
Error sensitive multivariate polynomial interpolation

University of Waterloo Technical Report CS-2021-01

Kirk Haller
Amazon, 101 Main Street, Cambridge, MA, 02142 USA

kirkhaller@gmail.com

Stephen Mann
200 University Ave W, Waterloo, ON N2L 3G1 CANADA

smann@uwaterloo.ca

Abstract

In this paper, we make a strong connection between algebraic geometry and inter-
polation. In particular, we use algebraic geometry tools to develop a machinery for the
analysis of Newton or nested multivariate interpolation schemes. The main practical
result coming out of our analysis is that for robustness, one should replace the condi-
tion of minimal degree with a minimally complete condition that is introduced in this
paper. We show how to construct minimally complete schemes and provide examples.

1 Introduction

Interpolation is the mechanism by which one solves the problem of finding an element of a
given function space that agrees with a given set of observations. Formally,

Basic Problem: Given a set of distinct locations Θ :=
{
θ1, . . . , θn : θi ∈ Rd

}
and a

function space F , for any set of data {dθ : dθ ∈ R, θ ∈ Θ}, find f ∈ F such that

f(θ) = dθ ∀θ ∈ Θ.

The generic solution to this problem is known. One finds a subspace of FΘ = span {f1, . . . , fn : fi ∈ F},
such that the Vandermonde matrix

(fc(θr) : r, c = 1, . . . , n)

is invertible. Then,

f =
n∑
i=1

cifi where

 c1
...
cn

 =

 f1(θ1) · · · fn(θ1)
...

...
f1(θn) · · · fn(θn)


−1 d1

...
dn

 .
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Thus, the solution to the interpolation problem is reduced to the problem of finding the
appropriate subspace FΘ and inversion of a square matrix. When the Vandermonde matrix
is invertible, we say that FΘ is correct for the interpolation problem.

For many spaces of functions, the selection of a correct subspace is easy. For example,
when d = 1 and F = Π(R), the polynomials, the standard choice is

FΘ = Πn−1(R) := {p ∈ Π(R) : deg p < n} .

Most of the effort here is in selecting a basis for Πn−1 such that the Vandermonde is easily
or accurately inverted. Some choices include:

Newton Basis: {νi ∈ F : i = 1, . . . , n} such that

νi(θj) = 0 if j < i, νi(θi) 6= 0.

The Newton basis yields a lower triangular Vandermonde.
Lagrange Basis: {`θ ∈ F : θ ∈ Θ} such that

`θ(ϑ) =

{
0 if ϑ 6= θ
1 if ϑ = θ

For the Lagrange basis, the Vandermonde is the identity matrix, which means

f =
∑
θ∈Θ

f(θ)`θ.

For Πn−1(R), the Newton basis has the form

νi(t) =
i−1∏
j=1

(t− θj),

and the Lagrange basis has the form

`θ(t) =
∏
ϑ6=θ
ϑ∈Θ

(t− ϑ)

(θ − ϑ)
.

As suggested by the notation, the Newton basis depends on an ordering of the points in Θ,
while the Lagrange basis does not. We will use both Newton and Lagrange bases in our
analysis.

For multivariate polynomials, the selection of a correct interpolation subspace is more
difficult. There are two fundamental difficulties in generating a correct interpolation sub-
space:

1. Dimension: The number of data points is insufficient to determine the appropriate
subspace of Π(Rd).

dim Πk(Rd) =

(
k + d

d

)
=

(k + d)!

k! d!
.

For example, let #Θ denote the number of elements of Θ. If #Θ = 5, and d = 2, then
dim Π1(R2) = 3 and dim Π2(R2) = 6. Thus, in this case (and in general for d > 1) we
have to do more work than just select k to choose a basis.
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Figure 1: Experiment: Fix five points on the unit circle and allow the sixth point to vary
on a 101x101 grid. For each point, compute how much the addition of the sixth point has
improved the interpolant, i.e., the maximum error for interpolation of x3, x2y, xy2, and y2

at six points minus the respective maximum error for interpolation by 5 fixed points. In
the contour plot, yellow and brown are improvements, all other colors are places where the
interpolation with that point is worse.

2. Zero sets: In general, if there is a f ∈ FΘ such that f 6= 0, and f(θ) = 0 for all θ ∈ Θ,
then the corresponding Vandermonde matrix V (FΘ,Θ) is rank deficient, and as such
can not be inverted for general data. For this reason, we must avoid basis functions
that vanish on Θ.

Avoiding these zeros sets poses an additional challenge in multivariate polynomial
interpolation, since even when there is agreement between the number of data points
and the dimension of Πk(Rd), there may be a nontrivial polynomial that vanishes on
the data points. For example, let #Θ = 6 = dim Π2(R2), but position all six points on
the unit circle, i.e., ∀θ ∈ Θ, ‖θ‖ = 1. Then, p((x, y)) = x2 + y2 − 1 is in Π2(R2), but
∀θ ∈ Θ, p(θ) = 0 and so Π2(R2) cannot be correct for this Θ.

The zero set of a polynomial is a set of measure zero, so the probability of a random set of
data locations being on the zero set of a polynomial is also 0. However, what happens when
we are near that zero set? To explore this, consider the following experiment illustrated in
Figure 1: fix five points on the unit circle, and let a sixth point vary on a 101×101 lattice
in the square [−1.5, 1.5] × [−1.5, 1.5]. Since no point in this lattice is on the unit circle,
interpolation to the five points plus a point on the lattice by Π2(R2) is correct. To understand
the impact of adding a point to the interpolant, we will numerically compute the maximum
error within the convex hull of the five fixed points using both the five fixed points and all
six points. At each of the lattice points, we have plotted the difference between interpolation
with and without that point. In these plots, a negative number is an improvement and a
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positive number is reduction in quality of the interpolant by the introduction of the sixth
point. With brown less than -0.25, yellow between -0.25 and zero, and the other contours at
0.25 intervals greater than 0, one can see that most points make the error worse, with some
much worse.

Again, Π2(R2) is correct with the five fixed point and the addition of any single lattice
point. The interpolation conditions are satisfied with double precision accuracy, but clearly
as we get close to the zero set of x2 + y2 − 1 the resulting interpolant is undesirable. What
is occurring in this example is that the correct space for interpolating the first five points is
Π2(R2) \ {x2 + y2 − 1}. This means that the sixth Lagrange polynomial must be

`θ((x, y)) =
x2 + y2 − 1

θ2
x + θ2

y − 1
where θ is the sixth point.

As θ gets closer to the unit circle, this Lagrange polynomial starts to dominate the inter-
polant. We will later show that choosing a Lagrange polynomial to interpolate data near its
zero set will result in poor approximation, but for the moment note the following:

1. The use of points on the unit circle was only for ease of exposition. If we start with any
six points for which Π2(R2) is correct, and allow one of the points, θ, to vary, the results
would be the same. Namely, there is only one unscaled polynomial, ν, associated with
θ. As θ varies only the scaling factor on ν will change. In particular, as θ gets close to
the zero set of ν, ν will dominate the interpolant away from the zero set.

2. The method for constructing the interpolation was immaterial. The problem was
the choice of the minimal correct interpolation space, Π2(R2), without regards to the
distance from zero of the Lagrange polynomials.

3. This effect is not due to numerical instability. Even in the worst case, the interpolant
constructed is accurate, in that it interpolates the data to within machine accuracy.
However, the error in interpolation is abysmal. The highly osculating Lagrange poly-
nomial completely dominates outside of a small region around the interpolation points.

4. Here, one needs to allow for more choice in the selection of the Lagrange polynomial
to reduce error, which means that degree three polynomials must be considered. In
general, it is not obvious how to choose this “last” polynomial to generate a reasonable
interpolation scheme. The aim of this paper is to determine how to construct interpola-
tion schemes that avoid problems of the type illustrated in this example. In particular,
when choosing the next basis function for the interpolant, one should choose from a
complete generating set for the ideal.

Our work relies on the relationship of zero sets and correct subspaces, so in Section 2
we review varieties and ideals. Further, our work builds on the Polynomial Least, which
we review in detail in Section 3 as a means of introducing notation and important ideas.
In Section 4 and Section 5, we provide a constructible connection between the polynomials
that vanish on Θ, an ideal, and the collection of Lagrange polynomials that define the
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interpolation space. In Section 6, we prove that Example 1 is not an exceptional case,
but is a structural issue with schemes that force interpolation from an insufficiently robust
polynomial space. Schemes with fixed monomial order and minimal schemes fall into this
category. Sections 7 and 8 show how to construct schemes that avoid this problem and give
some example schemes. One of these schemes has the further property of being continuous
with respect to Θ as a function of a single point θ. Finally, in Sections 9 and 10 we give
some computational examples, draw conclusions and make suggestions for further work.

2 Varieties and Ideals

The Lagrange and Newton bases point to the fundamental connection between zero sets
and correct subspaces. There is a rich and elegant theory on the connection between zero
sets and subspaces for multivariate polynomials (see, e.g., [1]). For our purpose, we need to
introduce a couple of concepts from this theory.

Definition 1. A subset V ⊂ Rd is called a variety if there exists a finite collection of
polynomials P ⊂ Π(Rd) such that p(v) = 0 for all v ∈ V and all p ∈ P .

Fact 1. If V,W are varieties, then V ∩W and V ∪W are also varieties.

Using these facts, one can see that point sets are varieties. For any point, (θ1, . . . , θd) ∈
Rd, one takes the collection of polynomials pi((x1, . . . , xd)) = xi−θi. Clearly, θ = V ({p1, . . . , pd}) :=⋂d
i=1 {v : pi(v) = 0}. Thus, a single point is a variety. So a finite point set, as a union of

varieties, is a variety.
Closely related to varieties is the notion of an ideal.

Definition 2. An ideal is a collection of polynomials, I, such that

1. 0 ∈ I.

2. I is closed under addition, i.e., if p, q ∈ I, then p+ q ∈ I.

3. I is closed under multiplication by Π, i.e., if q ∈ I, then for any p ∈ Π, pq ∈ I.

Definition 3. Let V be a variety, then I(V ) :=
{
p ∈ Π(Rd) : p(v) = 0, ∀v ∈ V

}
.

Fact 2. As the notation suggests, I(V ) is an ideal.

In the previous section, we suggested that finding a correct subspace for multivariate
polynomial interpolation may not be a sufficient criterion for the construction a “good”
interpolant, however it is a necessary criterion. The problem of finding a correct subspace
of Π(Rd) for interpolation at points Θ can be seen as finding polynomials

pθ ∈ I(Θ \ θ) \ I(Θ).

This has led to a series of Newton methods for construction of correct subspaces.
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Definition 4. Given an ordered set of points Θ = {θ1, . . . , θn}, a Newton Method deter-
mines, for each i, I({θ1, . . . , θi−1}), and picks a νi ∈ I({θ1, . . . , θi−1}) such that νi(θi) 6= 0.
The resulting basis, {ν1, . . . , νn}, would be called a Newton Basis resulting from this method.

This definition of Newton Methods focuses exclusively on the invertability of the Van-
dermonde matrix (as a lower triangular matrix with non-zeros on the diagonal). That differs
from methods suggested by Sauer [7] in that it does not imply minimal degree, a charac-
terization of interpolation spaces first introduced in [3]. For example, with our definition,
the set {1, x2, x2(x− 1)} would be a Newton Basis for the ordered points {0, 1, 2}. The def-
inition does capture the monotonicity property from [3], where the connection between
monotonicity and Newton methods was first noted.

Much of this paper was motivated by trying to understand examples where the Least
construction in [3] did not give expected results. The fundamental computational approaches
we take are drawn from and extensions of techniques in that paper. We will provide a
mechanism that will generate a Newton basis (and, with a little extra work, a Lagrange
basis), and also avoid the problems noted in Section 6. This Newton approach to generating
correct interpolation spaces is consistent with most of the other mechanisms that exist.

3 Least Polynomial

In [3, 5], de Boor and Ron introduced a novel construction of correct polynomial interpolation
spaces. This construction leveraged the “correctness” of the space of exponentials to generate
a correct polynomial subspace of minimum degree. As our construction builds on theirs, we
review here the Least as both a means of introducing our notation and to better compare
our method to theirs.

Following de Boor and Ron, we define the exponential et with frequency t as

et(s) := exp(s · t) =
∞∑
n=0

(s · t)n/n! =
∑
α∈Zd+

sαtα/α!.

For any analytic function f , let
Tα(f) := Dαf(0),

the α-th Taylor coefficient. Thus,
Tα(et(s)) = tα.

This relationship directly connects the exponential function to the multinomials.
By the point separating property of the exponentials, we know that the set {eθ : θ ∈ Θ}

is linearly independent and define

ExpΘ := span {eθ : θ ∈ Θ} .

Since ExpΘ has the same dimension as Θ, the Vandermonde matrix, (eθ(ϑ) : ϑ, θ ∈ Θ), must
be invertible. Therefore, ExpΘ must be correct for interpolation on Θ.
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The Least operation maps any function that is analytic about the origin to the lowest
degree, non-zero terms in its Taylor expansion. Formally, let f(s) =

∑
α∈Zd+

Tα(f)sα/α!,

then
f↓(s) :=

∑
|α|=n

Tα(f)sα/α!

with n the largest integer such that Tβ(f) = 0 if |β| < n. Clearly, f↓ is a homogeneous
polynomial in Rd. As examples, (y3 + x2 + 3xy + 4y2 + x+ 2y)↓ = x+ 2y, (eθ)↓(s) = 1 and
(eθ − eϑ)↓(s) = (θ − ϑ) · s.

de Boor and Ron show that the operation of taking the Least does not reduce the di-
mension of ExpΘ, which means that the Least Polynomial space for Θ, defined by

ΠΘ := (ExpΘ)↓,

must be correct for interpolation on Θ and of minimum degree.
The computational algorithm for generating the Least involves an ingenious view of the

exponential as a sequence of vectors, with each vector representing the multinomials of a
given degree,

et = (1, v1(t), v2(t), . . .) where vk(t) = (tα/α! : |α| = k).

The method for computing the Least Basis, called Gauss Elimination by Segments [4],
involves setting up a matrix eΘ and using a Gram-Schmidt orthogonalization process as the
elimination step. I.e., to “eliminate” vector w with vector v, one computes

w − w · v
v · v

v.

This is best understood by looking at an example.
Consider Θ = {(1, 0), (0, 1), (−1, 0), (0,−1)}. Then

eΘ =


e(1,0)

e(0,1)

e(−1,0)

e(0,−1)

 =


1 (1, 0) (1

2
, 0, 0) . . .

1 (0, 1) (0, 0, 1
2
) . . .

1 (−1, 0) (1
2
, 0, 0) . . .

1 (0,−1) (0, 0, 1
2
) . . .





1(
tx
ty

)
 t2x

txty
t2y


...


For ease of exposition, this example was constructed so that a correct interpolation space
exists in Π2, and we will only consider those terms. We will also omit the matrix of monomials
in further equations. The first step is elimination with the scalar 1:

1 (1, 0) (1
2
, 0, 0)

1 (0, 1) (0, 0, 1
2
)

1 (−1, 0) (1
2
, 0, 0)

1 (0,−1) (0, 0, 1
2
)

⇒


1 (1, 0) (1
2
, 0, 0)

0 (−1, 1) (−1
2
, 0, 1

2
)

0 (−2, 0) (0, 0, 0)
0 (−1,−1) (−1

2
, 0, 1

2
)

 .
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Next, we will do the elimination using the bold vectors by a Gram-Schmidt orthogonalization
process. 

1 (1, 0) (1
2
, 0, 0)

0 (−1,1) (−1
2
, 0, 1

2
)

0 (−2, 0) (0, 0, 0)
0 (−1,−1) (−1

2
, 0, 1

2
)

 ⇒


1 (1, 0) (1

2
, 0, 0)

0 (−1, 1) (−1
2
, 0, 1

2
)

0 (−1,−1) (1
2
, 0,−1

2
)

0 (−1,−1) (−1
2
, 0, 1

2
)


⇒


1 (1, 0) (1

2
, 0, 0)

0 (−1, 1) (−1
2
, 0, 1

2
)

0 (−1,−1) (1
2
, 0,−1

2
)

0 0 (−1,0,1)


Associated with each vk, there is the homogeneous polynomial p(t) =

∑
|α|=k vk(α)tα. Thus,

from the collection of bold terms used for elimination, we generate the Least basis{
1,−tx + ty,−tx − ty,−t2x + t2y

}
.

By inspection, one can see that in this example,

I(Θ) = I
({
txty, t

2
x + t2y − 1

})
.

The vectors associated with the leading terms of the generators of I(Θ) are (0, 1, 0) and
(1, 0, 1). Note that both of these vectors are orthogonal to the vector, (−1, 0, 1), which is
associated with the final homogeneous polynomial in the Least basis. This property is one
of the defining characteristics of the Least space and suggests that there is a connection
between the Least and the ideal.

4 A Framework for Analysis

One of the premises of this paper is that generation of correct subspaces, while necessary, is
not sufficient for construction of a good interpolant. To that end, we need a mechanism to
constructively generate possible choices for our Newton Basis, by constructively generating
the ideal. Our mechanism is a modification of the tools for generating the Least Polynomial
space. It will allow us to construct correct interpolation spaces that are sensitive to error
and provide a tool for analysis.

Let L(Θ) =
{
`θ ∈ Π(Rd) : θ ∈ Θ

}
be any collection of Lagrange polynomials on Θ. A

common operation in the analysis of interpolation methods is projection. Here

PL(f) =
∑
ϑ∈Θ

f(ϑ)`ϑ

is the projection of a function onto the space ΠL. To construct an interpolation scheme that
is sensitive to error, we need be concerned with the error in this projection, namely,

f − PL(f) = f −
∑
ϑ∈Θ

f(ϑ)`ϑ.
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Connecting this error formula back to the tools for the Least Polynomial space, we define

gL(t, s) := es(t)−
∑
ϑ∈Θ

es(ϑ)`ϑ(t), (1)

which is the error of the projection of the exponential with frequency s onto the polynomial
space L(Θ) as a function of t. Leveraging the dual representation of the exponential,

gL(t, s) = et(s)−
∑
ϑ∈Θ

eϑ(s)`ϑ(t),

we will also use
gL,α(t) := Tα(gL(t, s)), (2)

where T is understood to operate on the variable s.
The operator Tα allows us to consider gL as a vector indexed by Zd+. For example, if L0

is the empty set (no points of interpolation) and we are in R2, then we have

gL0(t, s) = [1, tx, ty, t
2
x, txty, t

2
y, . . . ] · [1, sx, sy,

1

2
s2
x, sxsy,

1

2
s2
y, . . . ],

where the gL0,α = tα. However, the vector [1, sx, sy,
1
2
s2
x, sxsy,

1
2
s2
y, . . . ] does not change

with L, so we usually drop it from consideration during computations and think of

gL(t, s) = [gL,α(t) : α ∈ Zd+].

Theorem 1. Tα(gL(t, s)) = gL,α(t) is the error in interpolation of the α multinomial. Specif-
ically,

gL,α(t) = tα −
∑
ϑ∈Θ

ϑα`ϑ(t).

Proof. Since, Tα(et(s)) = tα,

gL,α(t) = Tα
(
et(s)−

∑
ϑ∈Θ

`ϑ(t)eϑ(s)
)

= Tα
(
et(s)

)
−
∑
ϑ∈Θ

`ϑ(t)Tα
(
eϑ(s)

)
= tα −

∑
ϑ∈Θ

ϑα`ϑ(t)

Corollary 1. For all α ∈ Zd+, gL,α ∈ I(Θ).
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Proof. By Theorem 1, gL,α is a polynomial. We just need to show that gL,α(θ) = 0 ∀θ ∈ Θ.
This follows immediately, since it is the error in interpolation. I.e.,

gL,α(θ) = θα −
∑
ϑ∈Θ

ϑα`ϑ(θ) = θα − θα = 0

Corollary 2. Let ΠL := span {`ϑ : θ ∈ Θ}, then span
{
gL,α : α ∈ Zd+

}
⊕ ΠL = Π(Rd). I.e.,

∀p ∈ Π(Rd), ∃g ∈ span
{
gL,α : α ∈ Zd+

}
and q ∈ ΠL such that p = g + q.

Proof. By Theorem 1, any multinomial is in the span{gL,α : α ∈ Zd+} ⊕ ΠL, therefore, so is
Π(Rd).

Theorem 2. The set
{
gL,α : α ∈ Zd+

}
covers the ideal I(Θ). I.e.,

span{gL,α : α ∈ Zd+} = I(Θ).

Proof. For all p ∈ I(Θ), we know p ∈ Π(Rd). Therefore, by corollary 2 there exists a sequence
{cα : α ∈ Zd+} such that

p =
∑
α∈Zd+

cαgL,α +
∑
ϑ∈Θ

p(ϑ)`ϑ =
∑
α∈Zd+

cαgL,α

We can use these ideas to construct the ideal for our interpolation space. Returning to
our example, Θ = {(1, 0), (0, 1), (−1, 0), (0,−1)}, let

L =
{
`(1,0), `(0,1), `(−1,0), `(0,−1)

}
=

1

4
{x2 − y2 + 2x+ 1,−x2 + y2 + 2y + 1, x2 − y2 − 2x+ 1,

−x2 + y2 − 2y + 1}.

This is the Lagrange basis associate with the Least space computed in Section 3. By Theo-
rem 1,

gL,α(t) = tα − (1, 0)α`(1,0)(t)− (0, 1)α`(0,1)(t)− (−1, 0)α`(−1,0)(t)− (0,−1)α`(0,−1)(t).

Evaluating each monomial α, |α| = 2, to the points in Θ gives(
(1, 0)(2,0), (0, 1)(2,0), (−1, 0)(2,0), (0,−1)(2,0)

)
= (1, 0, 1, 0)(

(1, 0)(1,1), (0, 1)(1,1), (−1, 0)(1,1), (0,−1)(1,1)
)

= (0, 0, 0, 0)(
(1, 0)(0,2), (0, 1)(0,2), (−1, 0)(0,2), (0,−1)(0,2)

)
= (0, 1, 0, 1).
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Using Theorem 1, we can determine generators for I(Θ):

gL,(2,0)(x, y) = x2 − `(1,0)(x, y)− `(−1,0)(x, y) =
1

2
(x2 + y2 − 1)

gL,(1,1)(x, y) = xy

gL,(0,2)(x, y) = y2 − `(0,1)(x, y)− `(0,−1)(x, y) =
1

2
(x2 + y2 − 1).

In particular, note that the gL,α need not be linearly independent or even unique.

We now have a mechanism for constructing the ideal that is sensitive to the choice of
the interpolation space. The ideal is an invariant of the interpolation problem, completely
independent of the interpolation space. There is no single interpolation space associated
with an ideal; indeed, for any ΠL and any q ∈ I(Θ), ΠL + q is also a correct interpolation
space. However, for any correct interpolation space, ΠL, there is one and only one set of
Lagrange polynomials L, therefore we use the Lagrange polynomials as the identifier for the
interpolation space. Connecting I(Θ) and ΠL, which are fundamental to the interpolation
problem, is one of the strengths of gL.

Returning to the error formula for general projection operator from the beginning of this
section, we see that the error has a simple representation, which we will repeatedly leverage.

Lemma 1. Let p ∈ Π, with p(t) =
∑

α∈Zd+
cαt

α, then

(p− PL(p))(t) =
∑
α∈Zd+

cαgL,α(t). (3)

Proof.

p(t)− PL(p)(t) =
∑
α∈Zd+

cαt
α −

∑
ϑ∈Θ

∑
α∈Zd+

cαϑ
α`ϑ(t)

=
∑
α∈Zd+

cαt
α −

∑
α∈Zd+

cα
∑
ϑ∈Θ

ϑα`ϑ(t)

=
∑
α∈Zd+

cα

(
tα −

∑
ϑ∈Θ

ϑα`ϑ(t)

)

=
∑
α∈Zd+

cαgL,α.

The importance of the error in the projection of the multinomials, gL,α, has already been
noted by other authors, e.g., see [2], [7] and [6]. However, one difference in our approach
is the use of (1). While we primarily use it as a notational convenience for simultaneous
operations on all the gL,α, we will also, implicitly and explicitly, use the linear independence
of ExpΘ.
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Lemma 2. ∀t ∈ Rd\Θ, there exists α such that gL,α(t) 6= 0.

Proof. This trivially follows from the fact that for a fixed t /∈ Θ, et(s) /∈ span {eθ(s) : θ ∈ Θ}.

5 A constructive method for determining a Lagrange

basis

In the previous section, we provided a mechanism for computing generators for the ideal,
I(Θ), when one is given a Lagrange basis. In this section, we will provide a mechanism to
generate a Newton or Lagrange basis from an ordered point set. To do this, we will build
the basis by sequentially processing the points in Θ.

Assume that there is an ordering to Θ, and let Θi = {θ1, . . . , θi} and Li = {`1,i, . . . , `i,i}
with Li Lagrange for Θi. The set

{
gLi,α : α ∈ Zd+

}
covers the ideal I(Θi), so it provides a rea-

sonable place to look for the next Newton polynomial. Indeed, by appropriate bookkeeping,
one can maintain a Lagrange basis as one works through the point set.

Theorem 3. Let Li−1 = {`1,i−1, . . . , `i−1,i−1} be a Lagrange basis for Θi−1. Given any
`i,i(t) ∈ I(Θi−1) such that `i,i(θi) = 1, one can construct a Lagrange basis Li = {`1,i, . . . , `i,i}
for Θi, with

`j,i(t) = `j,i−1(t)− `j,i−1(θi)`i,i(t), ∀j < i. (4)

Additionally, one can construct gLi(t, s) by

gLi(t, s) = gLi−1
(t, s)− gLi−1

(θi, s)`i,i(t). (5)

Proof. 1. By Lemma 2, `i,i exists and is constructable from span
{
gLi−1,α

}
. Since `i,i is

Lagrange,

`j,i−1(θk)− `i,i(θk)`j,i−1(θi) =


`j,i−1(θj) = 1 if k = j,

`j,i−1(θi)− `j,i−1(θi) = 0 if k = i,

`j,i−1(θk) = 0. otherwise.

Thus, (4) holds.

2. Recall from definition,

gLi−1
(t, s) = et(s)−

i−1∑
j=1

`j,i−1(t)eθj(s)

We need to show

gLi(t, s) = et(s)−
i∑

j=1

`j,i(t)eθj(s)

12



with `j,i as in (4) and Lagrange.

gLi−1
(t, s)− `i,i(t)gLi−1

(θi, s)

= et(s)−
i−1∑
j=1

`j,i−1(t)eθj(s)− `i,i(t)eθi(s) +
i−1∑
j=1

`i,i(t)`j,i−1(θi)eθj(s)

= et(s)−

(
i−1∑
j=1

(`j,i−1(t)− `i,i(t)`j,i−1(θi)) eθj(s)

)
− `i,i(t)eθi(s)

= et(s)−
i∑

j=1

`j,i(t)eθj(s) = gLi(t, s).

with the last equality holding since Li is Lagrange.

Corollary 3. The set {`i,i : i = 1, . . . ,#Θ} is a Newton Basis for interpolation on Θ.

Proof. By construction, `i,i ∈ I(Θi−1) and `i,i(θi) = 1.

This suggests that the construction of Newton polynomials for nested interpolation
schemes may be represented by the following algorithm.

Algorithm 1.

Initialize g(t, s) = [tα : α ∈ Zd+]
for i = 1 to #Θ

pick θi ∈ Θ\{θ1, . . . , θi−1}
compute g(θi, s) = [gα(θi) : α ∈ Zd+]
select `i,i =

∑
α∈Zd+

cαgα such that `i,i(θi) = 1

update g(t, s)
end

Note that by Lemma 2, there is a {cα} such that only finitely many cα’s are nonzero
(e.g., `j,j can be chosen to be a polynomial). We will deal with ways to make this choice in
Section 8.

To demonstrate Algorithm 1, again consider Θ = {(1, 0), (0, 1), (−1, 0), (0,−1)}. When
i = 0, this is similar to the start of the Least construction

gL0(t, s) = [1, tx, ty, t
2
x, txty, t

2
y, . . . ].

With θ1 = (1, 0), select `1,1(t) = 1, then

gL1(t, s) = gL0(t, s)− `1,1(t)gL0((1, 0), s)

13



gL0((1, 0), s) = [ 1, 1, 0, 1, 0, 0, . . . ]

∴ gL1(t, s) = [ 0, tx − 1, ty, t2x − 1, txty, t2y, . . . ]

With θ2 = (0, 1), select `2,2(t) = (tx − 1)/(−1) = 1− tx, then

gL2(t, s) = gL1(t, s)− `2,2(t)gL1((0, 1), s)

gL1((0, 1), s) = [ 0, −1, 1, −1, 0, 1, . . . ]

∴ gL2(t, s) = [ 0, 0, tx + ty − 1, t2x − tx, txty, t2y + tx − 1, . . . ]

With θ3 = (−1, 0), select `3,3 = (tx + ty − 1)/(−2) = −1
2

((tx + ty − 1), then

gL2((−1, 0), s) = [ 0, 0, −2, 2, 0, −2, . . . ]

∴ gL3(t, s) = [ 0, 0, 0, t2x + ty − 1, txty, t2y − ty, . . . ]

Finally, select `4,4(t) = −1
2

(t2x + ty − 1), which results in a Newton Basis:{
1, 1− tx,

−1

2
(tx + ty − 1),

−1

2
(t2x + ty − 1)

}
.

If we continue the process once more, we have

gL3((0,−1), s) = [ 0, 0, 0, −2, 0, 2, . . . ]

∴ gL4(t, s) = [ 0, 0, 0, 0, txty, t2x + t2y − 1, . . . ]

This gives us the set
{txty, t2x + t2y − 1}

which generates I(Θ).
Performing the back substitution from (4), we get the Lagrange basis of{

1

2
(t2x + tx),

−1

2
(t2x − ty − 1),

1

2
(t2x − tx),

−1

2
(t2x + ty − 1)

}
.

The choice of `j,j(t) in this example was made for illustration of Theorem 3, but in general
it is a poor method for choosing the basis function. In the next sections we will explore how
one would make better choices.

Note also that Algorithm 1 is quite general, capturing any monotonic scheme. In particu-
lar, for any scheme S that uses a fixed basis, it is possible to construct a sequence of Newton
polynomials that span the interpolation space. Since any I(Θi) is spanned by {gLi,α} , a rep-
resentation as in Algorithm 1 can be found. Further, monotonicity is one of the properties
of the Least interpolation scheme, so one should be able construct an Algorithm 1 approach
to its construction, as we will do in Section 8.3.
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6 On errors and degeneracies

The algorithm used to compute Newton polynomials for monotonic (or nested) schemes
outlines in the previous section requires the choice of `j,j. To understand the consequences
of this choice, we need to understand the connection between the geometry Θ and the space
ΠL. Ultimately, we would like to choose ΠL such that the interpolation error

f − PLf

is as small as possible for as wide a class of functions as possible. (Note that that the
observation that the Newton approach interpolates error is not new; see, for example, [9].)

In Section 1, we constructed an example where approximation power was lost before
correctness. To understand this loss of approximation power, we will consider the situation
where one fixes the interpolation space and varies the geometry. Specifically, assume that
one has processed j − 1 points in Θ and is happy with the interpolation provided by Lj−1.
Further, let us fix the choice of the last Newton polynomial in our basis, νj(t) (we work
with the Newton polynomial rather than the Lagrange polynomial `j,j(t), since the scaling
of `j,j(t) will change with θj). The following shows the relationship between interpolation
by Lj and Lj−1, using the construction in Theorem 3.

PLjf(t) = f(θj)
νj(t)

νj(θj)
+

j−1∑
i=1

f(θi)`i,j(t)

= f(θj)
νj

νj(θj)
+

j−1∑
i=1

f(θi)

(
`i,j−1(t)− `i,j−1(θj)

νj(t)

νj(θj)

)
, by (4)

=

[
f(θj)−

j−1∑
i=1

f(θi)`i,j−1(θj)

]
νj

νj(θj)
+

j−1∑
i=1

f(θi)`i,j−1

= (f − PLj−1
f)(θj)

νj
νj(θj)

+ PLj−1
f, (6)

where (f −PLj−1
f)(θj) and PLj−1

f are completely independent of the choice of νj. Note that
(f − PLj−1

f)(θj) is a difference operator that vanishes on ΠLj−1
.

With the relationship in (6), we can see that the quality of the interpolant is effected by
the value νj(θj). Namely, addition of this term can possibly make the interpolation worse.

Theorem 4. Let Ω be a region where νj is bounded away from zero, νj(θ) = 0, and f be
such that (f − PLj−1

f)(θ) 6= 0, then

PLjf →∞ as θj → θ.

with
PLjf ∼ (f − PLj−1

f)(θj)
νj

νj(θj)

for θj in a neighborhood of θ.
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Figure 2: From the example in Figure 1, we plot the error function for interpolation
of txty

2 by quadratics at the five Chebyshev points on the circle and the sixth point in
{(0.4, 0.4), (0.5, 0.5), (0.6, 0.6), (0.7, 0.7), (0.8, 0.8)} . One can see the influence of t2x − t2y − 1
in all the error functions except the one for (0.4, 0.4).

Proof. Since νj(Ω) 6= 0, ∀ω ∈ Ω

PLjf(ω)
νj(ω)

νj(θj)

=
νj(θj)PLjf(ω)

νj(ω)
= (f − PLj−1

f)(θj) +
νj(θj)PLj−1

f(ω)

νj(ω)

→ (f − PLj−1
f)(θj) as νj(θj)→ 0.

In the experiment shown in Figure 2, we see that the interpolant is dominated by a scaled
version of t2x− t2y− 1, at least away from the other interpolation points. In the example, it is
clear that the unit circle will be degenerate, but approximation power is lost well before we
reach the circle. In general, identification of these degeneracies is not as obvious. Theorem 4
indicates that reduction in error requires sufficient flexibility in choosing νj(t) such that the
variety of this Newton polynomial is away from the data point θ. While νj(t) must be in the
I({θ1, . . . , θj−1}), any scheme that limits the choice to a subset that introduces new points
into the variety would not supply this flexibility. For example, schemes that construct νj(t)
using a fixed monomial ordering or minimal schemes that select from

I({θ1, . . . , θj−1}) ∩ Πk when I(I({θ1, . . . , θj−1}) ∩ Πk) 6= I({θ1, . . . , θj−1})

will admit degeneracies when there are additional points in its variety.

To avoid creating structural degeneracies in an interpolation scheme, one should select
the Newton polynomial from a generating subset of I({θ1, . . . , θj−1}).

For a further understanding of the error, we exploit the standard Taylor expansion.

Theorem 5. Let k = degL and f ∈ Ck+1(Rd) (i.e., a function with k + 1 continuous
derivatives), then there exists

{
Rβ(t) : β ∈ Zd+, |β| = k + 1

}
with

(f − PLf)(t) =
∑
|α|≤k

1

α!
Dαf(0)gL,α(t) (7)

+
∑
ϑ∈Θ

`ϑ(t)
∑
|β|=k+1

1

β!

(
tβRβ(t)− ϑβRβ(ϑ)

)
. (8)
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Further, Rβ(t) = Dβf(r(t)t), with 0 ≤ r(t) ≤ 1.

Proof. By the multivariate Taylor Theorem (see, e.g., [8]),

f(t) =
∑
|α|≤k

1

α!
Dαf(0)tα +

∑
|β|=k+1

1

β!
Rβ(t)tβ,

with Rβ(t) = Dβf(r(t)t), with 0 ≤ r(t) ≤ 1.
By Lemma 1 and the definition of PL,

(f − PLf)(t) =
∑
|α|≤k

1

α!
Dαf(0)gL,α(t) +

∑
|β|=k+1

1

β!
Rβ(t)tβ

−
∑
|β|=k+1

∑
ϑ∈Θ

ϑβ

β!
Rβ(ϑ)`ϑ(t)

=
∑
|α|≤k

1

α!
Dαf(0)gL,α(t) +

∑
ϑ∈Θ

 ∑
|β|=k+1

1

β!
Rβ(t)tβ

 `ϑ(t)

−
∑
|β|=k+1

∑
ϑ∈Θ

ϑβ

β!
Rβ(ϑ)`ϑ(t),

since
∑

ϑ∈Θ `ϑ(t) = 1. Collecting terms, we have

(f − PLf)(t) =
∑
|α|≤k

1

α!
Dαf(0)gL,α(t)

+
∑
|β|=k+1

1

β!

∑
ϑ∈Θ

(
tβRβ(t)− ϑβRβ(ϑ)

)
`ϑ(t).

There are two parts of this error formulation. The first term∑
|α|≤k

1

α!
Dαf(0)gL,α(t)

is related to polynomial reproduction, i.e., how well we interpolate the monomials in Πk. By
a simple counting argument, there will only be a few linearly independent terms left in this
sum. More precisely,

dim
{
gL,α : α ∈ Zd+, |α| ≤ k

}
= dim Πk(Rd)−#Θ.

The second term contains the factor∑
|β|=k+1

1

β!

(
tβRβ(t)− ϑβRβ(ϑ)

)
,
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which is a smoothness condition on the unknown function and is outside of our control.
However, this term is multiplied by a Lagrange polynomial, and hence can be made worse if
this polynomial is poorly behaved. This is further complicated by recalling the choice (with
cα having compact support),

`j,j(t) =
∑
α

cαgLj−1,α(t). (9)

With this, we are constructing our Lagrange polynomials from the error in interpolation of
the monomials. Indeed, by Theorem 2, any iterative scheme must select the j + 1 Lagrange
from I(Θj) which is spanned by errors in the interpolation. Therefore, using tolerances to
determine proximity of the interpolation point to the variety of a possible Newton polynomial
can be challenging.

What should be pointed out is that any scheme that forces the selection of the Lagrange
polynomial, for example by predetermining a monomial order or by enforcing minimal degree,
will run afoul of robustness issues.

This combined with Theorems 4 and 5 suggests that an interpolation scheme constructed
by sequentially selecting Lagrange polynomials must be robust in that selection. Any prob-
lems with a particular choice should show up already when investigating an appropriate
subset of gL,α’s. The question is what subset? It is our contention that one can understand
and control the error by investigating the error on a generating subset of the ideal I(Θ). We
will show in the next section that such a generating subsequence must exist in{

gL,α : α ∈ Zd+, |α| ≤ k + 1
}

= Πk+1 ∩ I(Θ)

and we will show how such a linearly independent generating subset can be computed.

7 On the construction of ΠL and generating subsets of

I(Θ)

Now that we understand how an inappropriately chosen Lagrange polynomial can lead to
poor interpolation spaces, we will continue to explore how the choice of `j,j impacts ΠL.
Explicitly, we will leverage (9) and investigate the impact of the choice of {cα}. After that,
we will show how this understanding can be used to construct a minimal generating set for
I(Θj) that balances the need for low degree and for robustness.

With the Lagrange normalization requirement

1 = `j,j(θj) =
∑
α∈Zd+

cαgLj−1,α(θj),

we can determine exactly how we are augmenting the interpolation space ΠLj−1
by the choice

in (9), namely by

span

∑
α∈Zd+

cαt
α

 ,
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as shown in the following theorem.

Theorem 6. Let
∑

α∈Zd+
cαgLj−1,α(θj) = 1 and `j,j =

∑
α∈Zd+

cαgLj−1,α(t), then

ΠLj = ΠLj−1
⊕ span

∑
α∈Zd+

cαt
α

 .

Proof. Since dim ΠLj = dim ΠLj−1
+ 1, we need to show that

∑
α∈Zd+

cαt
α ∈ ΠLj but∑

α∈Zd+
cαt

α /∈ ΠLj−1
. For the second condition, using Lemma 1∑
α∈Zd+

cαt
α − PLj−1

( ∑
α∈Zd+

cαt
α
)

=
∑
α∈Zd+

cαgLj−1,α

= `j,j(t) 6= 0.

Similarly, using Lemma 1, (5), and the assumed definition and normalization of `j,j∑
α∈Zd+

cαt
α − PLj

( ∑
α∈Zd+

cαt
α
)

=
∑
α∈Zd+

cαgLj ,α(t) (10)

=
∑
α∈Zd+

cα
(
gLj−1,α(t)− `j,j(t)gLj−1,α(θj)

)
(11)

= `j,j(t)− `j,j(t)
∑
α∈Zd+

cαgLj−1,α(θj) = 0. (12)

From lines (10) - (12), we see that∑
α∈Zd+

cαgLj ,α(t) = 0.

This means that the gLj ,α’s are linearly dependent, i.e., we have removed a polynomial from
the ideal. We next conclude that this linear dependent relationship is maintained even as
the gLj ,α’s are modified by later operations.

Corollary 4. With the same conditions as in Theorem 6,∑
α∈Zd+

cαgLi,α = 0, ∀i ≥ j.
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Proof. We will use induction. When i = j, the result follows from lines (10) - (12) above.
Assume true for i where i ≥ j, then we need to show that the result is true for i+ 1∑

α∈Zd+

cαgLi+1,α(t) =
∑
α∈Zd+

cα
(
gLi,α(t)− `i+1,i+1(t)gLi,α(θi)

)

=

∑
α∈Zd+

cαgLi,α(t)

− `i+1,i+1(t)

∑
α∈Zd+

cαgLi,α(θi)

 = 0,

by the inductive assumption.

A generating subset for I(Θ) would be sufficient to avoid the type of structural degen-
eracies noted in the previous section. However, for efficient computations, we would still like
to have control over the degree and complexity of the Lagrange polynomials. I.e., we would
like to have our interpolation space as small as possible while having a generating set for the
ideal, I(Θ).

Definition 5. Let kθ := min {k : I(I(Θ) ∩ Πk) = I(Θ)}, then we call a set

GΘ := {gL,α : deg gL,α ≤ kΘ}

minimally complete if I(GΘ) = I(Θ).

de Boor and Ron have shown that the Least polynomial space ΠΘ has minimum degree [5].
We would like to construct an interpolant that only increases this degree by at most 1. As the
following lemma shows, it is possible to find generating subsets of I(Θ) that are in Πdeg ΠΘ+1.

Lemma 3. kΘ ≤ deg ΠΘ + 1.

Proof. We need to show that

I(Θ) = I(I(Θ) ∩ Πdeg ΠΘ+1).

It is sufficient to show that ∀k

I(Θ) ∩ Πk ⊂ I(I(Θ) ∩ Πdeg ΠΘ+1).

This is trivially true when k ≤ deg ΠΘ + 1. Assume it is true for some k > deg ΠΘ + 1 and
note that for any β such that |β| > deg ΠΘ and L the Lagrange basis for ΠΘ,

gL,β(t) = tβ − PΠΘ
(tβ) with degPΠΘ

(tβ) < |β|.

Pick α with |α| = deg ΠΘ + 1 and β − α ∈ Zd+, then

gL,β(t)− tβ−αgL,α(t) ∈ I(Θ) ∩ Πk.

By the inductive hypothesis, gL,β ∈ I(I(Θ)∩Πdeg ΠΘ+1). Since this is true for all k, and using
Theorem 2, we have shown

I(Θ) = I(I(Θ) ∩ Πdeg ΠΘ+1).
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Definition 6. A Newton method is minimally complete if for each i, `i,i is selected from
a minimally complete set. I.e., `i,i ∈ span {GΘi}.
Theorem 7. Any minimally complete Newton method has degree ≤ deg ΠΘ + 1.

Proof. This is trivially true for the empty set of points. Assume it is true for point sets
with n points; that it is true for n+ 1 points follows directly from the inductive hypothesis,
Theorem 3 and Lemma 3.

We will occasionally abuse notation and refer to α ∈ GΘ to reference the index of element
gL,α ∈ GΘ. With this, we will let (9) have the form

`j,j(t) =
∑

α∈GΘj−1

cαgLj−1,α(t). (13)

The number of elements in GΘ can be minimized by leveraging Corollary (4) and using
a division algorithm similar to that used in the proof of Lemma 3 to only admit elements
of {gL,α : |α| = kΘ} that are required for completeness. The resulting algorithm would have
the following form:

Algorithm 2.

Starting with a GΘj and k (initialized to {1} and 0)
Select `j,j from GΘj

Set k to min {k, deg `j,j + 1}
Use Corollary (4) to drop one element from GΘj, and call this GΘj+1

Use Theorem 3 to update all the elements of GΘj+1

For each gL,α with |α| ≤ k and not already added to GΘj+1

if gL,α /∈ I(GΘj+1
), add it.

It is the last step that requires a division algorithm to solve the ideal membership problem.
Leveraging a mechanism based on Gaussian Elimination by Segments, we have a solution
to this problem that does not require introduction of a monomial ordering. This result will
appear in a later paper. However, our algorithm does not require that construction; using
any standard polynomial division algorithm will suffice (see, [1]).

8 On the construction of error sensitive interpolation

schemes

Given the concept of minimal completeness and an understanding of ΠL, we now are ready
to construct examples of minimally complete interpolation schemes using Theorem 3 and
(13). We will construct two examples; an example that reduces the number of monomials
in ΠL while controlling error, and a minimally complete analog of the Least interpolation
method.
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8.1 The monomial case

Assume that we want to minimize the number of terms in our Lagrange polynomials, thus
reducing the cost of evaluation. The monomial schemes will construct Lagrange polynomials
from #Θ monomials. Here, (13) becomes

Monomial Simplification Choice:

`j,j(t) =
gLj−1,α(t)

gLj−1,α(θj)

for some α ∈ GΘj−1
.

A possible method here would be a Greedy Approach. Namely, find

max
{
|gLj−1,α(θj)| : α ∈ GΘj−1

}
.

This has the advantage of simplicity, but there is no assurance of minimizing error.
For a more complete approach, we would need to find

min
α∈GΘj−1

max
β∈GΘj−1

∥∥∥∥(gLj−1,β(t)−
gLj−1,β(θj)

gLj−1,α(θj)
gLj−1,α(t) : gLj−1,α(θj) 6= 0

)∥∥∥∥
∞
.

While this can be computed exactly, in practice, maintaining an additional sampling of
gL,α(t), for example at the Vorinoi tessellation of Θ, should be sufficient to act as an estimate
for this computation. Such a sampling would provide a better estimator of the optimal
monomial to eliminate than would the single sample provided by the greedy approach.

8.2 The least square case

If the computation complexity of the resulting Lagrange polynomials is not a constraint,
then assume a more general form for `j,j(t), but limit it in the following way:

Least Square Simplification Choice: Find a pointwise vector 2-norm minimum over
GΘj−1

. I.e., for fixed t, find `j,j(t) to minimize∥∥GΘj−1
(t)−GΘj−1

(θj)`j,j(t)
∥∥

2
,

where GΘj−1
(t) is thought of as a vector.

The standard method to solve the problem of minimizing GΘj−1
(t) − `j,j(t)GΘj−1

(θj) is
least squares. I.e, `j,j(t) is chosen such that

0 = (GΘj−1
(t)− `j,j(t)GΘj−1

(θj)) ·GΘj−1
(θj)

=⇒ `j,j(t) =
GΘj−1

(t) ·GΘj−1
(θj)

GΘj−1
(θj) ·GΘj−1

(θj)

=
1

GΘj−1
(θj) ·GΘj−1

(θj)

∑
α∈GΘj−1

gLj−1,α(θj)gLj−1,α(t)

=
1∑

β∈GΘj−1
g2
Lj−1,β

(θj)

∑
α∈GΘj−1

gLj−1,α(θj)gLj−1,α(t)
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Note the following:

• ∀t ∈ Rd,
∑

α∈GΘj−1
g2
Lj−1,α

(t) > 0, therefore there are no degeneracies.

• The resulting method is stable under perturbation of θj, more precisely, the map

Rd 7→ Π(Rd) : s 7→ 1∑
β∈GΘj−1

g2
Lj−1,β

(s)

∑
α∈GΘj−1

gLj−1,α(s)gLj−1,α(t)

is continuous.

• One can continuously perturb any of the interpolation points, say point θi, by using
`i,#Θ(t) and some subset of GΘ, call the subset Gnew

Θ such that I({`i,#Θ ∪Gnew
Θ }) =

I(Θ \ θi) using the map

Rd 7→ Π(Rd) : s 7→ 1

`2
i,#Θ(s) +

∑
g∈Gnew

Θ
g2(s)

`i,#Θ(s)`i,#Θ(t) +
∑

g∈Gnew
Θ

g(s)g(t)

 .

Therefore, this scheme is continuous with respect to any single data point.

For these reasons, we will call this method out specifically:

Definition 7. The Complete Minimal method is the choice

`j,j(t) =
1∑

α∈GΘj−1
g2
Lj−1,α

(θj)

∑
α∈GΘj−1

gLj−1,α(θj)gLj−1
. (14)

Note that this is an unweighted average of the elements of the ideal. While we use this
unweighted average in this paper, using a weighted average is something we plan to explore
in the future.

8.3 Complete Minimal method is the Least Method using mini-
mally complete rather than minimal degree

More specifically, if we replace our requirement of minimally complete with the requirement
of minimal degree, then the Complete Minimal interpolation method generates the Lagrange
basis for the Least space, ΠΘ.

Definition 8. Let p ∈ Π, then

p↑(t) =
∑

|α|=deg p

Tα(p)tα/α!,

is the leading term of p.
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Lemma 4. Let ki = min {|α| : gLi,α 6= 0},

νi+1(t) =
∑
|α|=ki

gLi,α(θi+1)gLi,α(t), (15)

then
{(ν1)↑, . . . , (νn)↑}

is the Least Basis.

Proof. The Gram-Schmidt step in the Least computation is

wj,i+1 = wj,i −
vi · wj,i
vi · vi

vi,

where vi = (gLi−1,α(θi) : |α| = ki) and wj,i = (gLi−1,α(θj) : |α| = ki).
Select `i,i(t) = νi(t)/νi(θi) and note

`i,i(θj) =
νi(θj)

νi(θi)
=
vi · wj,i
vi · vi

.

Then,
wj,i+1 = wj,i − `i,i(θj)vi.

Since gL0(Θ) = eΘ, and each computation step is the same, the lemma holds.

Computationally, this result is interesting. It says that the entries of the matrix formed
from eΘ after the j-th step are gLj ,α(θi) for i > j. Thus, it is possible to compute the quanti-
ties needed to generate gLj ,α(t) and `ϑ(t) with a minimal number of polynomial evaluations.
The result also indicates as the number of points increase, and the error in interpolation
decreases, the values in the least matrix will become small making the use of tolerances to
determine degeneracy difficult.

Finally, for completeness, we will show that by restricting to minimum degree, the Com-
plete Minimal interpolation method yields the Least Basis.

Corollary 5. With νi+1 chosen as in (15), L(Θ) the corresponding Lagrange basis, and ΠΘ

the Least interpolation space, then
ΠL(Θ) = ΠΘ.

Proof. Let Ki =
{
α ∈ Zd+ : |α| = ki, gLi,α(θi+1) 6= 0

}
, let ‖vi‖ =

∑
α∈Ki (gLi,α(θi+1))2. With

νi+1 chosen as in (15),

`i+1,i+1(t) =
∑
α∈Ki

gLi,α(θi+1)2

‖vi‖
gLi,α(t)

gLi,α(θi+1)
.

Since ∑
α∈Ki

gLi,α(θi+1)2

‖vi‖
= 1
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and gLi,α(θi+1) 6= 0 for all α ∈ Ki, we know from Theorem (6) that

ΠL(Θ) = span

{∑
α∈Ki

gLi,α(θi+1)

‖vi‖
tα

}
= span {(νi+1)↑} = ΠΘ.

9 Examples

We will now present thre examples. The first example, with three points, will show how the
two methods from the previous section interact with the error. We then repeat the example
from Section 1 using the Complete Minimal method and compare results. Finally, we look
at an example with 19 points, looking to place the 20th. In that example, although there are
still two polynomials to choose from in Π5(R2), certain locations will still yield poor results
for minimal methods.

9.1 Three points

In this example, Θ = {(−1, 0), (1, 0), (a, b)} . After computing the first two points, one has

Θ2 = {(−1, 0), (1, 0)}
L2 = {`1,2(x, y), `2,2(x, y)} = {(1− x)/2, (1 + x)/2}
GL2 =

{
0, 0, y, x2 − 1, xy, y2, x3 − x, x2y, xy2, y3, . . .

}
GΘ2 =

{
y, x2 − 1

}
We now need to pick our Lagrange polynomial for the point (a, b). Using the monomial

simplification choice, one would have to pick from

`3,3(x, y) ∈
{
y

b
,
x2 − 1

a2 − 1

}
,

and with the least squared choice,

`3,3(x, y) =
by + (a2 − 1)(x2 − 1)

b2 + (a2 − 1)2
.

Looking at GL3 , with `3,3(x, y) = y/b, we have

g(2,0),L3(x, y) = (x2 − 1)− (a2 − 1)

b
y =

1

b

(
b(x2 − 1)− (a2 − 1)y

)
;
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with `3,3(x, y) = (x2 − 1)/(a2 − 1), we have

g(0,1),L3(x, y) = y − b

(a2 − 1)
(x2 − 1) =

−1

(a2 − 1)

(
b(x2 − 1)− (a2 − 1)y

)
;

while with `3,3(x, y) = (by + (a2 − 1)(x2 − 1))/(b2 + (a2 − 1)2), we have

g(0,1),L3(x, y) = y − b

b2 + (a2 − 1)2
(by + (a2 − 1)(x2 − 1))

=
(1− a2)

b2 + (a2 − 1)2

(
b(x2 − 1)− (a2 − 1)y

)
,

g(2,0),L3(x, y) = (x2 − 1)− (a2 − 1)

b2 + (a2 − 1)2
(by + (a2 − 1)(x2 − 1))

=
b

b2 + (a2 − 1)2

(
b(x2 − 1)− (a2 − 1)y

)
.

We thus see that in the first case, the error is concentrated in the g(2,0) term; in the second
case, the error is concentrated in the g(0,1) term; while in the third case the error is spread
over the g(0,1) and g(2,0) terms.

9.2 Example: five fixed points with sixth point varying.

We repeat the example from the introduction (Figure 1), using the Complete Minimal
method rather than interpolation by quadratics (Π2). The minimally complete generat-
ing set for the ideal associated with the five fixed points consisted of one quadratic, namely
t2x + t2y − 1, and two cubics. The Complete Minimal method leverages all three polynomials
when selecting the sixth Lagrange polynomial, avoiding the degeneracies demonstrated with
the quadratics. Figure 3 shows that the error is reduced for significantly more locations of
the 6th point with the Complete Minimal method, and that even when the error increases,
the increase is relatively small (bounded by 0.25).

Similarly, we repeat the plots from Figure 2 using the Complete Minimal method instead
of the minimal quadratics. While the errors for the minimal scheme grew to over twenty
times the value of txt

2
y, Figure 4 shows that the error functions are more stable for the

Complete Minimal method as the sixth interpolation point changes.

9.3 Example: nineteen fixed points with twentieth point varying.

While the previous example showed that problems can occur when selecting 6 polynomi-
als to interpolate 6 points from a polynomial space with 6 elements (Π2), problems can
occur in other cases. Consider the following example with 19 randomly chosen points.
dim Π5(R2) = 21, and with this particular set of points (as with most randomly chosen
point sets), the Minimally Complete generating set is comprised of 2 polynomials of degree
5 and 3 polynomials of degree 6. A minimal scheme would need to be of degree 5, so would

26



Figure 3: Experiment: Fix five points on the unit circle and allow the sixth point to vary
on a 101x101 grid. For each point, compute how much the addition of the sixth point has
improved the interpolant, i.e., the maximum error for interpolation of t3x, t

2
xy, txt

2
y, and t2y at

six points minus the respective maximum error for interpolation by 5 fixed points. In the
contour plot, brown and yellow are improvements, and all other colors are places where the
interpolation with that point is worse, with green being close to zero.

Figure 4: Similar to Figure 2, we plot the error function for interpolation of txty
2 by a

Complete Minimal method at the five Chebyshev points on the circle and the sixth point in
{(0.4, 0.4), (0.5, 0.5), (0.6, 0.6), (0.7, 0.7), (0.8, 0.8)} .
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Figure 5: On the left are the two zero sets for the degree five generators, while on the right
are the zero sets for each of the five Minimally Complete generators.

pick the Lagrange polynomial from a linear combination of the two degree five polynomials,
while a Complete Minimal method would use all five polynomials.

Figure 5 shows the zero sets for the 2 polynomials of degree 5, and the zero set for all
five polynomials in the Minimally Complete generating set.

Note while the variety for the ideal generated by the two polynomials of degree five
includes the nineteen fixed points, it also has additional points. Again, we test the impact
of adding a twentieth point from a 101 x 101 grid of points by computing the maximum
error for interpolation of the degree six monomials. The maximum error is constrained to
the convex hull of the original nineteen points. Rather than show a plot for each monomial,
we ask what is the best the interpolation scheme can do (the minimum of the maximum
values at the point) and what is the worst (the maximum of the maximum values at the
point). These plots are given in Figure 6. Clearly, the Complete Minimal method has a
more controlled error.

10 Conclusions

In this paper, we explored the strong connection between algebraic geometry and polynomial
interpolation. In particular, we used algebraic geometry tools to develop a machinery for the
analysis of nested polynomial interpolation schemes. The main practical result coming out of
our analysis is that for robustness, one should choose the next basis function for polynomial
interpolation from a complete generating set of the ideal. One consequence of this is one
should not use a minimum degree scheme if one wants to control the error of an interpolation
scheme.

This work began when we, the authors, were attempting to use the Least interpolation
scheme to solve to a problem motivated by an industrial application. We noted that ap-
proximately ten percent of the time, the results of our interpolation was highly oscillatory.
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Figure 6: The best and worst case for interpolation of twenty points with nineteen fixed for
a minimal scheme (top) and the Complete Minimal method (bottom).

At first we assumed we had a bug, then that we were running into a numerical issue when
making the decision to increase degree. To analyze how to choose the tolerances, we pro-
grammed the Least into Mathematica and put a symbolic point into the computation. This
lead to the discovery that the entries in the Least matrix were the errors in interpolation
of the monomials, our gL,α(θ). Thus, we discovered that the problem we were attempting
to address was mathematical rather than numerical in nature. The resulting analysis not
only suggested a solution to this particular problem but also showed why the Least typically
behaves so well (minimizing the error in pointwise least squared manner).

Our analysis can be applied to a wide range of polynomial interpolation schemes (in
particular, it applies to any interpolation scheme that produces spaces that are nested as
more points are added to the problem). It can be used to construct other robust schemes
as we have done in Section 8. It shows that there is an interplay between robustness and
complexity—restrictions like minimality can reduce the degrees of freedom that may be
required to avoid robustness issues. We have concluded that the modified condition of
minimally complete strikes the appropriate balance.

We purposely avoided dealing with collocation and interpolation of derivatives in this
paper, although will make the unproven claim that the two methods in Section 8 are stable
under collocation. We also have not addressed concrete implementation issues such as how
to order the points and efficient solution of the ideal membership problem. While we show
that the least square interpolation method is continuous as a function of a single interpo-
lation point, θ, we have not addressed continuity when two or more points are modified
simultaneously. Finally, while we have made some very general statements of error, we have
not shown a detailed analysis of the error in the two schemes of Section 8. We will, however,
make the following conjecture: The error can be characterized by the elements of GΘ.

We would like to thank Louis Theran for comments on an early draft of this paper and
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Carl de Boor for his careful reading and comments. We would also like to acknowledge the
funding of Dassult Systèmes Solidworks, Industrial Light and Magic and NSERC.
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