are assumed to have undergone closure conversion
and hoisting, so all functions, including those representing handlers, are closed and hoisted to the
top level. Our compiler implementation does include these standard transformations.

Notably, because effect handlers in Lexa programs have a unified representation as functions,
Lexa supports bidirectional effects [36], namely the ability for a handler to raise reverse-direction
effects to the computation that raised the initial effect.

Similar to MultiCore OCaml [28], which also compiles to call stacks, it is not our goal to support
handlers with multishot resumptions. Thus, in the Lexa formalism, a resumption can be resumed
at most once. However, our compiler implementation does have limited support for multishot
resumptions (Section 7.2).
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constant 2 F 8 | % | ns
value E F G | 2
expression 4 F E | E1 + E2 | newref (E0, · · · , E=−1) | c8 (E) | E1 [8] ← E2 | E (E1, · · · , E=) |

handle %body with %op under Eenv | raise E1 E2 | resume E1 E2 | exit E
term C F E end | let G = 4 in C

program � F letrec %1 = _G1 . C1, · · · , %= = _G= . C=

Figure 3. Syntax of Lexa.

As an intermediate language, Lexa is untyped, but it would be possible to extend Lexa with
a type-and-effect system to ensure type safety, effect safety, and abstraction safety as in prior
work [33, 36].

Syntax. Figure 3 presents the syntax of Lexa. Expressions are in A-normal form [26, 11], where
every subexpression is a variable or a constant. Terms are sequences of expressions. A term
let G1 = 41 in · · · let G= = 4= in E end sequences the expressions 41, …, 4= , binding G8 to 48 in the
rest of the term. We will sometimes elide the trailing end for brevity. The notation |C | denotes the
number of let bindings within a term C .

Metavariable % ranges over code labels, which identify functions (including implementations of
effect operations) in the program text.

A value is either a local variable G , an integer 8 , a code label % , or nonsense ns. Expressions and
terms evaluate to values.

An expression takes one of the following forms: a value, an arithmetic operation, allocating a
tuple, reading or writing a tuple, applying a function, installing a handler, raising an effect to an
installed handler, and resuming a resumption.

In the expression handle %body with %op under Eenv, %op is the label of the handler code (i.e., the
implementation of the effect operation), %body is the label of the handled code, (i.e., the computation
that may raise effects to the handler), and Eenv provides the closure environment for both %op
and %body. The environment is passed to the closures as an argument when they are called.

A program consists of a sequence of top-level, possibly mutually recursive functions, one of
which is designated as the main function. We use the lambda notation _G. C to denote a function,
where an overline denotes a sequence of (possibly empty) syntactic elements. Effect handlers are
defined as functions, with the last argument being the resumption. As a standard simplification, in
the formalism, we assume that each handler has exactly one operation and that each operation has
exactly one argument. Our implementation of the Lexa compiler is free of these restrictions.

Operational semantics. We give an operational semantics to Lexa as an abstract machine. Figure 4
shows the extra syntax needed for defining the machine’s semantics.

Metavariable ! ranges over data labels, which are freshly generated at run time and thus do
not appear in the program text. Data labels include ordinary object labels, freshly generated by
evaluating newref, and handler labels, freshly generated by evaluating handle.

A machine state (i.e., configuration) consists of an immutable code memory, a mutable data
memory (i.e., heap), an evaluation context, a local environment, and a redex.
• A code memory" maps code labels to functions.
• A heap � maps object labels to heap values. A heap value is either a tuple 〈E1, . . . , E=〉 or a

resumption cont  . Tuples can be used to represent closure environments, and resumptions are
used to represent suspended computations.
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constant 2 F · · · | !
term C F · · · | halt
code memory " F {%1 ↦→ _G1. C1, · · · , %= ↦→ _G2 . C=}
heap value + F 〈E0, · · · , E=−1〉 | cont  
heap � F {!1 ↦→ +1, · · · , != ↦→ +=}
local environment � F [G1 ↦→ E1, · · · , G= ↦→ E=]
frame � F (�, let G = � in C) | #!%op,!env�
evaluation context  F � |  · �
configuration � F 〈" ‖ � ‖  ‖ � ‖ C〉

Figure 4. Syntax of the Lexa abstract machine.

• An evaluation context  is composed of a sequence of frames � .
– A frame can be an activation frame (�, let G = � in C), which consists of a local environment �

and a continuation that expects a value from the hole �.
– A frame can also be a handler frame #!%op,!env�, which consists of a label ! identifying the

handler instance, a label %op identifying the handler code, a label !env identifying the closure
environment, and a hole � where evaluation is in progress.

• A local environment � records the values of the arguments and local variables for the activation
of a function.

To run a program, the initial configuration is constructed by loading the top-level function defini-
tions into the code memory and invoking the main function.

The full set of reduction rules can be found in Appendix A. Figure 5 shows selected rules. Since
the syntax is in A-normal form, the order of evaluation is already determined by the syntax, so
there are no structural rules for locating the next redex.

The reduction rules can be categorized into two groups. Rules in the first group evaluate an
expression locally. This group includes, for example, the NEWREF rule in Figure 5 for allocating a
new tuple on the heap. The meta-level function �̂ (E) is defined as � (G) if E = G and 2 if E = 2 . Rules
in this group update the local environment � to reflect the new binding.

Rules in the second group involve control-flow transfer. These rules include APP, RET, HANDLE,
LEAVE, RAISE, and RESUME. They either push frames to or pop frames from the evaluation
context. They also switch to a different local environment, inserting new bindings to the new local
environment to account for the arguments or the return value. We now take a closer look at the
rules governing effect handling: HANDLE, LEAVE, RAISE, and RESUME.

The HANDLE rule pushes an activation frame consisting of the current local environment and
the remaining term to the evaluation context. It also pushes a handler frame. The handler frame
contains a freshly generated handler label ! that identifies this newly installed handler instance.
The rule creates a new local environment consisting of the two arguments that %body receives: !env
is the closure environment of %body, and ! identifies the handler instance newly pushed onto the
evaluation context. The body of the function %body then becomes the term to be evaluated next. The
generativity of the handler label ! matches the semantics of previous languages supporting lexical
handlers, such as Genus [35] and Effekt [6].

The LEAVE rule pops the handler frame from the evaluation context. It returns to the most recent
activation frame and resumes the computation left there. The local environment is updated to
reflect the return value.
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NEWREF

〈" ‖ � ‖  ‖ � ‖ let G = newref (E0, · · · , E=−1) in C〉 −→〈
" ‖ � [! ↦→

〈
�̂ (E0), · · · , �̂ (E=−1)

〉
] ‖  ‖ � [G ↦→ !] ‖ C

〉
where ! is fresh

HANDLE〈
" ‖ � ‖  ‖ � ‖ let G = handle %body with %op under Eenv in C

〉
−→〈

" ‖ � ‖  · (�, let G = � in C) · #!%op,!env� ‖ [Genv ↦→ !env, Ghdl ↦→ !] ‖ C ′
〉

where ! is fresh," (%body) = _(Genv, Ghdl). C ′, and �̂ (Eenv) = !env

LEAVE〈
" ‖ � ‖  · (�, let G = � in C) · #!%op,!env� ‖ �′ ‖ E

〉
−→

〈
" ‖ � ‖  ‖ � [G ↦→ �̂′ (E)] ‖ C

〉
RAISE〈
" ‖ � ‖  ·

(
#!%op,!env�

)
·  ′ ‖ � ‖ let G = raise E1 E2 in C

〉
−→〈

" ‖ � [!: ↦→ cont
(
#!%op,!env�

)
· ′ · (�, let G = � in C)] ‖  ‖

[
Genv ↦→ !env, ~ ↦→ �̂ (E2), : ↦→ !:

]
‖ C ′

〉
where !: is fresh, �̂ (E1) = !, and" (%op) = _(Genv, ~, :) . C ′

RESUME

〈" ‖ � ‖  ‖ � ‖ let G = resume E1 E2 in C〉 −→〈
" ‖ � [!: ↦→ ns] ‖  · (�, let G = � in C) ·  ′ ‖ �′ [G ′ ↦→ �̂ (E2)] ‖ C ′

〉
where �̂ (E1) = !: and � (!: ) = cont  ′ · (�′, let G ′ = � in C ′)

Figure 5. Selected reduction rules of Lexa.

The RAISE rule suspends the current computation and transfers control to a handler. The first
operand of raise is interpreted into a handler label ! identifying the handler instance to raise
to. The second operand is the argument to the effect operation. A handler frame matching the
label ! is found in the evaluation context, and the evaluation context is unwound to that point.
Further, a resumption is reified and stored in the heap. It is made up of the unwound frames and
represents the suspended computation. A fresh label !: identifies the resumption and can be used
as a first-class value. We enforce dynamically that the resumption is resumed at most once, as we
discuss soon. The handler code identified by %op is the next redex. It accepts three arguments, so a
new local environment is set up to run the handler code: !env is the closure environment for %op,
�̂ (E2) is the argument to the effect operation, and !: is the resumption.

The RESUME rule continues a suspended computation. The first operand of resume is interpreted
into a label !: identifying the resumption. The second operand is the argument to the resumption. A
resumption cont  ′ · (�′, let G ′ = � in C ′) is found in the heap with the label !: , and the frames  ′
are pushed onto the evaluation context. �′, updated to bind G ′ to �̂ (E2), becomes the current local
environment, and C ′ becomes the term to be evaluated next. To prevent the resumption from being
resumed again, the heap is updated to map the label !: to the nonsense value ns. Attempting to
use !: as a resumption will cause the evaluation to get stuck.
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location ℓ F %

word E F ℓ | 8 | ns
operand > F r | E
instruction ] F add r, > | mkstk r | salloc 8 | sfree 8 | malloc r3 , 8 |

mov r3 , > | load r3 , [rB + 8] | store [r3 + 8], >B |
push > | pop r | call > | jmp > | return | halt

instruction sequence � F · | ]; �
program � F %1 : �1, · · · , %= : �=

Figure 6. Syntax of Salt.

location ℓ F · · · | ! | next(ℓ)
code memory " F {%1 ↦→ �1, · · · , %= ↦→ �=}
stack B F nil | B :: E
heap value + F 〈E1, · · · , E=〉 | B
heap � F {!1 ↦→ +1, · · · , != ↦→ +=}
register file ' F

{
sp ↦→ Esp, ip ↦→ Eip, r1 ↦→ E1, · · · , rn ↦→ E=

}
configuration � F 〈" ‖ � ‖ '〉

Figure 7. Syntax of the Salt abstract machine.

3.2 Target Language: Salt
Salt is an assembly-like language supporting heap-allocated stacks.

Syntax. Figure 6 presents the syntax of Salt. A word is either an address ℓ , an integer 8 , or non-
sense ns. An operand is either a word E or a register name r. Instructions are standard of an abstract
assembly language. The only exception is the mkstk instruction, which is for allocating new stacks
on the heap. A program � is a finite map from code addresses (ranged over by % ) to instruction
sequences. One of the code addresses is designated as the main function.

Operational semantics. We give an operational semantics to Salt as an abstract machine. The
extra syntax needed for defining the machine’s semantics is shown in Figure 7.

A stack is a sequence of words ending with a special symbol nil that marks the base (as opposed
to the top) of the stack. Stacks are heap-allocated; they are heap values, just like tuples.

An address can be a heap location ! or a code-memory location % . Heap locations cannot appear
in the program text. Locations can also be constructed through the next constructor.The notations ℓ8
and next

8 (ℓ) are interchangeable, meaning next(· · · (next(ℓ)) · · · ) with 8 occurrences of next. For
example, if ! is the base of a stack in a heap � , meaning � (!) = nil :: E1 :: · · · :: E= , then
! 9 = next

9 (!) is the stack location where E 9 is stored (1 ≤ 9 ≤ =).
A register file ' contains a finite number of registers. There are two distinguished registers: the

stack-pointer register sp and the instruction-pointer register ip. We define ameta-level function '̂(>)
such that '̂(r) = '(r) and '̂(E) = E .
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'(ip) = ℓ "̂ (ℓ) = mkstk r ! is fresh
〈" ‖ � ‖ '〉 −→ 〈" ‖ � [! ↦→ nil] ‖ ' [ip ↦→ next(ℓ), r ↦→ !]〉

'(ip) = ℓ "̂ (ℓ) = salloc = '(sp) = !< � (!) = nil :: E1 :: · · · :: E<
〈" ‖ � ‖ '〉 −→ 〈" ‖ � [! ↦→ nil :: E1 :: · · · :: E< :: ns :: · · · :: ns︸         ︷︷         ︸

=

] ‖ ' [ip ↦→ next(ℓ), sp ↦→ !<+=]〉

'(ip) = ℓ "̂ (ℓ) = mov sp, > '̂(>) = !< � (!) = nil :: E1 :: · · · :: E< :: · · · :: E=
〈" ‖ � ‖ '〉 −→ 〈" ‖ � [! ↦→ nil :: E1 :: · · · :: E<] ‖ ' [ip ↦→ next(ℓ), sp ↦→ !<]〉

'(ip) = ℓ "̂ (ℓ) = call > '(sp) = !< � (!) = nil :: E1 :: · · · :: E< '̂(>) = ℓdest
〈" ‖ � ‖ '〉 −→ 〈" ‖ � [! ↦→ nil :: E1 :: · · · :: E< :: next(ℓ)] ‖ ' [ip ↦→ ℓdest, sp ↦→ !<+1]〉

'(ip) = ℓ "̂ (ℓ) = return '(sp) = !< � (!) = nil :: E1 :: · · · :: E<−1 :: ℓdest
〈" ‖ � ‖ '〉 −→ 〈" ‖ � [! ↦→ nil :: E1 :: · · · :: E<−1] ‖ ' [ip ↦→ ℓdest, sp ↦→ !<−1]〉

Figure 8. Selected reduction rules of Salt.

A code memory " maps locations % to instruction sequences. If" (%) = ]0; · · · ; ]8−1; � , then the
notations next8 (%) and % 8 mean the address of the instruction subsequence � . We define a meta-level
partial function "̂ (ℓ) such that "̂ (% 8) = ]8 if" (%) = ]0; · · · ; ]= (0 ≤ 8 ≤ =).

A machine configuration� consists of an immutable code memory, a mutable heap, and a mutable
register file. Reduction takes the form 〈" ‖ � ‖ '〉 −→ 〈" ‖ � ′ ‖ '′〉.

The full set of reduction rules can be found in Appendix B. Figure 8 shows selected rules that
deal with stacks. To take a step, the instruction at the address stored in ip is executed. In each
rule, the second premise specifies the instruction to execute. In case of a call, return, or jmp, ip is
updated to reflect the nonlocal control transfer. In all other cases, ip is incremented.

The register sp always points to the top of a stack—an invariant respected by all the reduction
rules. A mkstk instruction allocates a new stack on the heap. A salloc (resp. sfree) instruction
grows (resp. shrinks) the stack top pointed to by sp. Newly allocated stack slots are initialized to
ns. For an instruction mov r3 , > , the word '̂(>) is copied into r3 , and in case r3 is sp and '̂(>) is a
stack location !< , the stack ! is cut to ensure that sp points to the stack top !< . The opcodes call
and return are like those in x86: they push or pop the return address onto or off the stack.

Notice that Salt does not have instructions specialized to effect handlers. Rather, effect handlers
will be compiled to the low-level, general-purpose instructions of Salt. The low-level nature of
Salt distinguishes our approach from previous works [31, 30, 27] that define translations to formal
models of high-level functional languages à la System F.

4 Translating Lexa to Salt
4.1 Overview
The translation from Lexa to Salt is defined with functions of the forms È�É = � , È_G. CÉ = � ,
ÈCÉΓ = � , È4ÉΓ = � , and ÈEÉ

r
Γ = ], for translating Lexa programs, functions, terms, expressions, and

values, respectively. For visual clarity, Lexa constructs are typeset in blue and Salt constructs in
pink. The metavariable Γ F n | Γ, G denotes a sequence of local variables in Lexa.

Figure 10 defines the translation for selected Lexa constructs. A full version can be found in
Appendix C. È_G. CÉ = � translates a Lexa function into a Salt instruction sequence. It uses a
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Figure 9. Layout of a single stack in Salt.

simplified calling convention where all arguments are passed through registers and, upon entering
a function, immediately pushed to the stack. Register r1 is used to store the return value. Before
leaving a function, the stack frame is deallocated by the callee. The last instruction return pops the
return address from the previous frame and jumps to it.

The layout of a single stack is shown in Figure 9. The stack grows downwards. A black bar marks
the base of a stack, and a thick black line marks the boundary between frames for visual clarity.
Register sp always points to the top of the stack. The stack consists of a sequence of frames, with
each frame starting with the arguments and local variables and ending with the return address; the
most recent frame does not have a return address.
ÈCÉΓ = � translates a term C , with Γ providing bindings for the free variables in C . The result of

evaluating the term C is left in r1. È4ÉΓ = � translates an expression 4 , putting the result in r1. Most
cases of this translation are ordinary, except for handle, raise, and resume expressions. ÈEÉrΓ = ]
translates a value E to an instruction ] that stores the word in the provided register r.

4.2 Translating handle, raise, and resume with Trampolines
We now illustrate the translation of handle, raise, and resume expressions. Most of the work
happens in the built-in trampoline functions %handle, %raise, and %resume, which are provided in the
right column of Figure 10 as a reference.

To understand what the trampoline functions do, we illustrate concrete executions of the sched-
uler program (Figure 1) as control goes in and out of the trampoline functions. Figure 11 contains
three subfigures, each illustrating the execution of a call to handle, raise, and resume, respectively.
Each subfigure contains five state snapshots at different points during the execution of a trampoline:
(1) before the trampoline is called, (2) at the beginning of the trampoline, (3) inside the trampoline,
(4) before control is about to leave the trampoline, and (5) after control leaves the trampoline.
Each state snapshot consists of the register file and the heap-allocated stacks. Registers and stacks
unrelated to the discussion are omitted. Stack slots that belong to header frames (explained later)
are highlighted in yellow. The use of ∗ as a location offset (e.g., as in %∗spawn) means that the exact
offset is not relevant to the discussion.

As the readers go through the discussion, they should consult Figures 1 and 10. It helps to pay
attention to the ip register, which points to the next instruction to execute.

Translating handle with %handle. The state snapshots in Figure 11(a) shows the state transitions
as control enters the handle expression and a handler instance is installed (line 18, Figure 1).
(1) In the first snapshot, control is currently inside %spawn and is about to enter the trampoline

%handle, and the registers store the arguments to %handle.



12 Cong Ma, Zhaoyi Ge, Edward Lee, and Yizhou Zhang

È�É = �

Èletrec %1 = _G1 . C1, · · · , %= = _G= . C=É =
%1 : È_G1 . C1É, · · · , %= : È_G= . C=É,
%handle : �handle, %handle_special : �handle_special,

%raise : �raise, %resume : �resume

È_G. CÉ = �

È_(G1, · · · , G=). CÉ =
push rn; · · · ; push r1; ÈCÉG=,· · · ,G1 ; sfree : ; return
where : = = + |C |

ÈCÉΓ = �

Èlet G = 4 in CÉΓ = È4ÉΓ ; push r1; ÈCÉΓ,G
ÈE endÉΓ = ÈEÉr1Γ

È4ÉΓ = �

ÈEÉΓ = ÈEÉr1Γ
ÈE0 (E1, · · · , E=)ÉΓ = ÈE=ÉrnΓ ; · · · ; ÈE0Ér0Γ ; call r0�
handle %body with � %op under Eenv

�
Γ
=

È�Ér4 ; ÈEenvÉr3Γ ; mov r2, %op; mov r1, %body;

call %handle

Èraise � E1 E2ÉΓ = ÈE2Ér2Γ ; ÈE1Ér1Γ ; call %raise

Èresume E1 E2ÉΓ = ÈE2Ér2Γ ; ÈE1Ér1Γ ; call %resume

ÈEÉrΓ = ]

ÈG8ÉrG=,· · · ,G0 = load r, [sp − 8]
È8ÉrΓ = mov r, 8

È%ÉrΓ = mov r, %

È�Ér = ]
ÈgeneralÉr = mov r, 0

ÈtailÉr = mov r, 1

ÈabortÉr = mov r, 2

%handle : # r1: %body, r2: %op, r3: !env, r4 : �

0 mov r5, sp; # save old stack pointer
1 mkstk sp; # create new stack and switch to it
2–5 push r2; push r3; push r4; push r5;

# create header frame
6 mov r6, r1; # r6: %body

7 mov r2, sp; # r2: exchanger slot
8 mov r1, r3; # r1: !env

9 call r6; # call %body with args in r1, r2
10 pop r2; # r2: top of parent stack
11 sfree 3; # deallocate remaining header frame
12 mov sp, r2; # switch stacks
13 return

%raise : # r1: exchanger slot, r2: op arg
0 load r4, [r1]; # r4: top of handler stack
1 store [r1], sp;

# exchanger: top of resumption stack
2 mov sp, r4; # switch stacks
3 load r5, [r1 − 3]; # r5: %op

4–5 malloc r3, 1; store [r3], r1; # r3: !:
6 load r1, [r1 − 2]; # r1: !env

7 jmp r5; # call %op with args in r1, r2, r3

%resume : # r1: !: , r2: resumption arg
0 load r3, [r1]; # r3: exchanger slot
1 store [r1], ns; # invalidate resumption object
2 load r4, [r3]; # r4: top of resumption stack
3 store [r3], sp; # exchanger: top of handler stack
4 mov sp, r4; # switch stacks
5 mov r1, r2; # r1: resumption arg
6 return

Figure 10. Left: Translation of selected constructs. Right: Built-in trampolines used by the translated code.

(2) Upon the instruction call %handle, the return address is pushed to the stack !0, as shown in the
second snapshot.

(3) Next, a new stack is allocated, as shown in the third snapshot.
(4) Four values are pushed onto the new stack: the address of the handler operation %yield (%fork is

omitted in the presentation), the address of the closure environment !env, the handler annotation
general (Section 5 discusses handler annotations), and the old value of sp. We call this region
of the stack the header frame. In particular, we call the fourth slot of the header frame, which
currently stores the old value of sp, the exchanger. As we will see later, the exchanger always
points to the top of some stack: either the top of the parent stack or the top of the resumption
stack. It facilitates the exchange of stack pointers during a raise or resume.
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(a) Invoking the %handle trampoline as a result of executing a handle expression (cf. line 18, Figure 1).
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(b) Invoking the %raise trampoline as a result of executing a raise expression (cf. line 31, Figure 1).
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(c) Invoking the %resume trampoline as a result of executing a resume expression (cf. line 12, Figure 1).

Figure 11. State snapshots during the execution of the program in Figure 1, illustrating the Salt trampolines
responsible for stack switching.
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Now control is about to be transferred from %handle to %body, the code being handled (line 19,
Figure 1). %body expects two arguments, which have been moved into the registers r1 and r2:
the closure environment !env and the location !41 of the newly allocated header frame. Here, the
location of the header frame is used in %body to identify the handler instance.

(5) As control enters %body in the final snapshot, the return address and the function arguments are
pushed onto the stack.

Translating raise with %raise. The state snapshots of Figure 11(b) show the state transitions as an
effect is raised (line 31, Figure 1), a resumption is captured, and control is transferred to a handler.
(1) In the first snapshot, control is currently inside %job and is about to enter the trampoline %raise,

and the registers store the arguments to %raise: r1 points to the header frame of the handler, and
r2 stores the argument to the effect operation.

(2) Upon the instruction call %raise, the return address is pushed to the stack !1, as shown in the
second snapshot.

(3) Next, the contents of the exchanger and sp are swapped, as shown in the third snapshot.
(4) In the fourth snapshot, control is about to leave %raise for the handler code %yield. A single-element

tuple is allocated to store the address of the header frame. The address of this tuple, !: , serves
as the identity of the resumption. !: is stored in r3 as the last argument to %yield.

(5) Finally, control enters %yield in the fifth snapshot. Its arguments are pushed onto the stack !0.
Notice that, importantly, no run-time search or stack walking is needed to identify the handler or
capture the resumption.

Translating resume with %resume. The state snapshots of Figure 11(c) show the state transitions as
a previously captured resumption is resumed (line 12, Figure 1).
(1) In the first snapshot, control is currently inside the caller of resume and is about to enter the

trampoline %resume. The registers store the arguments to %resume: r1 points to the resumption
object, and r2 stores the argument to the resumption.

(2) Upon the instruction call %resume, the return address is pushed to the stack !0, as shown in the
second snapshot.

(3) Next, the pointer to the exchanger in the header frame is loaded from the resumption object
at !: . The contents of the exchanger and sp are then swapped. The resumption object is then
updated to prevent it from being resumed again; this is shown in the third snapshot.

(4) In the fourth snapshot, control is about leave %resume for the resumption (i.e., the previously
suspended computation in %job). The argument to the resumption is moved to r1.

(5) Finally, a return instruction is executed, which pops the return address off the stack !1 and
transfers control to the suspended computation in %job, as shown in the fifth snapshot.

5 Optimizing Tail-Resumptive and Abortive Handlers
Entering a handle expression in general requires heap-allocating a new stack. However, this
allocation is not necessary when the handler is either tail-resumptive or abortive. A tail-resumptive
handler resumes the captured resumption in a tail position, and an abortive handler does not
resume the resumption at all. In practice, many handlers are tail-resumptive (e.g., the client code of
a coroutine-style iterator) or abortive (e.g., exception handlers). So it is worthwhile to optimize the
compilation of these handlers to make them as efficient as possible. This section formalizes how
our compilation strategy avoids allocating new stacks for tail-resumptive and abortive handlers
and how tail-resumptive handlers can be invoked in place.

Syntax. To capture the essence of how these special handlers are translated, we update the syntax
of Lexa, as Figure 12 shows. handle expressions, as well as handler frames, are extended with
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handler annotation � F tail | abort | general
expression 4 F · · · | handle %body with � %op under Eenv | raise � E1 E2
frame � F · · · | #!%op,!env

�
�〈

" ‖ � ‖  ·
(
#!

%op,!env
tail

�
)
·  ′ ‖ � ‖ let G = raise tail E1 E2 in C

〉
−→〈

" ‖ � ‖  ·
(
#!

%op,!env
tail

�
)
·  ′ · (�, let G = � in C) ‖

[
Genv ↦→ !env, ~ ↦→ �̂ (E2)

]
‖ C ′

〉
where �̂ (E1) = ! and" (%op) = _(Genv, ~).C ′〈
" ‖ � ‖  ·

(
#!

%op,!env
abort

�
)
·  ′ ‖ � ‖ let G = raise abort E1 E2 in C

〉
−→〈

" ‖ � ‖  ‖
[
Genv ↦→ !env, ~ ↦→ �̂ (E2)

]
‖ C ′

〉
where �̂ (E1) = ! and" (%op) = _(Genv, ~).C ′�

handle %body with � %op under Eenv
�
Γ
=

È�Ér4 ; ÈEenvÉr3Γ ;
mov r2, %op;
mov r1, %body;
call %handle_special
where � = tail or � = abort

Èraise tail E1 E2ÉΓ =
ÈE2Ér2Γ ; ÈE1Ér1Γ ;
load r3, [r1 − 3];
load r1, [r1 − 2];
call r3

Èraise abort E1 E2ÉΓ =
ÈE2Ér2Γ ; ÈE1Ér1Γ ;
load r3, [r1 − 3];
mov sp, r1;
load r1, [r1 − 2];
sfree 4; jmp r3

%handle_special : # r1: %body, r2: %op, r3: !env, r4 : �

push r2; push r3; push r4; push ns; # create header frame on same stack
mov r6, r1; mov r2, sp; mov r1, r3; call r6; # call %body with args in r1 and r2

sfree 4; return # deallocate header frame and return

Figure 12. Extending Lexa and the Lexa-to-Salt translation to address tail-resumptive and abortive handlers.
The HANDLE and RAISE rules are omitted as they require minimal changes to the rules in Figure 5.

annotations � that indicate whether the handler is tail-resumptive, abortive, or otherwise. To
simplify the formalism, raise expressions are also extended with annotations�, and the operational
semantics requires that a handler should only handle effects raised by a raise expression with
the same annotation. Our implementation of the Lexa compiler is more flexible, though; it does
not require raise expressions to be annotated. Rather, the raise implementation looks up the
annotation in the handler’s header frame and dispatches accordingly.

Operational semantics. The HANDLE rule in Figure 5 still works for all three kinds of handlers;
it only needs to be updated to include a metavariable �. The RAISE rule in Figure 5 is updated
to work only for raise general expressions. Two additional rules are added for raise tail and
raise abort expressions, as Figure 12 shows.

A raise tail expression is reduced in place as if it is a regular function call. A raise abort

expression is reduced by aborting the surrounding computation delimited by the handler frame.
Notice that in both cases, the handler implementation " (%op) is no longer parameterized by a
continuation : . Neither case reifies the resumption as a heap-allocated object, which justifies the
optimization of not allocating new stacks in the translation.



16 Cong Ma, Zhaoyi Ge, Edward Lee, and Yizhou Zhang

Importantly, even though tail-resumptive handlers are raised in place, they can readily raise
their own effects without any extra bookkeeping, thanks to the lexical scoping of handlers. In
languages where handlers are dynamically scoped, in-place invocation of tail-resumptive handlers
is tricky to get right: extra care must be taken to ensure that the in-place invocation of a handler
does not bring in unintended handlers in the dynamic context. For example, in Xie and Leijen [30],
the tail-resume optimization requires a special under construct, which filters out any handlers that
should be skipped when the tail-resumptive handler raises its own effects. In contrast, with lexical
scoping, a tail-resumptive handler has already captured the right handlers in its lexical closure, so
it can be invoked directly without extra machinery! This simplicity speaks to the well-behaved
nature of the lexical-scoping semantics.

Translation. Figure 12 shows that the translation of handle expressions is specialized for tail-
resumptive and abortive handlers: it allocates the header frame on the same stack as the parent.
Instead of %handle, we use the trampoline %handle_special to translate a handle expression when the
handler is declared tail or abort. Notice that the implementation of %handle_special does not use
any mkstk instructions. Also notice that %handle_special pushes an ns value onto the stack in place of
the exchanger, as the exchanger is needed only when the resumption has to be reified and stacks
switched.

Figure 12 also shows how raise tail and raise abort expressions are translated. The translation
of the former looks like a regular function call. The translation of the latter cuts the stack to the
abortive handler’s header frame and then jumps to the handler’s code.

6 Correctness of the Lexa-to-Salt Translation
To show that the translation is semantics-preserving, we give a simulation proof that relates the
execution of a program in Lexa to the execution of the translated program in Salt. Our theoretical
framework strictly follows Leroy [18].

First, we define two predicates, initial and final, for both languages. The initial(�,�) predicate
relates a program � with its initial configuration � , and the final(�, 8) predicate relates a terminal
configuration � with the result 8 of the program.
Definition 1 (Initial and final configurations). The predicates initialLexa (�,�), initialSalt(�,�),
finalLexa (�, 8), and finalSalt (�, 8) are defined as follows:

• initialLexa
(
letrec %8 = _G8 . C8 ,

〈{
%8 ↦→ _G8 . C8 , %init ↦→ Cinit

}
‖ {} ‖ � ‖ [] ‖ Cinit

〉)
,

where Cinit is defined as let G = %main () in let _ = exit G in ns end

• initialSalt
(
%8 : �8 ,

〈{
%8 ↦→ �8 , %init ↦→ �init

}
‖ {!init ↦→ nil} ‖ {sp ↦→ !init, ip ↦→ %init}

〉)
,

where �init is defined as È_(). CinitÉ
• finalLexa (〈" ‖ � ‖  ‖ [Gresult ↦→ 8] ‖ halt〉, 8)
• finalSalt

(〈
" ‖ � [!sp ↦→ B :: 8] ‖ ' [ip ↦→ ℓ, sp ↦→ !sp]

〉
, 8
)
where %̂ (ℓ) = halt

The initial configuration of Lexa is set up as follows. The code memory is initialized to the
top-level functions, along with an additional %init that calls the main function and exits. The heap,
the evaluation context, and the local environment are all empty.

The initial configuration of Salt is set up as follows. The code memory is initialized to the
top-level instruction sequences declared in the program, along with an additional %init that calls the
main function and halts. The heap contains an initial empty stack with the base address !init. In the
register file, sp points to the initial stack !init, and ip points to the initial instruction %init.
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In a final configuration of Lexa, the term is halt, and the value in the current local environment
is considered as the result computed by the program.

In a final configuration of Salt, ip points to a halt instruction, and the value at the top of the
active stack is considered as the result computed by the program.

Next, we define the observable behaviors of programs of the two languages. Starting from an initial
configuration, if after a finite sequence of reductions, the configuration becomes final with result 8 ,
the program is said to have the observational behavior converge(8). If the program gets stuck, the
program is said to have the observational behavior stuck. If the program neither converges nor gets
stuck after a finite sequence of reductions, the program is said to have the observational behavior
diverge.
Definition 2 (Observable behavior). Given an initial(�,�) relation, a final(�, 8) relation, and a
reduction relation→ for a language, the observable behavior � of a program � in the language is
defined with the notation � ⇓ � as follows:

� F converge(8) | stuck | diverge

� ⇓ �

initial(�,�) � →∗ � ′
final(� ′, 8)

� ⇓ converge(8)

initial(�,�) � →∗ � ′
� ′��→ ∀8,¬final(� ′, 8)

� ⇓ stuck
initial(�,�) � →∞

� ⇓ diverge

With observable behaviors defined, we can define semantic preservation.
Definition 3 (Semantic preservation). A translation function È·É is semantics-preserving if, whenever
� ⇓ � and � ≠ stuck, we have È�É ⇓ �.

To prove that our translation from Lexa to Salt preserves semantics, we use a simulation
argument: we construct a relation ∼ that relates the configurations of Lexa to those of Salt, and
show that the relation is preserved by the reduction relation of both languages. Before showing
how the relation is constructed, which is presented in the rest of this section, we first give the
necessary theoretical background. Below, we first formally define simulation and then state the
theorem that reduces semantic preservation to simulation.
Definition 4 (Simulation). A target-language reduction relation→ simulates a source-language
reduction relation→ with respect to a relation ∼ if, for all �1, �2, and � ′1 such that �1 ∼ �2 and
�1 → � ′1, there exists � ′2 such that �2 →+ � ′2 and � ′1 ∼ � ′2.
Theorem 1. A function È·É translating programs in a source language L1 to programs in a target
language L2 is semantics-preserving, if given an L1 program �1 and its translation �2 = È�1É in
L2, the following conditions hold:

(1) If initialL1 (�1,�1) and initialL2 (�2,�2), then �1 ∼ �2.
(2) If �1 ∼ �2 and finalL1 (�1, 8), then finalL2 (�2, 8).
(3) → simulates→ with respect to ∼.

The proof of Theorem 1 can be found in Leroy [18]. Given the theorem, all we need to do is to
construct the simulation relation ∼ and show that it satisfies the three conditions.



18 Cong Ma, Zhaoyi Ge, Edward Lee, and Yizhou Zhang

We now construct the � ∼ � relation between Lexa and Salt configurations:

(�, C) ins∼ � ( , �) context∼
Ξ

(
�stacks, ℓsp

)
�

data∼
Ξ
� "

code∼ " " (%) = ]0 :: · · · ] 9 :: �

〈" ‖ � ‖  ‖ � ‖ C〉 ∼
〈
" ‖ �stacks ] � ‖

{
sp ↦→ ℓsp, ip ↦→ % 9+1}〉

The relation is defined using several auxiliary relations that relate components of the configurations.
We briefly describe them below; their definitions are omitted for brevity but can be found in
Appendix D. Some auxiliary relations are indexed by a context Ξ that maps Lexa labels to Salt
addresses. The mapping for most labels can be statically determined, except for the handler labels
of tail-resumptive and abortive handlers. These labels correspond to addresses in the middle of a
stack; the offset from the base of a stack is only known at run time.

The first premise (�, C) ins∼ � relates a Lexa term C to a Salt instruction sequence � . The relation
also takes as input a Lexa local environment �: local variables in � are stack-allocated and need to
be deallocated at the end of the instruction sequence � .

The second premise ( , �) context∼
Ξ

(
�stacks, ℓsp

)
connects the notions of the current point of control

in the two languages. It relates a Lexa evaluation context  to a Salt heap �stacks. An evaluation
context in Lexa can correspond to multiple stacks in Salt, so �stacks can contain multiple entries.
The relation also relates a local environment � and the location pointed to by the stack pointer: �
corresponds to the most recently pushed stack frame.

The third premise � data∼
Ξ
� relates a Lexa heap � to a Salt heap � . The Lexa heap contains

tuples and captured resumptions. How Lexa tuples and Salt tuples are related is straightforward.
As for resumptions, one resumption in Lexa corresponds to a single-element tuple and a collection
of stacks in Salt. The correspondence between a Lexa resumption and a collection of Salt stacks
is defined similarly to the relation context∼

Ξ
discussed earlier.

The fourth premise " code∼ " relates a code memory " in Lexa to a code memory " in Salt.
The relation is straightforward.

The final premise states that the instruction sequence � , pointed to by the instruction pointer ip,
must be a subsequence of a function in the code memory" .
Theorem 2. The translation from Lexa to Salt is semantics-preserving.

Theorem 2 is reduced to proving that the simulation relation ∼ satisfies the three conditions
prescribed in Theorem 1. The proof is largely mechanical and can be found in the appendix.

7 The Lexa Compiler
The previous sections provide a formal account of the compilation process. In this section, we
describe the implementation of our compiler for Lexa.

Unlike the formalization, which assumes programs have undergone closure conversion, our
compiler supports a friendlier syntax for Lexa.The compiler applies closure conversion and hoisting
to a Lexa program before further compiling it to C. The compiled C program is then fed to LLVM
for optimization and code generation. The generated code is linked with Boehm–Demers–Weiser
garbage collector [5]. The compilation from Lexa to C is syntax-directed and does not involve any
optimization; we leave all standard optimizations to LLVM.

We implement a C library, called StackTrek, that provides low-level facilities for stack switching.
Its design largely follows the formalization discussed in the previous sections. The StackTrek library
consists of x86-64 assembly functions responsible for stack switching. It also provides a set of
user-facing macros, which are useful in themselves to a C programmer who wants to write programs
with lexical effect handlers.



19

1 queue_t* q = queueMake();

2 int state = 0;

3 int n_jobs = 1000;

4 void driver(){

5 resumption_t* k = queueDeq(q);

6 RESUME(k, 0);

7 driver();

8 }

9 void yield(resumption_t* k){

10 queueEnq(q, k);

11 }

12 void fork(void* g, resumption_t* k){

13 queueEnq(q, k);

14 spawn(g);

15 }

16 void spawn(void (*f)(header_t*)){

17 HANDLE(f, ({GENERAL, yield},

18 {GENERAL, fork}));

19 }

20 void scheduler(void (*f)(header_t*)){

21 spawn(f);

22 driver();

23 }

24 void job(header_t* P){

25 · · · ; RAISE(P, 0, ()); · · ·
26 }

27 void jobs(header_t* P, header_t* T){

28 for (int i = n_jobs; i > 0; i--){

29 RAISE(P, 1, (job));

30 }

31 }

32 int main(){

33 init_stack_pool();

34 scheduler(jobs);

35 destroy_stack_pool();

36 }

Figure 13. The scheduler example in C using StackTrek.

7.1 Overview
StackTrek provides several macros for stack switching: HANDLE, RAISE, and RESUME. They correspond
to the built-in functions %handle, %raise, and %resume in the formal translation (Section 4). Figure 13
demonstrates how the macros are used in the compiled C code for the scheduler example in Figure 1.
To improve readability, we use C’s global variables and remove the env parameter from closures.
We also remove the Tick and Exn handlers for simplicity. An actual program would need to handle
the exceptional case of an empty queue at line 5.

HANDLE (line 17) takes two arguments: the code to be handled and the handler. The handler
contains an implementation for each effect operation. It also contains an annotation for each
operation implementation. Depending on the annotation, HANDLE may allocate a new stack and
switch to it. It allocates a header frame and uses assembly to enter the code being handled. HANDLE
contains several branches intended for handlers of different annotations. For any handle expression,
the branch to take is always resolved at compile time, so HANDLE is essentially executed as a linear
sequence of instructions.

RAISE (line 25 and 29) takes three arguments: the pointer to the header frame identifying the
handler, the operation index, and the arguments. The operation index identifies which effect opera-
tion of the handler is being invoked. RAISE uses assembly to invoke the operation implementation
and, depending on the annotation stored in the header frame, may involve a stack switch.

RESUME (line 6) takes two arguments: the resumption and the value that the resumption is to be
resumed with. Our formal translation enforces at run time that a resumption can be resumed at most
once. This restriction is similar to MultiCore OCaml [28], which supports single-shot resumptions
but not multishot ones. As mentioned earlier, supporting multishot resumptions is a nongoal for us.
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1 ^__attribute^__((naked, preserve_none))

2 int64_t save_switch_and_run_handler(intptr_t* env, int64_t arg, void* exec, void* func) {

3 ^__asm^__ (

4 ”movq 0(%%rdx), %%rax” ^// Load sp from the exchanger

5 ”movq %%rsp, 0(%%rdx)” ^// Save sp to the exchanger

6 ”movq %%rax, %%rsp” ^// Switch to the new stack

7 ”jmpq *%%rcx” ^// Call the handler; the first three arguments are already in the right registers

8 );}

Figure 14. Stack-switching function for the RAISE macro.

7.2 Limited Support for Multishot Resumptions
Although our formalization does not support multishot resumptions, our implementation does, with
some restrictions. First, let’s see why it is difficult for us to fully support multishot resumptions.
Imagine a naive implementation where stacks are copied when a resumption is resumed. The
original resumption remains in the heap, and the new copy is linked to the active stack. The
problem is that within the copied stacks there can still be pointers to locations within the original
resumption; it is impractical to search for and update all of them.

In the absence of multishot resumptions, the compiler can assume that all handler frames,
regardless of whether they are on the active stack or in the heap, are identified by unique labels.
Because the memory allocator assigns unique addresses when allocating handler header frames,
the compiler can use these addresses to represent the corresponding handler labels in Lexa. This
correspondence allows the compiler to translate raise into a constant-time operation leveraging
the random-access memory.

However, in the presence of multishot resumptions, this assumption no longer holds. Two distinct
header frames can correspond to the same label in Lexa but have different memory addresses.
Nevertheless, our implementation still supports multishot resumptions under specific conditions.
We require that a multishot resumption contain no more than one stack and that at most one copy of
it be installed on the active stack at any time. This restriction removes the need to search the copied
stack for pointers into the original stack. Despite this restriction, all the benchmark programs used
by prior work [22] and by our evaluation (Section 8) can still be expressed idiomatically.

7.3 Stack-Switching Functions
At the core of each StackTrek macro is a call to a function containing inline assembly. We call these
functions stack-switching functions. They are written as naked C functions so that the compiler
does not generate a prologue or epilogue for them. As an example, the function in Figure 14 is
responsible for the stack switch when an effect is raised with the RAISE macro. It is convenient
that the assembly sequences are wrapped inside C functions, as the C compiler will respect calling-
convention annotations (Section 7.4) and thus save and restore the register state during the call
and return.

7.4 Calling Convention
In Salt, which is an abstract machine, registers are used only for shuttling values between the
memory and the processor. But an actual machine uses registers to store the program state as well.
During the activation of a function, registers can be used to store local variables and temporary
values, and when control is transferred to another function, the values of the registers need to be
preserved so that computation can continue when control returns. The System V calling convention
for x86-64, used by most of the modern C compilers, prescribes that about half of the registers
be callee-saved and the other half be caller-saved. This scheme works when control flows are all
local. But in the presence of stack switching, a caller might be returned to from a different callee,
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which does not have the correct register state that the caller expects. A common approach is to use
setjmp and longjmp to save and restore the register state as part of the stack-switching process.

The OCaml compiler has a different approach. It uses a calling convention where all registers are
caller-saved. This design choice has implications for stack switching: it does not matter if control is
returned to from a different callee, because the caller can restore the register state just by itself. As
a result, stack switching is cheap, as no explicit saving and restoring needs to be done by the user
program. We will refer to this calling convention as preserve_none.

However, the preserve_none calling convention is not without cost. It may lead to higher
overhead than the System V calling convention. Consider a function A that uses a register r
throughout its activation and calls a function B twice, where B does not use r. With preserve_none,
r needs to be saved and restored before and after each call to B even though B does not use r,
costing four instructions. In contrast, with the System V calling convention and with r being a
callee-saved register, only two instructions are needed for saving and restoring r in the prologue
and epilogue of A.

In our implementation of Lexa, we use a hybrid calling convention. The System V calling conven-
tion is used for most user functions, while preserve_none is used for the stack-switching functions
and for functions that implement effect operations. The preserve_none attribute in function decla-
rations (e.g., line 1 of Figure 14) serves as a hint to the LLVM compiler. The preserve_none calling
convention simplifies the implementation of StackTrek, because the stack-switching functions are
no longer responsible for saving and restoring callee-saved registers, which would normally be
done using setjmp and longjmp. Using preserve_none also facilitates optimizations, as we discuss
soon. Furthermore, as preserve_none is not used for most user functions, we obtain the usual
performance profile associated with the System V calling convention.

Lifting the overhead out of the hot path. When an effect operation is invoked in a hot path,
the overhead of saving and restoring callee-saved registers can be significant. Consider line 29
in Figure 13, where the fork operation is invoked in a tight loop. If the System V calling convention
is used, the callee-saved registers need to be saved inside the stack-switching function for RAISE
every time fork is raised. This overhead will dominate the running time of the loop. In contrast, if
the preserve_none calling convention is used for the stack-switching functions, since the compiler
knows that calls to these functions can potentially clobber all registers, it includes every register
in the use set of the caller. Consequently, the compiler will save and restore these registers in the
prologue and epilogue of the caller, incurring the overhead only once.

Exposing tail-call optimization opportunities. The preserve_none calling convention enables
tail-call optimizations that would otherwise bemissed if setjmp and longjmpwere used to implement
stack switching.

Consider the program in Figure 15(a). It implements round-robin scheduling between two tasks.
When one task is running, the other task is parked in the heap. When the running task yields
(line 5), the parked task is resumed (line 13). Notice that the parked task is resumed in a tail position
of the yield handler.1 This scheduler is similar to the one in Sivaramakrishnan et al. [28, §3] in
that a paused computation is resumed in a tail position of a handler.

Think about what happens if stack switching is implemented using setjmp and longjmp. When
control goes from the main stack to a parked stack, callee-saved registers must be saved on the
current stack in a struct of type jmp_buf. Later when control comes back, the registers must
be restored from the struct. As a consequence, yield frames will accumulate on the stack, as

1This handler for yield is not tail-resumptive, however. Although k’ is resumed in a tail position of the handler, it is not the
same resumption k of the current handler. So the tail-resume optimization does not apply.
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1 val parked = ref None;

2 val work = fun() {

3 handle

4 while true

5 raise P.yield ()

6 done

7 with P : Process =

8 | yield _ k ⇒

9 val peer = !parked;

10 parked ^:= Some k;

11 match peer with

12 | Some k’ ⇒

13 resume k’ ()

14 | None ⇒ ()

15 | fork g k ⇒ assert false

16 };

17 work();

18 work()

(a) Round-robin scheduling with
effect handlers.
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Figure 15. For the program in (a), using setjmp and longjmp for stack switching can lead to stack overflow (b),
while the preserve_none calling convention used by the Lexa compiler allows tail calls to be optimized (c).

Figure 15(b) illustrates. So the main stack grows with each yield and may eventually overflow
(even if the jmp_buf structs are heap-allocated).

The problem is addressed by the preserve_none calling convention.The caller of a stack-switching
function is required to save the register state before the call. Thus, the boundary between the caller
and the callee demarcates a stack region that in itself records the information needed to resume
the paused computation—these boundaries are indicated by the black triangles in Figure 15(c). Any
code holding a stack pointer to a location marked by a black triangle can resume the computation
at that location simply by executing a ret instruction, just as in our formalization.

The Lexa compiler translates resume k’ () at line 13 using the RESUME macro, which calls a stack-
switching function at the end. Since the call is in a tail position, the compiler ensures that the yield
frame will be popped off the main stack before the call.2 Furthermore, since the stack-switching
function itself does not have a frame, the stack size remains constant.

7.5 Reducing Allocations
For efficiency, we aim to reduce heap allocations. Below, we discuss StackTrek’s allocation strategies
for different kinds of objects.

Stacklets. We use fixed-size stacklets for their simplicity, though StackTrek can be easily adapted
to use a different allocation strategy [10]. Like prior work on implementing stacks and contin-
uations [10, 28], we use a stack pool to recycle recently deallocated stacklets. The stack pool is
initialized at program startup and is a contiguous block of memory divided into fixed-size stacklets.
A global bitmap is used to keep track of the availability of the stacklets. When the runtime needs
2This tail-call optimization requires that the caller yield to also use the preserve_none calling convention, which is the
case in our implementation as mentioned earlier.
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more stacklets than are available in the pool, it allocates a new block of memory on the spot.
The stacklets are reclaimed using a combination of manual memory management and garbage
collection. On the manual side, StackTrek releases stacklets back to the pool when it is certain
that the stacklets are no longer needed. This can happen when the body of a handle expression
completes. It can also happen when an abortive handler is invoked and control is transferred to an
earlier stacklet. StackTrek also provides a special macro RESUME_FINAL for indicating that this is
the last time a resumption is resumed. No copy of the stacklet will be made if it is installed with
RESUME_FINAL, and the stacklet will be released to the pool after the resumption finishes. Stacklets
that are not released manually are reclaimed by the garbage collector.

Header frames. In the formal translation from Lexa to Salt, a header frame contains a pointer to
the environment of the handler, which is a heap-allocated object. StackTrek saves an allocation by
allocating the environment directly as part of the header frame. This means that tail-resumptive
and abortive handlers do not incur any heap allocation.

8 Evaluation
Setup of experiments. We evaluate our implementation of Lexa against other implementations
of lexical effect handlers, on a benchmark suit maintained by the community [1]. We include three
additional benchmarks: Resume Nontail 2, Scheduler, and Interruptible Iterator. The first tests the
efficiency of capturing and resuming deep resumption stacks. The other two represent real-world
uses of effect handlers and test the efficiency of effect propagation in the presence of deep stacks of
handlers. The experiments were conducted on a workstation with a 3.5GHz CPU.

We compare Lexa with the two other languages that support lexical effect handlers: Effekt and
Koka. Koka is most known for its support of dynamically scoped handlers, but it has recently
incorporated support for named handlers [32], which are a form of lexical handlers. We also use as
baselines two languages that support dynamically scoped handlers: Koka and OCaml. For Effekt
and Koka, we use the latest versions available at the time of writing: Effekt 0.2.2, Koka 3.1.1, and
OCaml 5.3.0. For OCaml, we use the multicont library [14] for multishot resumptions.

The Effekt compiler has multiple back ends. For most benchmarks, we use the MLton back
end, as it produces the fastest code—MLton is a whole-program optimizing compiler for Standard
ML [2]. However, the MLton back end cannot handle several benchmarks, due to a conflict between
MLton’s monomorphization requirement and the Effekt compiler’s typed CPS translation: the
benchmarks feature recursive, handler-polymorphic functions, which are CPS-translated by the
Effekt compiler to stack-shape-polymorphic functions that cannot be monomorphized by MLton.
For these benchmarks, we resort to the fastest back ends that can handle them: we use the Chez
Scheme back end for Generator and Handler Sieve, and we use the Node.js back end for Scheduler
and Interruptible Iterator. As Scheme and JavaScript run on virtual machines, running times were
measured after a warm-up period.

The systems under comparison differ in many aspects, and the differences in performance can be
attributed to many factors, not just the efficiency of the implementations of effect handlers. Most
notably, Lexa has limited support for multishot resumptions, whereas the other systems support
them without restrictions. In addition, Lexa, Effekt’s MLton back end, and the OCaml compiler use
garbage collectors, whereas Koka uses reference counting. Furthermore, Koka uses GCC as its back
end, while Lexa uses LLVM. We advise the reader to take this potential for bias into account when
interpreting the results.
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Table 1. Benchmark running times measured for different systems. N/A indicates that the benchmark could
not be implemented in the respective system. For those benchmarks that we could not implement with
Effekt’s MLton back end, we use the fastest back ends that can handle them (Chez Scheme or Node.js).

Benchmarks Running time (ms)

Lexa Effekt Koka (named) Koka (regular) OCaml

Countdown 0 58 3721 2008 2468
Fibonacci Recursive 718 1659 1356 1346 1404

Product Early 146 279 1628 1636 150
Iterator 0 115 436 269 262
Nqueens 411 144 2070 1959 854
Generator 1261 1536 (Scheme) 9474 9337 1085

Tree Explore 189 292 293 285 172
Triples 267 35 1868 2336 424

Resume Nontail 170 113 1504 1434 265
Parsing Dollars 326 117 3042 3163 1888
Handler Sieve 570 3482 (Scheme) 2180 2216 2824

Resume Nontail 2 170 258 407620 406230 391
Scheduler 322 1892866 (JS) N/A 2975 467

Interruptible Iterator 176 1225211 (JS) 1032 N/A 237190

Results of experiments. The results are presented in Table 1 and Figure 16. Table 1 shows
the running times of the benchmarks for each of the systems under comparison. For the same
benchmark, the same input size is used across the systems. Lexa is the fastest system on eight out
of the 14 benchmarks. On the benchmarks where Lexa is not the fastest, it is the second fastest.

Figure 16 shows scaling plots for the benchmarks, with the input size on the x-axis and the
running time on the y-axis. Lexa is the most scalable system on the same eight benchmarks.

Compared to Effekt, Lexa fares particularly well on three benchmarks: Handler Sieve, Scheduler,
and Interruptible Iterator. These benchmarks involve recursion and thus lead to deep stacks of
handlers at run time.

Also notable are the results for Countdown and Iterator, where Lexa is able to compile the
program to a constant. Although most credit should be given to LLVM that carries out the heavy
lifting of optimizations, that Lexa is able to generate code amenable to such optimizations is a
testament to the quality of the generated code. In particular, because Lexa specially treats tail-
resumptive handlers and allocates the header frame on the same stack, no assembly is involved in
the Lexa-to-C compilation, allowing LLVM to perform optimizations without hindrance.

Lexa is not as efficient on benchmarks that use multishot resumptions (namely NQueens, Tree
Explore, and Triples). On these benchmarks, Effekt is the fastest. Effekt represents resumptions as
immutable closures and thus need not copy resumptions when they are used more than once.

The Resume Nontail 2 benchmark differs from Resume Nontail in the original benchmark suite [1]
in that an effectful function is made non-tail-recursive to force the stack to grow as the input size
increases. This benchmark is interesting because it stresses the cost of capturing and resuming deep
resumption stacks. Both Lexa and Effekt exhibit a linear scaling behavior on this benchmark. OCaml
is piece-wise linear, which is likely a result of its stack management strategy. Koka (regular) and
Koka (named) exhibit a super-linear scaling behavior, which suggests that capturing a resumption
is not a constant-time operation in Koka. Koka builds up the resumption frame by frame, which
takes longer as the stack grows.
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1Figure 16. Scaling behaviors of different systems on 14 benchmarks. Effekt is omitted from the Scheduler
chart; it has been shown in Figure 2. Resume Nontail 2 and Interruptible Iterator are each represented by
two charts; the second chart (with the title in bold) reports on the systems that exhibit super-linear scaling
behaviors on the benchmark, using Lexa as a reference point.
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The Scheduler benchmark, featuring Tick effects, is shown in Figure 1. We could not implement
Scheduler with named handlers in Koka due to a compiler-internal error. Effekt does not scale on
this benchmark, as discussed in Section 2. Interestingly, OCaml scales well: in OCaml, exception
handling is implemented with a different mechanism than effect handling—by passing the code
address and stack location of an exception handler to the raise site. Koka (regular) also scales
linearly, but for a different reason: tail resumption. Because the Tick handler is tail-resumptive
(line 53) and because Koka performs the tail-resume optimization, Tick can be invoked in place
without reifying a resumption. However, if the tail-resume hint is removed from the Tick handler,
Koka’s performance degrades to super-linear scaling, because the cost of reifying a resumption
increases with the input size.

The Interruptible Iterator benchmark is adapted from prior work [19, 36]. An implementation
of this benchmark in Lexa is sketched in Appendix E. It uses bidirectional effects [36] to allow
the client code of a coroutine iterator to concurrently update a list during iteration. The iterator
code raises Yield effects to the client, which can then issue reverse-direction interrupts to the
iterator: the client can replace the current element by raising a Replace effect, and it can remove
the current element by raising a Behead effect. Like the Scheduler benchmark, Interruptible Iterator
leads to $ (=) recursion depth and installs $ (=) handlers, where = is the length of the list being
iterated. Unlike in Scheduler, it seems that the$ (=) installed handlers cannot be avoided simply by
adjusting the lexical scope of the handler. Effekt does not scale well for this benchmark, requiring
super-linearly increasing running time. Like Effekt, OCaml also scales super-linearly, as its effect-
handling semantics requires walking the stack to find the Yield handler. We were able to implement
Interruptible Iterator in Koka with named handlers, though not with regular handlers. We observe
linear scaling with Koka’s named handlers. But if the tail-resume hint is removed from the Yield

handler, we observe super-linear scaling, which again suggests that reifying a resumption is not a
constant-time operation in Koka.

9 Related Work
Zhang et al. [35] demonstrate that dynamically scoped exception handlers can lead to exceptions
being caught by the wrong handler. To address this problem, they introduce tunneled exceptions
and a type system enforcing that exceptions tunnel through program contexts oblivious to them.
Tunneling is based on the principle of local reasoning; it is essentially a form of lexically scoped
exception handlers. Zhang et al. [35] implement tunneled exceptions for the Genus programming
language [34], compiling them to unchecked Java exceptions. Installing a handler generates a fresh
identifier, which is passed down the call chain as a capability to raise exceptions to that handler.
Upon an exception, the call stack is walked to find a handler with the matching identifier.

Zhang and Myers [33] suggest that the loss of local reasoning with dynamically scoped effect
handlers can be analogized to a loss of parametricity [29]. They prove, for a type-and-effect system
supporting effect polymorphism, that local reasoning principles are restored by lexical effect handlers,
using a logical-relations argument. Effect polymorphism, while syntactically heavier-weight than
second-class values used by Zhang et al. [35], allows more programs to be expressed.

Biernacki et al. [4] coin the term lexically scoped handlers and study two semantics for them: open
and generative. They show that generativity is necessary when effect operations can be polymorphic.
Existing languages supporting lexical handlers, including Lexa, freshly generate labels for each
installed handler instance at run time.

This generativity is also seen with multi-prompt delimited control [13]. Indeed, StackTrek is sim-
ilar to libmprompt [17], a C/C++ library for multi-prompt delimited control. Both libraries support
constant-time stack switching. StackTrek supports additional optimizations, such as avoiding the
allocation of new stacks when the delimited continuation is not used or is invoked in a tail position.
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Brachthäuser et al. [6] present Effekt’s type-and-effect system for lexically scoped handlers.
It features lightweight effect polymorphism via second-class values, as also seen in Zhang et al.
[35], and translates it to System Ξ, a calculus where handlers are passed explicitly. System Ξ is
then translated to a region-based calculus Λcap; the translation is known as lift inference [22]. Λcap

is further compiled to System F [27]. System Ξ is similar to Lexa, in that both are intermediate
languages where handlers are passed explicitly. It is different in that System Ξ is typed and imposes
the second-class restriction on functions, handlers, and continuations, which simplifies lift inference.
System C [8] extends System Ξ with first-class functions, but how to translate System C to Λcap is
left as future work. Other than lift inference, Effekt has implementations that target a monad for
multi-prompt delimited control [9, 7]. As discussed in Section 2, both implementation strategies
involve run-time computations to lift a raised effect out of the extents of its dynamically enclosing
handlers until the right handler is found.

WasmFX is a proposal for adding effect handlers to WebAssembly [23]. The proposal is largely
based on dynamically scoped handlers but does consider the possibility of named handlers, which
can be considered as a form of lexical handlers and are given a generative semantics.

Xie et al. [32] present a type-and-effect system for first-class named handlers in Koka. Koka is
initially designed around dynamically scoped handlers [16], and Xie and Leijen [30] formalize the
compilation of dynamically scoped handlers to a language with multi-prompt delimited control,
passing evidence vectors that can be looked up to find the correct handler. The implementation of
named handlers in Koka is largely based on the same mechanism, also targeting multi-prompt
delimited control while passing evidence as first-class values. The Lexa compiler targets a lower-
level language, manipulating stack layout directly.

Liu et al. [19] introduce interruptible iterators in the context of the JMatch language. Two back
ends are presented: a CPS translation to Java and a direct translation to C++. Zhang et al. [36]
introduce bidirectional effects, subsuming interruptible iterators and generalizing formalisms of
effect handlers. Applications beyond iterators are presented, such as async–await with exceptions.
A semantic soundness result is established, while an implementation is left as future work. Our
formalization and implementation of Lexa support bidirectional effects. It is also possible to encode
bidirectional effects by passing thunked effectful computations to resumptions [36].

10 Conclusion
We have presented an approach to compiling lexical effect handlers to low-level stack switching.
The compilation is faithful to the lexical scoping discipline, eliminating the cost for run-time search
for handlers. Our implementation is guided by a formal model of translation that is proven to be
semantics-preserving. The upshot is that the lexical-scoping semantics of effect handlers not only
affords local reasoning principles, as previously established, but also enables good performance,
as suggested by our empirical results. We hope that this work will encourage language designers
and implementers to explore lexical scoping as a viable alternative to dynamically scoped effect
handlers.
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A Operational Semantics of Lexa
This section defines the operational semantics of Lexa. As the code memory " is immutable
throughout the execution of a program, we omit it from the configuration in the rules below.

ADD. 〈� ‖  ‖ � ‖ let G = E1 + E2 in C〉 steps to
〈
� ‖  ‖ � [G ↦→ �̂ (E1) + �̂ (E2)] ‖ C

〉
.

VALUE. 〈� ‖  ‖ � ‖ let G = E in C〉 steps to
〈
� ‖  ‖ � [G ↦→ �̂ (E)] ‖ C

〉
.

NEWREF. 〈� ‖  ‖ � ‖ let G = newref (E0, · · · , E=−1) in C〉 steps to〈
� [! ↦→

〈
�̂ (E0), · · · , �̂ (E=−1)

〉
] ‖  ‖ � [G ↦→ !] ‖ C

〉
, where ! is a fresh heap location.

GET. 〈� ‖  ‖ � ‖ let G = c8 (E) in C〉 steps to 〈� ‖  ‖ � [G ↦→ 28] ‖ C〉, where �̂ (E) = ! and
� (!) = 〈20, · · · , 2=−1〉.

SET. 〈� ‖  ‖ � ‖ let G = E [8] ← E ′ in C〉 steps to〈
� [! ↦→

〈
20, · · · , �̂ (E ′), · · · , 2=−1

〉
] ‖  ‖ � [G ↦→ �̂ (E ′)] ‖ C

〉
, where 0 ≤ 8 < =, �̂ (E) = !, and

� (!) = 〈20, · · · , 2=−1〉. This reduction step replaces the 8th element of the tuple at location ! with
�̂ (E ′).

HANDLE.
〈
� ‖  ‖ � ‖ let G = handle %body with � %op under Eenv in C

〉
steps to〈

� ‖  · (�, let G = � in C) · #!%op,!env
�

� ‖ [Genv ↦→ !env, Ghdl ↦→ !] ‖ C ′
〉
,

where ! is a fresh location," (%body) = _(Genv, Ghdl).C ′, and �̂ (Eenv) = !env.

LEAVE.
〈
� ‖  · (�, let G ′ = � in C) · #!%op,!env

�
� ‖ �′ ‖ E end

〉
steps to

〈
� ‖  ‖ � [G ′ ↦→ �̂′ (E)] ‖ C

〉
.

APP. 〈� ‖  ‖ � ‖ let G = E (E1, · · · , E=) in C〉 steps to〈
� ‖  · (�, let G = � in C) ‖

[
G1 ↦→ �̂ (E1), · · · , G= ↦→ �̂ (E=)

]
‖ C ′

〉
,

where �̂ (E) = % and" (%) = _(G1, · · · , G=).C ′.

RET. 〈� ‖  · (�, let G = � in C) ‖ �′ ‖ E end〉 steps to
〈
� ‖  ‖ � [G ↦→ �̂′ (E)] ‖ C

〉
.

RAISE.
〈
� ‖  ·

(
#!

%op,!env
general

�
)
·  ′ ‖ � ‖ let G = raise general E1 E2 in C

〉
steps to〈

� [!: ↦→ cont

(
#!

%op,!env
general

�
)
·  ′ · (�, let G = � in C)] ‖  ‖

[
Genv ↦→ !env, ~ ↦→ �̂ (E2), : ↦→ !:

]
‖ C ′

〉
,

where !: is fresh, �̂ (E1) = !, and" (%op) = _(Genv, ~, :).C ′.

RESUME. 〈� ‖  ‖ � ‖ let G = resume E1 E2 in C〉 steps to〈
� [!: ↦→ ns] ‖  · (�, let G = � in C) ·  ′ ‖ �′ [G ′ ↦→ �̂ (E2)] ‖ C ′

〉
,

where �̂ (E1) = !: , � (!: ) = cont  ′ · (�′, let G ′ = � in C ′).

TAILRAISE.
〈
� ‖  ·

(
#!

%op,!env
tail

�
)
·  ′ ‖ � ‖ let G = raise tail E1 E2 in C

〉
steps to〈

� ‖  ·
(
#!

%op,!env
tail

�
)
·  ′ · (�, let G = � in C) ‖

[
Genv ↦→ !env, ~ ↦→ �̂ (E2)

]
‖ C ′

〉
,

where �̂ (E1) = ! and" (%op) = _(Genv, ~).C ′.

ABORTRAISE.
〈
� ‖  ·

(
#!

%op,!env
abort

�
)
·  ′ ‖ � ‖ let G = raise abort E1 E2 in C

〉
steps to〈

� ‖  ‖
[
Genv ↦→ !env, ~ ↦→ �̂ (E2)

]
‖ C ′

〉
, where �̂ (E1) = ! and" (%op) = _(Genv, ~).C ′.

EXIT. 〈� ‖  ‖ � ‖ let ~ = exit E in C〉 steps to〈
� ‖  · (�, let ~ = � in C) ‖ [Gresult ↦→ �̂ (E)] ‖ halt

〉
.
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B Operational Semantics of Salt
This section defines the small-step reduction rules of Salt. As the code memory " is immutable
throughout the execution of a program, we omit it from the configuration in the rules below. In
what follows, the auxiliary function �̂ (ℓ) is used to read the contents of a heap location. Formally,
given heap � and a heap location !8 , �̂ (!8) is defined as follows:

�̂ (!8) =
{
E8 when � (!) = 〈E0, E1, E2, · · · , E=−1〉 and 0 ≤ 8 < =
E8 when � (!) = nil :: E1 :: E2 :: · · · :: E= and 0 < 8 ≤ =

ADD.
'(ip) = ℓ "̂ (ℓ) = add r, >

〈� ‖ '〉 −→
〈
� ‖ ' [ip ↦→ ℓ+1, r ↦→ '(r) + '̂(>)]

〉
MKSTK.

'(ip) = ℓ "̂ (ℓ) = mkstk r ! is fresh
〈� ‖ '〉 −→ 〈� [! ↦→ nil] ‖ ' [ip ↦→ ℓ+1, r ↦→ !]〉

SALLOC.

'(ip) = ℓ "̂ (ℓ) = salloc = '(sp) = ! 9
sp � (!sp) = nil :: E1 :: · · · :: E 9

〈� ‖ '〉 −→
〈
� [!sp ↦→ nil :: E1 :: · · · :: E 9 ::

=︷         ︸︸         ︷
ns :: · · · :: ns] ‖ ' [ip ↦→ ℓ+1, sp ↦→ !

9+=
sp ]

〉
PUSH.

'(ip) = ℓ "̂ (ℓ) = push > '(sp) = ! 9
sp � (!sp) = nil :: E1 :: · · · :: E 9

〈� ‖ '〉 −→
〈
� [!sp ↦→ nil :: E1 :: · · · :: E 9 :: '̂(>)] ‖ ' [ip ↦→ ℓ+1, sp ↦→ !

9+1
sp ]

〉
SFREE.

'(ip) = ℓ "̂ (ℓ) = sfree = '(sp) = ! 9
sp � (!sp) = nil :: E1 :: · · · :: E 9 9 ≥ =

〈� ‖ '〉 −→
〈
� [!sp ↦→ nil :: E1 :: · · · :: E 9−=] ‖ ' [ip ↦→ ℓ+1, sp ↦→ !

9−=
sp ]

〉
POP.

'(ip) = ℓ "̂ (ℓ) = pop r '(sp) = ! 9
sp � (!sp) = nil :: E1 :: · · · :: E 9 9 > 0

〈� ‖ '〉 −→
〈
� [!sp ↦→ nil :: E1 :: · · · :: E 9−1] ‖ ' [ip ↦→ ℓ+1, r ↦→ E 9 , sp ↦→ !

9−1
sp ]

〉
MALLOC.

'(ip) = ℓ "̂ (ℓ) = malloc r3 , 8 ! is fresh

〈� ‖ '〉 −→
〈
� [! ↦→

〈 8︷      ︸︸      ︷
ns, · · · , ns

〉
] ‖ ' [ip ↦→ ℓ+1, r ↦→ !]

〉
MOV.

'(ip) = ℓ "̂ (ℓ) = mov r3 , >

〈� ‖ '〉 −→
〈
� ‖ ' [ip ↦→ ℓ+1, r3 ↦→ '̂(>)]

〉
MOV (SP). Writing to sp truncates the stack.

'(ip) = ℓ "̂ (ℓ) = mov sp, > '̂(>) = ! 9 � (!) = nil :: E1 :: · · · :: E: 9 ≤ :
〈� ‖ '〉 −→

〈
� [! ↦→ nil :: E1 :: · · · :: E 9 ] ‖ ' [ip ↦→ ℓ+1, sp ↦→ ! 9 ]

〉
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LOAD.

'(ip) = ℓ "̂ (ℓ) = load r3 , [rB + 9] '(rB ) = !
〈� ‖ '〉 −→

〈
� ‖ ' [ip ↦→ ℓ+1, r3 ↦→ �̂ (! 9 )]

〉
STORE.

'(ip) = ℓ "̂ (ℓ) = store [r3 + 9], >B '(r3 ) = ! � (!) = 〈E0, · · · , E=−1〉 9 < =

〈� ‖ '〉 −→
〈
� [! ↦→

〈
E0, · · · , E 9−1, '̂(>B ), · · · , E=−1

〉
] ‖ ' [ip ↦→ ℓ+1]

〉
CALL.

'(ip) = ℓ "̂ (ℓ) = call > '(sp) = ! 9
sp � (!sp) = nil :: E1 :: · · · :: E 9 '̂(>) = ℓdest

〈� ‖ '〉 −→
〈
� [!sp ↦→ nil :: E1 :: · · · :: E 9 :: ℓ+1] ‖ ' [ip ↦→ ℓdest, sp ↦→ !

9+1
sp ]

〉
JMP.

'(ip) = ℓ "̂ (ℓ) = jmp > '̂(>) = ℓdest
〈� ‖ '〉 −→ 〈� ‖ ' [ip ↦→ ℓdest]〉

RETURN.

'(ip) = ℓ "̂ (ℓ) = return '(sp) = ! 9
sp � (!sp) = nil :: E1 :: · · · :: E 9−1 :: ℓdest

〈� ‖ '〉 −→
〈
� [!sp ↦→ nil :: E1 :: · · · :: E 9−1] ‖ ' [ip ↦→ ℓdest, sp ↦→ !

9−1
sp ]

〉
C Translating Lexa to Salt
Translating handler annotations. A handler annotation is translated by moving the annotation
to the desired register.

ÈgeneralÉr = mov r, 0

ÈtailÉr = mov r, 1

ÈabortÉr = mov r, 2

Translating values. A value is translated by moving the value to the desired register. The trans-
lation requires knowledge of the current variable environment Γ. Variables are read at negative
offsets from the stack pointer.

ÈG8Ér(G=−1,· · · ,G0 ) = load r, [sp − 8]
È8ÉrΓ = mov r, 8

È%ÉrΓ = mov r, %

Translating top-level functions.

È_(G1, · · · , G=). CÉ = push rn; · · · ; push r1; ÈCÉG= ,· · · ,G1 ; sfree : ; return

where : = = + |C |. The auxiliary function |C | counts the number of let-bindings in a term C :

|C | =
{
0 if C is E end
1 + |C ′ | if C is let G = 4 in C ′
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Translating programs. A program is translated by translating each top-level function to a se-
quence of instructions and then linking them with the built-in trampolines (defined in Sections 4
and 5).

Èletrec %1 = _G1 . C1, · · · , %= = _G= . C=É = %1 : È_G1 . C1É, · · · , %= : È_G= . C=É,
%handle : �handle, %handle_special : �handle_special,

%raise : �raise, %resume : �resume

Translating terms.

Èlet G = 4 in CÉΓ = È4ÉΓ ; push r1; ÈCÉΓ,G
ÈE endÉΓ = ÈEÉ

r1
Γ

Translating expressions.
ÈEÉΓ is defined as

ÈEÉr1Γ
ÈE1 + E2ÉΓ is defined as

ÈE1Ér1Γ
ÈE2Ér2Γ
add r1, r2

ÈE (E1, · · · , E=)ÉΓ is defined as
ÈEÉr0Γ
ÈE=ÉrnΓ
· · ·
ÈE1Ér1Γ
call r0

Ènewref (E0, · · · , E=−1)ÉΓ is defined as

malloc r1, =
ÈE0Ér2Γ
store [r1 + 0], r2
· · ·
ÈE=−1Ér2Γ
store [r1 + = − 1], r2

Èc8 (E)ÉΓ is defined as
ÈEÉr1Γ
load r1, [r1 + 8]

ÈE1 [8] ← E2ÉΓ is defined as
ÈE2Ér1Γ
ÈE1Ér2Γ
store [r2 + 8], r1�

handle %body with � %op under Eenv
�
Γ
is defined as

È�Ér4
ÈEenvÉr3Γ
mov r2, %op
mov r1, %body
call %handle
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where %handle is a built-in function. As an optimization, when the annotation � is tail or abort,
the translation calls %handle_special instead of %handle:

È�Ér4
ÈEenvÉr3Γ
mov r2, %op
mov r1, %body
call %handle_special

Èraise general E1 E2ÉΓ is defined as

ÈE2Ér2Γ
ÈE1Ér1Γ
call %raise

Èraise tail E1 E2ÉΓ is defined as follows. The address of the handling code is loaded from the
header frame into register r3. The address of the environment is loaded from the header frame into
register r1. The control is then transferred to the handling code.

ÈE2Ér2Γ
ÈE1Ér1Γ
load r3, [r1 − 3]
load r1, [r1 − 2]
call r3

Èraise abort E1 E2ÉΓ is defined as follows. The translation is similar to the raise tail case, but it
additionally cuts the stack to the header frame and deallocates the four words of the header frame,
exposing the frame of the caller of %handle as the top frame. The control is then transferred to the
handling code. Notice that jmp is used instead of call. This is because the return address of the
previous frame is already pushed on the stack by the instruction call %handle_special.

ÈE2Ér2Γ
ÈE1Ér1Γ
load r3, [r1 − 3]
mov sp, r1
load r1, [r1 − 2]
sfree 4
jmp r3

Èresume E1 E2ÉΓ is defined as

ÈE2Ér2Γ
ÈE1Ér1Γ
call %resume

Èexit EÉΓ is defined as

ÈEÉr1Γ
push r1
halt

ÈhaltÉΓ is defined as halt. This case is not needed when translating Lexa programs written by
programmers, but it is needed to relate configurations between Lexa and Salt.
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D Simulation
To set up our simulation proof, we relate the configuration of a Lexa program to that of a Salt
program.

Relating configurations: The discussion on this relation can be found in Section 6.

(�, C) ins∼ � ( , �) context∼
Ξ

(
�stacks, ℓsp

)
�

data∼
Ξ
� "

code∼ " " (%) = ]0 :: · · · ] 9 :: �

〈" ‖ � ‖  ‖ � ‖ C〉 ∼
〈
" ‖ �stacks ] � ‖

{
sp ↦→ ℓsp, ip ↦→ % 9+1}〉

Relating values: E value∼
Ξ

E ′. The relations are straightforward. In particular, labels in Lexa and
memory locations in Salt are related by equality.

8
value∼
Ξ
8 ns

value∼
Ξ

ns %
value∼
Ξ
% !

value∼
Ξ

Ξ(!)

Relating a local environment to a stack segment: � local env∼
Ξ

B . A local environment in Lexa is
related to a stack segment in Salt.

∀8 ∈ {1, · · · , =}. E8 value∼
Ξ
E8

[G1 ↦→ E1, · · · , G= ↦→ E=] local env∼
Ξ

nil :: E1 :: · · · E=

Relating a term under a local environment to an instruction sequence: (�, C) ins∼ � . A Lexa
term is related to the sequence of Salt instructions produced by the translation of the term,
appended with instructions to free the stack segment allocated for the frame.

: = |� | + |C |

(�, C) ins∼ ÈCÉdom(� ) ; sfree : ; return

Relating an activation frame to a stack segment: (�, let G = � in C) frame∼
Ξ

B . Using the two
preceding relations, we can relate an activation frame in Lexa and a stack segment in Salt. The
stack segment consists of the stack for the local environment and a return address. The return
address points to the instruction sequence � to which the continuation C of the current frame is
related.

(�, C) ins∼ � " (%) = ]0 :: · · · ]8−1 :: � �
local env∼

Ξ
B

(�, let G = � in C) frame∼
Ξ

B :: % 8

Relating a sequence of activation frames to a stack segment: F frames∼
Ξ

B . The metavariable F

ranges over a subset of Lexa evaluation contexts that are composed of activation frames only:

F ::= � | F · (�, let G = � in C)
A sequence of activation frames in Lexa simply corresponds to the concatenation of their corre-
sponding stack segments in Salt. Here, we use the associative operator @ to denote the concatena-
tion of two stack segments.

� frames∼
Ξ

nil

F frames∼
Ξ

B (�, let G = � in C) frame∼
Ξ

B ′

F · (�, let G = � in C) frames∼
Ξ

B @ B ′
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Relating a sequence of handler-led contexts to stacks:

↓
K handlers∼

Ξ

( ↓
!in,

↓
Bin,

↑
�stacks,

↑
!out,

↑
Bout

)
The metavariable K ranges over a subset of Lexa evaluation contexts that are composed of a
sequence of activation frames but also have a handler frame in its outermost layer:

K ::=
(
#!

%op,!env
general

�
)
· F

We call such evaluation contexts handler-led. We use K to mean a sequence of handler-led contexts,
with � overloaded to mean the innermost hole in a handler-led context:

K ::= � | K · K

The relation between a sequence of handler-led contexts and a set of stacks is defined inductively.
It is complicated for two reasons. First, the stack layout of each handler-led context depends on the
type of the handler, so there are three rules, one for each type of handler. Second, for a general
handler, its header frame is on a new stack, with the exchanger pointing to the top of the previous
stack. So the stacks need to be constructed one by one, taking the previously constructed stack as
input. For this purpose, the relation takes in !in, the base of the previous stack, and Bin, the previous
stack; the two can be used to calculate the location of the top of the previous stack. It also outputs
!out and Bout to be used for constructing the next stack. The output �stacks is the set of stacks that
have completed construction. Below we present the inference rules one by one.

The base case is when the handler-led context is the innermost hole. In this case, the input
and the output are the same stack !, and no stacks is added to the heap, as there may be further
construction to be done on the stack !.

� handlers∼
Ξ
(!, B, {}, !, B)

The next three cases are the inductive cases, one for each type of handler. For a general handler,
the input stack !in is added to the set of constructed stacks, and the construction of a new stack !
is started. The exchanger of this new stack points to ! |Bin |in , the top of the previous stack. ! is used
as the input stack for relating the subsequence of handler-led contexts K to �stacks, which may (or
may not) further grow the stack based at !.

F frames∼
Ξ

B

B ′ = nil :: %op :: !env :: 0 :: !
|Bin |
in :: %10handle :: @B K handlers∼

Ξ
(!, B ′, �stacks, !out, Bout) Ξ(!) = !(

#!
%op,!env
general

�
)
· F · K handlers∼

Ξ
(!in, Bin, �stacks ] {!in ↦→ Bin}, !out, Bout)

For a tail-resumptive or abortive handler, the input stack is further grown to include the header
frame of the handler. The only difference between the following two rules is the handler annotation
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stored in the header frame.

F frames∼
Ξ

B B ′ = Bin :: %op :: !env :: 1 :: ns :: %8handle_special @ B

K handlers∼
Ξ
(!in, B ′, �stacks, !out, Bout) Ξ(!) = ! |Bin |in(

#!
%op,!env
tail

�
)
· F · K handlers∼

Ξ
(!in, Bin, �stacks, !out, Bout)

F frames∼
Ξ

B B ′ = Bin :: %op :: !env :: 2 :: ns :: %8handle_special @ B

K handlers∼
Ξ
(!in, B ′, �stacks, !out, Bout) Ξ(!) = ! |Bin |in(

#!
%op,!env
abort

�
)
· F · K handlers∼

Ξ
(!in, Bin, �stacks, !out, Bout)

Relating an evaluation context and a local environment to stacks and the stack pointer:

( , �) context∼
Ξ

(
�stacks, ℓsp

)
This relation captures the notion of the current point of control in the two languages. A Lexa
evaluation context  can be viewed as consisting of a (possibly empty) sequence of activation
frames F followed by a (possibly empty) sequence of handler-led contexts K. The relation also
relates a local environment �; its corresponding stack segment B ′ is the top segment of the current
stack. The output stack Bout, corresponding to K is grown to include B ′. With the stack pointer
pointing to the top of Bout @ B ′, the construction of the stack at !out is complete, so the stack is
added to the heap. Also notice that we use !init as a distinguished location for the base of the initial
stack.

F frames∼
Ξ

B K handlers∼
Ξ
(!init, B, �stacks, !out, Bout) �

local env∼
Ξ

B ′ B ′′ = Bout @ B ′(
� · F · K, �

)
context∼

Ξ

(
�stacks ] {!out ↦→ B ′′}, ! |B

′′ |
out

)
Relating a heap value to a heap: (!,+ ) heap val∼

Ξ
� . A heap value in Lexa is either a tuple or a

resumption. The relation for tuples is straightforward.

∀8 ∈ {1, · · · , =}. E8 value∼
Ξ
E8

(!, 〈E1, · · · , E=〉)
heap val∼

Ξ
{! ↦→ 〈E1, · · · , E=〉}

The relation for resumptions is more involved. Notice that with the optimization for abortive and
tail-resumptive handlers, resumptions in Lexa are reified only for general handlers. So a resumption
in a Lexa heap must be of the form

cont

(
#!

%op,!env
general

�
)
· F · Ktail

The relation for handler-led contexts is used to relate the evaluation context K captured by the
resumption to a set�stacks of stacks. The output stack !′ also serves as the input stack; the exchanger
of the resumption stack ! should point to the top of the output stack. Finally, !rsp points to a single-
element tuple, which contains the location !4 of the header frame of the ! stack.

K =

(
#!

%op,!env
general

�
)
· F · Ktail K handlers∼

Ξ
(!′, B ′, �stacks, !

′, B ′)(
!rsp, cont K

)
heap val∼

Ξ
�stacks ]

{
!rsp ↦→

〈
!4

〉}
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Relating data memories: � data∼
Ξ
� .

∀8 ∈ {1, · · · , =}. (!8 ,+8)
heap val∼

Ξ
�8

{!1 ↦→ +1, · · · , != ↦→ +=} data∼
Ξ
�1 ] · · · ] �=

Relating code memories: " code∼ " . Lexa functions are related to the Salt instruction sequences
they are translated to, with the built-in functions"intrinsics included.

∀8 ∈ {1, · · · , =}. È_G8 . C8É = �8
{%1 ↦→ _G1 . C1, · · · , %= ↦→ _G= . C=} code∼ {%1 ↦→ �1, · · · , %= ↦→ �=} ]"intrinsics

Proof of Theorem 2. To prove Theorem 2, we need to show that the configuration relation ∼
satisfies the three conditions listed in Theorem 1, which we restate here for convenience:
(1) Given �2 = È�1É, if initialL1 (�1,�1) and initialL2 (�2,�2), then �1 ∼ �2.
(2) If �1 ∼ �2 and finalL1 (�1, 8), then finalL2 (�2, 8).
(3) → simulates→ with respect to ∼.

The definition of the initial and final predicate below are copied from Theorem 1:

• initialLexa
(
letrec %8 = _G8 . C8 ,

〈{
%8 ↦→ _G8 . C8 , %init ↦→ Cinit

}
‖ {} ‖ � ‖ [] ‖ Cinit

〉)
,

where Cinit is defined as let G = %main () in let _ = exit G in ns end

• initialSalt
(
%8 : �8 ,

〈{
%8 ↦→ �8 , %init ↦→ �init

}
‖ {!init ↦→ nil} ‖ {sp ↦→ !init, ip ↦→ %init}

〉)
,

where �init is defined as È_(). CinitÉ
• finalLexa (〈" ‖ � ‖  ‖ [Gresult ↦→ 8] ‖ halt〉, 8)
• finalSalt

(〈
" ‖ � [!sp ↦→ B :: 8] ‖ ' [ip ↦→ ℓ, sp ↦→ !sp]

〉
, 8
)
where %̂ (ℓ) = halt

We first prove the first condition: to establish relation�1 ∼ �2, we need to show that its premises
hold. The first premise, ins∼ , holds: the term in Lexa is Cinit, and the instruction sequence in Salt
is defined as È_(). CinitÉ, so the relation is trivially established. The second premise, context∼ , holds:
the evaluation context and the local environment in Lexa are both empty, and that corresponds
to having a single empty stack in the heap, with the stack pointer pointing to the bottom of the
initial stack in Salt. The third premise, data∼ , holds: the heaps are both empty. The fourth premise,
code∼ , holds: the code memory in Lexa and that in Salt are related by the definition of the program
translation.

We now prove the second condition, that if �1 ∼ �2, and �1 is a final configuration, then �2 is
also a final configuration and their results are equal. Given that�1 is a final configuration, the term
in �1 must be halt, and its environment must have exactly one binding of some number 8 . By the
first premise of �1 ∼ �2, the instruction sequence of �2 must be a halt. By the second premise of
�1 ∼ �2, the stack of�2 must have 8 at the top. Therefore,�2 is a final configuration, and the return
value is 8 .

To prove the third condition, we do a case analysis on the reduction rules of Lexa. Most reduction
rules of Lexa, for example ADD, involve computing the value of an expression and adding a
binding of that value to the local environment. To prove these cases, we step through the translated
instruction sequence in Salt and show that there is one more entry on the stack whose value
matches the new binding in Lexa. We omit the details of these cases here.

• Case APP: To show that ins∼ still holds after reducing �1 to � ′1, and �2 to � ′2, notice that the
term in � ′1 is the body of the function, which corresponds to the instruction pointer in � ′2
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pointing to the body of the function after the prologue. To show that context∼ still holds, notice
that � ′1 has an extra activation frame and a new local environment consisting of arguments,
which corresponds to � ′2 having an extra return address and arguments on the stack. The
third and fourth premises, data∼ and code∼ , still hold because the heap and the code memory are
not changed.
• Case RET: Similar to APP, but in the opposite direction.
• Case HANDLE: We first prove the case for a general handler. To show that ins∼ still holds,

notice that the term in � ′1 is the body of the handler, which corresponds to the instruction
pointer in � ′2 pointing to the body of the handler. To show that context∼ still holds, notice that
� ′1 has an extra activation frame and a handler frame, and a new local environment with two
arguments. This corresponds to� ′2 having an extra return address on the old stack, and a new
stack with the header frame whose entries match the handler frame in � ′1. The new stack
also has two arguments, which match the arguments in the local environment. The third
and fourth premises, data∼ and code∼ , still hold because the heap and the code memory are not
changed.
For the tail-resumptive and abortive handlers, the proof is similar, except � ′2 does not have a
new stack. This correspondence is accounted for in context∼ .
• Case RAISE: To show that ins∼ still holds, notice that the term in� ′1 is the body of the handler,
which corresponds to the instruction pointer in � ′2 pointing to the body of the handler. To
show that context∼ still holds, notice that� ′1 has the evaluation context cut at the handler frame,
and a new environment is created with three arguments. This corresponds to � ′2, where the
set of stacks has been split into two and the stack pointer now points to the parent stack
of the corresponding header frame. Since context∼ is defined structurally, we know that the
shortened evaluation context and the reduced set of stacks are still related. To show that data∼
still holds, notice that the � ′1 has a new single-element tuple containing the resumption. We
need to show that the resumption is related to the other set of the stacks in � ′2. We again use
the fact that context∼ is defined structurally to prove that. The fourth premise, code∼ , still holds
because the code memory is not changed.
• Case TAILRAISE: Similar to APP. We need to show that the operation function used by � ′1

and the � ′2 are related. This is true because the function location in the handler frame of � ′2
and in the header frame of � ′2 are related, according to context∼ .
• Case ABORTRAISE: Similar to RAISE, except that the captured evaluation context is

discarded, which corresponds to discarding a subset of the stacks in the heap of � ′2.
• Case RESUME: To show that ins∼ still holds, notice that the term in � ′1 comes from the last

activation frame of the resumption. This corresponds to the new instruction pointer in � ′2
which comes from the popping the last stack among the set of stacks that represents the
resumption. The new term and the new instruction sequence are related by the definition
of heap val∼ . To show that context∼ still holds, notice that the resumption in � ′1 is related to a set
of stacks in � ′2 according to heap val∼ . Therefore, attaching the resumption to the evaluation
context in � ′1 corresponds to joining the set of stacks in � ′2 and linking the exchanger of the
header frame to the top of the last stack. To show that data∼ still holds, notice that both tuples
that represent resumption in � ′1 and �

′
2 now contains ns. The fourth premise, code∼ , still holds

because the code memory is not changed.
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E An Interruptible-Iterator Program
Figure 17 shows the Interruptible Iterator benchmark adapted from earlier work on bidirectional
effects [19, 36].

1 effect Yield =

2 | yield : int -> Replace -> Behead -> unit

3 effect Replace =

4 | replace : int -> unit

5 effect Behead =

6 | behead : unit -> unit

7

8 def client list =

9 var beheaded ^:= False

10 val res_list =

11 handle

12 handle

13 iterate list Y B

14 with B

15 | behead() => beheaded ^:= True

16 with Y

17 | yield x R B =>

18 if x < 0 then B.behead()

19 else R.replace(x*2)

20 if beheaded then res_list.drop(1)

21 else res_list

22

23 def iterate list Y B =

24 var hd ^:= list.head()

25 val tl = list.tail()

26 var beheaded ^:= False

27 handle

28 Y.yield(hd, R, B)

29 with R

30 | replace x => hd ^:= x

31 val newtl =

32 if tl.isempty() then [] else

33 handle

34 iterate tl Y B

35 with B

36 | behead() => beheaded ^:= True

37 if beheaded then Cons(hd, drop(newtl, 1))

38 else Cons(hd, newtl)

Figure 17. The Interruptible Iterator benchmark.
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