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ABSTRACT

To meet the demand for locally-produced and sustainable power,
community microgrids distribute power generated by roof-mounted
solar PV systems to ‘green’ consumers. In this context, we con-
sider the problem of matching one or more inherently intermittent
solar energy producers with each green consumer so that, with a
high probability, a certain component of their load is met from solar
generation. We formulate this optimal matching as a stochastic opti-
mization problem which incorporates the uncertainty of both solar
and loads. To solve the problem, we propose four algorithms which
make different assumptions on the distributions of solar generation
and loads. We compare the performance of these algorithms using
real data, and find that, for our dataset, an approach that assumes
Gaussian mixture models for solar and loads best fits our design
requirements. We also investigate admission control algorithms to
admit customers based on our matching algorithms so that the solar
allocation is feasible.
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1 INTRODUCTION

With the rapid decline in the price of solar photovoltaic systems, it
has become increasingly cost-effective for both residential and com-
mercial building owners to generate electricity from roof-mounted
systems. They can either use this energy themselves or sell it to
geographically-close ‘green’ consumers who wish to purchase re-
newable energy for many reasons including: reducing their carbon
footprint; reducing their electricity cost, if the sale price is lower
than the cost of grid electricity; reducing their price volatility due
to exposure to fossil-powered grid electricity; and, in some juris-
dictions, obtaining tax or ‘green’ building credits [9, 27]. However,
most building owners do not have the skill set necessary to finance,
install, operate, and manage such systems. To alleviate this prob-
lem, third party virtual power plant (VPP) operators have taken on
these tasks, aggregating and operating distributed generating facili-
ties [19, 20, 25, 33].

Most existing VPPs act as both purchasers and suppliers of green
electricity, executing supply-side contracts with generators to create
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renewable energy certificates (RECs), and demand-side contracts
with consumers to sell them RECs to match their demand, thus
supplying them ‘green’ energy. A recent trend in such systems is
to allow generators and consumers to directly enter into peer-to-
peer contracts [19, 23, 25, 26]. In such a system, the VPP acts
contracts for the next billing period as peer-to-peer, i.e., between
generators and consumers. Nevertheless, it is still necessary for the
VPP operator to control the admission of generators and consumers
into the system, and to match generators to consumers, so that, with
a high probability, the supply contracts will be met.

This motivates the following matching problem: given historical
data of solar generation and energy consumption of consumers,
match a certain component of generation from each producer with
each consumer so that, with a high probability, their anticipated
load in the next billing cycle1 is met (see Section 3 for details). This
matching problem is solved at the start of each billing cycle, which is
when load and solar profiles can be updated with recent measurement
data, and new consumers or new generators are admitted to the
system (if possible). The main challenge is that the actual future
values of both solar generation and energy consumption are highly
variable and unknown.

More specifically, in this paper, we consider two problems. First,
we propose and compare several approaches to allocating a fixed
portion of energy generated by each solar producer to each consumer
for the next billing cycle, e.g., a month. Second, we present admis-
sion control algorithms that determine whether a consumer can be
admitted to the system, i.e., their anticipated load can be met from
the existing set of producers. Solutions to both problems use a prob-
abilistic stochastic optimization approach to model intermittency in
solar power generation and load variability.

Our key contributions are as follows.

o We formulate the matching of solar producers to loads as a
stochastic optimization problem in which the uncertainty of
both solar and loads are considered.

Typically one month.



e To solve the stochastic optimization problem, we propose
three approaches (and four algorithms) based on different as-
sumptions on the distributions of solar and loads. We compare
the effectiveness of these algorithms in a realistic setting.

e We develop admission control algorithms to guarantee the
feasibility of the matching.

The remainder of the paper is organized as follows. Section 2
presents related work. In Section 3, we present our system model.
Section 4 considers several matching approaches based on chance-
constrained stochastic programming. We present algorithms for ad-
mission control in Section 5. Numerical results are presented in
Section 6 and we discuss and conclude our work in Section 7.

2 RELATED WORK

This section reviews related work, providing a broad overview of
virtual power plants, stochastic optimization, solar and load model-
ing, and a detailed summary of other work that has used a stochastic
modeling approach in the context of renewable energy systems.

2.1 Virtual Power Plants

A virtual power plant (VPP) aggregates generators to either sup-
ply consumers or to sell their power in a market [30]. They arise
naturally in the context of distributed generation, where each gen-
erator individually has neither the management capability nor the
market power to interact with existing large-scale grid operators [31].
As distributed solar generation becomes more popular, numerous
VPPs have entered markets around the world [30]. Our work focuses
on VPPs that operate in microgrids, allowing peer-to-peer energy
trading [19, 23, 25, 26].

2.2 Stochastic Optimization

Stochastic optimization problems can be solved in several ways,
including:

(1) Scenario-based approaches that make no assumption on un-
certainty distribution. However, they generally require a large
number of scenarios (i.e., samples of historical data) for good
performance, inevitably leading to high computational com-
plexity [10, 24].

(2) Probabilistic approaches where chance constraints incorpo-
rate uncertainty [7, 12]. To handle such constraints, we can
either assume uncertain parameters come from specific distri-
butions, or adopt a distributionally-robust approach [11, 13]
that relies only on statistics of a distribution (e.g., mean and
variance), hence is applicable to random variables drawn from
a family of distributions.

(3) Worst-case robust approaches which provide strategies that
are guaranteed to meet constraints even in the worst-case
scenario [5, 6]. However, this generally results in an overly-
conservative allocation of resources.

Since the matching between solar producers and consumers can be
naturally formulated as chance constraints, we adopt the second
approach in our work. We first investigate methods that assume
specific distribution information (i.e., Gaussian in Section 4.1 and
Gaussian Mixture Models (GMMs) in Section 4.2) and then study a
distributionally-robust strategy in Section 4.3.

2.3 Solar Radiation and Load Modeling

There are numerous mathematical models for solar radiation incident
on the Earth’s surface [2, 35]. Broadly speaking, these fall into two
categories: physical and statistical. Physical models represent site
attributes such as atmospheric turbidity, shadowing, and the level
of diffuse radiation. In contrast, statistical models are entirely data-
driven. Accurate physical models use sophisticated forms and are
highly parameterized, thus are not amenable for use in optimization.
Hence, we focus on statistical models.

Statistical models are used to either forecast solar radiation for
the next time period, given past history, or to model the variability
in solar irradiation for a specific hour of the day in a particular
season [2]. Since we wish to model solar radiation for a specific time
period as an i.i.d random variable, we focus on the latter approach.

Specifically, we use Gaussian Mixture Models (GMMs) and their
simplest variant, a single-Gaussian model, in our work. In contrast
to single models, in mixture models, each component of the mixture
corresponds to a certain sky condition (such as cloudy, partly cloudy,
or clear). Such use of GMMs to model solar radiation for a specific
time period is well-known [1, 2, 21].

Load modeling has also been extensively studied in prior work
(e.g., [3, 4, 18]). As with solar modeling, we seek to statistically
model load during a specific time period. Based on prior work, we
use a GMM (or a Gaussian) for load modeling [29, 32]. We also
investigate a distributionally-robust approach that considers a family
of distributions.

2.4 Stochastic Optimization in the Context of
Renewable Energy

Several researchers have used stochastic optimization to solve prob-
lems that arise in the context of renewable energy. For example, [15]
aims to reduce the variance of aggregate load (load minus renew-
able generation) by managing the power consumption of deferrable
loads under the consideration of prediction uncertainty. To balance
supply and demand, [34] proposes a real-time algorithm where the
uncertainty of renewable and loads is modeled by a range.

Instead of general renewable energy, prior work has also specif-
ically investigated systems with solar (e. g., [28, 36]) or wind gen-
eration (e.g., [17, 22]). In particular, [36] studies joint-operation in
building microgrids. A finite-stage event-based optimization model
is used to formulate the problem with the decision made based on
the observed event. Similarly, [28] adopts a scenario-based approach
to minimize electricity cost while maintaining the comfort require-
ments of each user.

Both [17, 22] assume specific distributions in the problem for-
mulation involving wind generation. For example, [17] investigates
controlling the charging load of electric vehicles to wind power by
formulating the problem as a Markov decision process. To model
system uncertainty, the Weibull distribution is used for wind speed, a
truncated Gaussian distribution is assumed for the parking duration
of electric vehicles, and the y2-distribution is considered for the
driving distance. An improved charging policy is provided based on
simulation.



In contrast to prior work, we study stochastic optimization based
both on specific distributions as well as distributionally-robust ap-
proaches. Moreover, the problem context, i.e., optimal matching in a
microgrid, to our knowledge, has not been studied in the literature.

3 SYSTEM MODEL

Consider a time slotted system with each day indexed by d, and
within each day there are several disjoint time slots indexed by k
(e.g., 10:30am-11am and 12:00pm-12:30pm). Denote the set of the
days considered as D £ (1,---, D} and the set of the time slots
within each day as K £ (1,---,K}. We are given a set of P solar
producers numbering |P|. Let p; (d, k) be the amount of solar energy
that producer i generates during time slot k on day d. If a producer
has more than one solar panel, p;(d, k) represents the aggregate
amount of energy it generates. Symmetrically, we are given a set of
C consumers numbering |C|. Let ¢j(d, k) be the amount of energy
used by consumer j during time slot k on day d. Note that due to the
uncertainty of solar generation and load, information about p; (d, k)
and c;j(d, k) is not known in advance.

In Fig.1, we show a bipartite graph where the solar producers
are in one set and the consumers are in the other set. The direction
of each edge indicates the direction of energy flow. A consumer
can be served by multiple generators and a generator can serve
multiple customers, i.e., a generator can split its generation without
any constraint.

Solar producers Consumers

ICl
Figure 1: System model.

At the beginning of each billing cycle, the VPP recruits new
generators and, if resources permit, new consumers. Moreover, each
consumer negotiates contracts with a set of generators based on the
result of the matching algorithm. Based on the services currently
provided by SunElectric, a typical solar VPP, we model two types of
consumers [20].

e Priority I: Each consumer is ensured that a predetermined
fraction of their next month’s load is met for a certain part
of the day. For example, with the Solar100 service from Sun-
Electric, 100% of the energy consumption during the chosen
time slots is satisfied by solar generation with a probability
higher than some threshold (e.g., 0.9). Once admitted into the
system, the consumer is matched to one or more solar produc-
ers that will meet its demand for this month. The matching

algorithm assigns producers and a corresponding percentage
of their solar generation to each consumer.

e Priority II : These consumers are not guaranteed green en-
ergy for the next billing cycle, but are retroactively assigned
any unallocated renewable energy production from the prior
billing cycle. In other words, for such consumers, the VPP
operator guarantees that a certain fraction of their actual en-
ergy consumption during the whole month will be satisfied
by solar generation. This models the SolarLite service from
SunElectric.

The objective of this paper is as follows: first, for Priority I con-
sumers, design admission control strategies and also obtain the
matching parameters for admitted consumers; second, for Priority II
consumers, design admission control strategies2.

4 MATCHING DESIGN FOR PRIORITY 1
CUSTOMERS

We consider the design of a matching algorithm that takes into
account the fact that values of the solar generation and loads are
uncertain in that they are unavailable until they are realized. Thus,
the system operator has to rely on historical data when designing the
matching parameters, knowing that this may not exactly reflect the
future generation or the future load. In particular, we assume that
the following information is available:

o for each solar producer, we have historical half-hourly solar
generation of previous years/months; and

o for each existing/new customer, we have historical half-hourly
energy consumption of previous years/months.

The matching algorithm assumes that there are enough solar
resources in the system (i.e., the optimization problem is always
feasible): Section 5 discusses how to admit customers so that this
assumption is met. The goal of the matching algorithm is to con-
struct a matching matrix M € RIPIXICI with its (i, j)-th element
m;, ; denoting the percentage of producer i’s generation assigned to
consumer j for the whole month.

Then, we can naturally formulate the service requirement of con-
sumer j as a chance constraint: Pr (cJ-(d, k) < Yiep mijpi(d, k)) >
a. That is, the load of consumer j during time slot k on day d should
be met by solar generation with a probability at least «, @ € (0.5, 1),
e.g., 0.9. To determine the matching parameters, we formulate the
following stochastic optimization problem, given the distributions
of p;(d, k) and c;j(d, k) and the target probability a:

SP: min E > mijpi(d k)
M . :
deD,keK ieP,jeC
S.t. mj,j >0, VieP,VjeC, 1)
dimij<1, Viep, @)
7

Pr(cj(d,k) < D" mijpi(d.k)| > a, VdeD,VkeK,VjeC,
ieP
3

2No matching is necessary for Priority II consumers since the allocation is after the fact,
and for aggregate consumption.



where the objective is to minimize the expected solar production
needed to satisfy the consumer demand, and the expectation is taken
over the solar generation of all time slots. This objective allows us to
subsequently allocate the most possible solar generation to Priority
II customers (see Section 5.2 for details). Note that (3) is a stochastic
constraint, and cannot be solved using a standard solver. Our work,
therefore, lies in translating this constraint into a form that can be
solved using standard solvers.

Constraint (1) requires that all matching parameters should be
greater than zero. Constraint (2) ensures that the allocated solar
generation of producer i cannot exceed its total resource. Note that
the chance constraint (3) is more binding for higher values of a.

Next, we propose three approaches to solve SP, making differ-
ent assumptions to model the uncertainty of future generation and
load, thus resulting in different algorithms where Constraint (3) are
replaced with deterministic ones.

4.1 Stochastic Optimization Using a Gaussian
Approximation

To transform the chance constraint to a deterministic form we need
the distributions of the uncertain parameters. The Gaussian distri-
bution is widely used in many applications and generally results in
a simple analysis. In this section, we use the Gaussian distribution
to model the uncertainty of the solar and energy consumption, and
propose an algorithm under this approximation. In particular, we
make the following assumptions:

(1) the distribution of the solar generation and energy consump-
tion is Gaussian;

(2) the solar generation of all producers are linearly correlated;

(3) the solar generation and energy consumption are indepen-
dently distributed; and

(4) the distribution of solar and energy consumption is indepen-
dent and identically distributed (i.i.d.) over days.

Assumption (2) is not essential, but will simplify the analysis,
since we can focus on the profile of one solar producer instead of
|P| producers. We expect this assumption to hold for geographically-
close solar producers, and we further validate it in Section 6 using
real data. Assumptions (3) and (4) are technical assumptions that are
required for either the problem formulation or later the derivation of
empirical statistics. Note that, since our analysis relies on historical
data, we implicitly assume that the future can be characterized by
historical data.

For simplicity of notation, we assume there is only one time slot
every day (e.g., 12pm-12:30pm) for which there is a commitment
from the generators to the consumers and omit the index k below?.
From Assumption (4), it suffices to only consider the chance con-
straint of each consumer on a typical day, thus we omit the index
d also. Based on Assumption (2), we define the solar generation of
producer i as B;p. Solar producer 1 is treated as the reference with
B1 =1, and its solar generation on day d is denoted by p(d) which
is assumed to follow the Gaussian distribution with the mean p and
variance o2. The value of other §; can be evaluated by comparing

P
the solar generation of producer i and producer 1 based on historical

tis straightforward to generalize our approach to multiple time slots by requiring that
the constraint & be met for each of the selected time slots.

data. The energy consumption of consumer j is also assumed to
follow the Gaussian distribution with mean ¢; and variance 0].2.

With the Gaussian approximation and independence assumption,
the chance constraint associated with consumer j, i.e.,

Pr (c i < Diep Mij ﬁip) > a can be equivalently written as
—Cj + p(Liep mi,jPi)
\/sz + 05 (Ziep mijfi)?
where ®~1(«) is the a-quantile of the standard Gaussian distribution.
Since the threshold & > 0.5, we have ® ' (a) > 0. We next show
that (4) is a second-order cone constraint.

To facilitate the transformation to the second-order cone con-
straint, we introduce new optimization variables in the vector form.

> o Na), )

First we define the optimization variable x; € RIPI*1 associated
with consumers j as
A T
xj = [1,-myj,—mgj, - ,—myp| 17, (5)

where T means transpose. Then we define the optimization variable
y € RICIIPI+1) 55

T T T T
yé[xl,xz,n- ’X\Cl] . (6)
Note that we define the optimization variable y in such a way to make
the optimization variable consistent in all our proposed algorithms,
which will be clear later.

Based on the definition of x; and y, we have x; = E;y, where
E; € RUPIFDXICIIPIHD) is 3 constant matrix with all elements equal
to zero except the j-th (|| + 1) columns which is the identity matrix.
Define the constant vector ¢; € RIP1*1 i as =20, ,-1,- - ,O]T
with all elements zero except the (i + 1)-th element which is equal
to —1. Then we can represent the matching parameter m; j as m; j =
cl.Tx o= ciTE jy- To transform the chance constraint, we also define
the constants b; € RIPI+1 v as

. 563 = T
b;=(cj. pp1. P2+ . PPip|]
and Aj € RXUPI+D) yj as
aefa o 0 - 0
0 ophi opfa opPip|
i i i E: -1 _pTE.
Ther‘l constraint (4) is equlVélent to ||AJ‘E Jyl! < qu_(a)b i E Jy..

Finally, under the Gaussian approximation we can rewrite the

stochastic optimization problem SP in the following form, given the

mean and variance of the Gaussian distribution, the linear coeffi-
cients f;, and the target probability a:

. —n T
GauSP: min Z Z |DIpPic; Ejy

ieP jeC
st. c/Ejy>0YieP,VjeC, ©)
D lEy<1viep, (8)
jeC
-1 T )

We will discuss how to derive the estimates of statistics of the Gauss-
ian distribution in Section 4.4.



We can see that GauSP is a second-order cone program, which
can be efficiently solved by many optimization software packages
such as CVX [16]. Thus, for the matching design we first solve
GauSP. Once the optimization variable y is obtained, it is straight-
forward to obtain the matching parameters m; ;.

4.2 Stochastic Optimization Using Gaussian
Mixture Models

In Section 4.1 we use the Gaussian distribution to approximate the
real distributions of solar and energy consumption. In this section,
we provide an algorithm obtained by approximating the distribution
of solar and energy consumption as a GMM. For the derivation
of the algorithm, we make the same assumptions as in Section 4.1
except that in Assumption (1), we replace the Gaussian distribution
with a GMM. Indeed, based on measured generation data provided
by a solar energy company4, in Fig. 2, we show the normalized
empirical distributions of solar generation during the same half-hour
of the day in three representative months. We find that the empirical
distribution has multiple peaks, consistent with a mixture model
such as a Gaussian mixture model (GMM).

Under the approximation of a GMM, we denote the distribution
of the reference solar generation as

R
p~ D NG, ), (10)
-

where R is the number of Gaussian components, 7, is the probability
associated with the r-th Gaussian component, p, is the mean and o?
is the variance of the r-th Gaussian component. Similarly, we can
denote the distribution of the energy consumption of consumer j as

~~Z N @007 ). (11)

where 7; | is the probability associated with the I-th Gaussian com-
ponent, and Lj is the number of Gaussian components.
The following proposition holds.

PROPOSITION 1. Assume that the distribution of the solar gen-
eration and the energy consumption of each consumer follows a
GMM, represented by (10) and (11), respectively. Also assume that
the solar generation and energy consumption are independent. Then
cj and p are jointly Gaussian mixture distributed. In particular, we

have,
N o? 0
ot [§] - Zmmn () [ 5l) 0

For simplicity of notation, we denote

= 2
2"
where Hy=RLj, 7 n =70, 177 1y, = [; ] andx h—[ o 62]'
r r

PROOF. The proof can be seen in Prop. 4 in [14]. O

With the definition of w; in (12), we can rewrite the chance
constraint associated with consumer j into a compact form as
Pr(a)sz j < 0) > a, where z; contains the optimization variables and

4Name omitted for anonymity

H.
~ Zhil 7 N (1 o Zj 1),

1
- Ziep mijpi
wj is crucial, which will be used in the proof of Prop. 2.

We now discuss how to handle the chance constraint under the
GMM approximation. Denote the original matching optimization
problem with the constraints (7), (8) and the chance constraints
Pr(ijz j < 0) > a,Yj, as GmmSP-P1, and denote an optimal
solution of GmmSP-P1 as y*. Consider a new optimization prob-
lem GmmSP-P2, which is the same as GmmSP-P1 except that the
chance constraints are replaced with two deterministic constraints.
Given the statistics of GMMs in (10) and (11), the linear coefficients
Bi, and the target probability «, we have the following formulation:

GmmSP-P2: min (|D|Zﬂrpr> D2 BiclEjy

ieP jeC

is defined as z jé [ ] , Yj. Note that the introduction of

st. c/Ejy=0,Vie P,VjeC,
Z ciTEjy <1,VieP,

jeC

Z € = Y, (13)
- jThBEjy

€ <@ —I——[.ViVh,  (14)
=2, BEyl

where €; j, are new optimization variables, ®(-) is the CDF of the
standard Gauss1an distribution, and (13) and (14) are the new intro-
duced constraints. We will discuss how to derive the estimates of
statistics of GMMs in Section 4.4. Denote an optimal solution of
GmmSP-P2 as (3, €; ). Below, we show the equivalence between
these two optimization problems.

PROPOSITION 2. Under Assumptions (1)-(3), the stochastic op-
timization problems GmmSP-P1 and GmmSP-P2 are equivalent

-p] ,BE;y”
ZHan Y

in the sense that, | y*,® is an optimal solution to

=7, BE;y* I
GmmSP-P2 and y is an optimal solution to GmmSP-P1, where B €
0o --- 0

0 p1 - Bl

R2XUPI+Y) s g constraint matrix defined as B2

and E; is defined in Section 4.1.
PROOF. See Appendix A. O

Based on Proposition 2, we have an equivalent deterministic op-
timization problem GmmSP-P2 for the matching design, which
is desirable. However, GmmSP-P2 is a non-convex optimization
problem due to constraint (14). Below we propose a heuristic algo-
rithm to solve GmmSP-P2. The idea is that, instead of solving a
difficult optimization problem with joint variables y and €; p, we
solve a number of easier problems where the variables €; p, are fixed.
The final solution is then chosen as the one that results in the least
objective. We list the detailed steps of the algorithm below.

First define the maximum number of iterations as Ijayx.

(1) Initialize €; p, Vj, Vh, satisfying constraints (13) (e.g., @).



Solar 1: normalized empirical distribution
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Figure 2: Normalized empirical distributions of solar and energy consumption.

(2) Given g; p, solve the following second-order cone optimiza-
tion problem with the optimal solution ¥, and record y:

Lo = TE.
GmmSP-P3: min (|z)| Zn,p,) >0 BiclEjy

ieP jeC

st. clEjy>0VieP,VjeC,

Z ciTEjy <1,VieP,

jeC

T

—H; ,BEjY
D 1(ej p)
(3) Repeat Steps (1),(2) until the number of iterations achieves

1
=2, BEyll < V), Vh.

Imax-

(4) Choose the best solution y that results in the least objective in
GmmSP-P3. Obtain the matching parameters based on the
definition of y in (6).

Since constraints (13) always hold if we initialize €; j, as @, we
can start with . Other initialization values can be obtained by,
for example, grid search. The maximum number of iterations Iy
is pre-selected. Obviously, the larger the value of Iayx, the lower
the objective of GmmSP-P3, but the computational complexity
accordingly increases.

4.3 Distributionally-Robust Stochastic
Optimization

In Sections 4.1 and 4.2, we use specific distributions to approximate
the real distributions of solar and energy consumption in the future.
Such approximations, however, may result in poor performance if
the future data do not fit the assumed distribution. In this section,
we instead adopt a distributionally-robust approach by considering
a family of distributions with some common statistical information
(e.g., mean and variance).

A chance constraint is generally hard to deal with except in
some very specific cases. For example, when the distribution of
the uncertain parameter is Gaussian, as seen in Section 4.1, we
can equivalently transform the chance constraint to a second-order
cone constraint which is tractable. For other distributions, such as
GMM in Section 4.2, we can only resort to heuristic algorithms. As
mentioned before, by a distributionally-robust approach, instead of
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focusing on a specific distribution we consider a family of distribu-
tions. This would lead to a conservative approximation of the chance
constraint. With appropriate definition of this family, we can make
this approximation tractable.

For simplicity of notation, we define a slightly different random
variable w; € RI® 11 associated with consumer j:

A T
j = [cj.p. fap.-- . fipip]”
which denotes the consumption of consumer j and solar generation
of all producers. Then for consumer j the chance constraint (3) can
be rewritten in a compact form as

Pr(a)ijj <0) > a, (15)

where x; is defined in (5).

Define the mean and covariance matrix of wj as p; and X, respec-
tively. Next we transform the chance constraint into a distributionally-
robust chance constraint as

inf  Pr(e] % <0)>a, (16)
@;j~F (1;,%))
where F (p;, %) denotes the distribution family that contains all
distributions with mean p; and covariance matrix X;. It is obvious
that if (16) holds then (15) holds. In the following theorem we show
that (16) is equivalent to a second-order cone constraint.

THEOREM 1. For any given a € (0.5,1), the distributionally-
L. To. ,
robust chance constraint 1nfwj~7.-(ﬂj,zj) Pr(wj Xj <0) > ais
equivalent to the second-order cone constraint

1
1=} %51l < ————=p]x;.
A al/(l1—a) 7
where || - || denotes Ly norm.
PROOF. The proof follows that of Theorem 3.1 in [11]. ]

With Theorem 1, we can formulate a second-order cone program,
which is a conservative approximation of SP. Given the mean and
covariance matrix of wj, the linear coefficients f;, and the target
probability a, we have the following formulation:

. mi 5cTE:
DRSP: mym Z Z |D|Bipc; Ejy
iePjeC
st. c/Ejy>0,VieP,VjeC,



Z cl-TEjy <1,VieP,
jeC
|IZ%E | < ! TEjy.ViecCc. (17
i BVl s ——/————H; Bjy. V) .
i al(l—a) 7
We will discuss the estimation of statistics of @; in Section 4.4.
Comparing constraint (17) with constraint (9) in GauSP, we can see
that the coefficients b; and A; in (9) play similar roles as p; and

1
Zj5 in (17), respectively. Since r/ar/(1 — @) is greater than &~ (a)
for a particular «, the upper bound in (17) is tighter than that in (9).
In other words, (17) is more conservative than (9), which is easy to
understand since DRSP is subject to a family of distributions which
includes the Gaussian distribution.

4.4 Derivation of Statistics

Recall that matching parameters are recomputed at the beginning
of each billing cycle. To do so, our proposed algorithms require
statistics derived from past history as input. For example, in Section
4.1, we assume availability of the mean and variance of the Gaussian
distribution, in Section 4.2 the statistics of GMM, and in Section
4.3 the mean and covariance matrix of ;. With sufficient historical
data, the empirical estimates of these statistics can be derived with a
reasonably high accuracy; the greater the availability of historical
data, the more accurate the statistical information, and hence the
greater the accuracy of the matching parameters.

We now describe how to extract the desired statistics. Assume
that the data of solar and energy consumption are i.i.d., and denote
{w() }ﬁ\i , as a set of N independent samples. Then the empirical
mean of the random variable @ based on these N samples is [1( N) =

% Zf.\i 1 @(i) and the empirical covariance matrix of e is

N
. 1 . . T
2N =N Z} (@@ = fin) (00) = i)
i=
It has been shown that, when the number of the samples N is large
enough the distributionally-robust chance constraint (16) will hold
with a high probability (Theorem 4.1 in [11]). In addition, using
historical data, we can estimate the statistics of a GMM using an
approach such as the Expectation-Maximization (EM) algorithm?.

5 ADMISSION CONTROL

In the discussion so far, we have assumed that there are enough solar
resources to accommodate all consumers. In practice, the VPP may
only be able to support a subset of all consumers who want to enter
the system because of insufficient solar generation. In this section,
we propose a greedy sequential allocation strategy for the admission
of Priority I and II consumers.

5.1 Priority I Consumers

Assume that the consumers are ordered in descending order of prior-
ity (e.g. first-come-first-served). Then, consumers are added in order
of decreasing priority until the VPP runs out of solar resources. Usu-
ally, we can start with a conservative estimate of j* consumers based
on the operation of previous months. Specifically we begin with the
consumer set {1,2,-- -, j’} and design the matching parameters by

5In Matlab, this is implemented by the fitgmdist() function.
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Figure 3: Linear ratio between real solar generation

some algorithm, e.g., DRSP. If the problem is feasible we add the
next consumer and run the algorithm again. The process continues
until the problem becomes infeasible (i.e., the optimization software
cannot generate a solution.)

5.2 Priority II Consumers

We now consider the admission of Type II consumers. For each Type
II consumer, we require that its monthly energy consumption be
completely satisfied by unallocated solar generation from the prior
billing cycle. Denote the set of Type II consumers that request to
join the program as A each indexed by q. Denote the prior billing
cycle’s energy consumption of consumer g by aq. We assume that
these consumers are ordered in descending order of priority. With
historical data, we know the value of ag, Vq € A.

At the end of each billing cycle, using the matching parameters
for Type I consumers, the VPP can derive the total amount of solar
energy that has already been contracted for. Then the amount of the
un-assigned solar generation for the whole month is U given by:

-3

ieP,deD,keK

pildk)= > pid k) D mi,, (18)

ieP,deD jec

where mt jare the matching parameters for Type I consumers, and
k'’ is the particular time slot requested by Type I consumers. In other
words, (18) gives the maximum amount of solar generation that can
be used for Type II consumers.

Denote the set of the admitted Type II consumers as {1,2,- -, q*}.
Then the total amount of solar energy for Type II consumers can-
not exceed the available resources, i.e., there should be inequality
ZZ; ag < U. The method we propose is to add Type II consumers
sequentially until this inequality becomes infeasible.

6 EXPERIMENTAL RESULTS

In this section, we evaluate and compare the performance of the
algorithms proposed in Section 4 using real-world data.



6.1 Data Description

We were given access to one year (Sept. 2016 to Aug. 2017) of
anonymized half-hourly solar generation and load data from 2 ge-
ographically close solar panels and 15 consumers by a Singapore-
based VPPO. Note that the weather in Singapore is all-year similar
with no obvious seasonal characteristics. Fortuitously, this is aligned
with our i.i.d. assumption on solar data.

We compared the normalized generation traces of several solar
panels for the whole year, and found that the ratio between the
solar generators was close to 1. See Fig. 3 for the comparison of
two representative generators for three representative months. This
is in line with our assumption that solar generation from different
geographically-close generators is linearly correlated.

We set one of the solar producers as the reference, and, based on
this reference solar producer, we generate 8 synthetic solar produc-
ers with the linear coefficients 4,5, 3, 2, 4,4, 3, and 1, respectively.
In principle, these linear coefficients can be arbitrary, and should
reflect the actual situation on the ground. In this experiment we
choose a representative set of values that generally results in feasible
matchings under both our proposed algorithms and a benchmark
Oracle algorithm described in Section 6.3.1.

In our experiment, we generate a matching for generation and load
considering only one time slot each day, i.e., 12pm — 12:30pm. The
solar generation of the i-th (i > 3) producer during 12pm —12:30pm
on the d-th day is thus denoted by p; (d) = fip1(d).

6.2 Experiment Description

In the experiment we focus on Priority I consumers and answer
the question: if we are given a target « and historical data, what
algorithm should we use to design the matching parameters?

We answer this questions using a 12-fold cross validation based
on real solar and load data. That is, we divide the data into months
and run 12 experiments. For each experiment, we set one month
as the test month and the rest as the training months. The purpose
of training is to obtain the matching matrix M that corresponds to
the training data. In the testing phase, the derived matching matrix
is used in the test month. We calculate the actual test o for each
consumer, which may be different from the target « in the training
phase. In the training phase, we try different values of the target
a, from the set [0.75 0.8 0.85 0.9 0.95 0.99]. A high value of «
indicates a more restricted chance constraint, in other words, the
energy consumption would be satisfied with a high probability. The
target « is the same for all consumers.

6.3 Algorithm Comparison

In Section 4, we proposed three approaches to solve the matching
problem, where the chance constraints in (3) are replaced by de-
terministic constraints, with stochastic parameters modeled either
as Gaussian random variables, Gaussian Mixture Model random
variables, or based on a family of distributions. In this section, we
compare these approaches. Note that under the GMM assumption,
we consider two additional cases: 1) both solar generation and en-
ergy consumption are fit by GMM with two Gaussian components;
we call this GmmSP2; and 2) both solar generation and energy

%Name omitted for anonymity

consumption are fit by the ‘best fit’ GMM; we call this GmmSPb.
With GmmSPb, the number of Gaussian components can be up to
a pre-determined threshold (e.g., 5), hence leading to a better fitted
model of the training data. These two algorithms are solved in the
same way, and the only difference is their distributional models.

To compare the algorithms, we observe that good algorithm
should be feasible both in the training and testing phases (we discuss
this in more detail in Section 6.3.2), and minimize the objective func-
tion. These, hence, are our metrics. Before comparing the algorithms,
we first present our benchmark oracle algorithm.

6.3.1 Oracle. As a benchmark, we describe an Oracle match-
ing algorithm that knows the future perfectly, and can therefore
allocate the least generation resources to guarantee the desired load.
In other words, the target « under Oracle for all consumers is 1.

More precisely, given p;(d, k) and cj(d, k), Vi, Vj, Vd, Vk, the ora-
cle solves the following problem:

Oracle: n11\i4n Z mi, jpi(d, k)

deD,keK ieP,jeC
s.t.mjj 20, Vie P,VjecC,

Zmi’jSL Vie P,
J

¢j(d, k) < Z mi jpi(d, k), Yd € D,Vk € K,VjeC.
ieP
Since there are no uncertain parameters, Oracle is a deterministic
(linear) optimization problem, which is easy to solve. Oracle pro-
vides a lower bound of the objective when the energy consumption
is completely met by solar.

6.3.2 Feasibility. As observed earlier, there are two aspects of
feasibility. First, in the training phase, the optimization problem in
our proposed algorithm may become infeasible (and thus cannot
generate the matching parameters) if the target « is greater than
some threshold. Second, when used in the test month, the matching
parameters derived in the training phase may result in a test « that is
lower than the target o. We evaluate both types of feasibility in our
work.

Table 1: Number of feasible training

0.75 0.8 | 0.85 | 0.9 | 0.95 | 0.99
GauSP 12 12 12 12 12 12

GmmSP2 | 12 12 12 12 12 7

GmmSPb | 12 12 12 12 12 12
DRSP 12 12 12 0 0 0

In Table 1, we investigate feasibility in the training phase. For
each proposed algorithm, we list the number of times, out of the
total 12 experiments, and for all values of the target « that the
stochastic program was able to generate the matching parameters.
We see that first, GauSP and GmmSPb are feasible in the training
phase for all values of the target «; second, GmmSP2 is generally
feasible except when the target « is close to 1; and DRSP is only
feasible for relatively small values of «. To see if this behaviour
of DRSP was due to inadequate supply of solar energy, we further
increase the linear coefficients of the 8 synthetic solar producers
to 1000, 2000, 3000, 3000, 4000, 4000, 5000, and 5000. Even with this
very high values for solar genearation, DRSP was still found to be
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infeasible for @ > 0.9. Hence, we attribute the infeasibility of DRSP
in the high range of « to its high level of conservatism, based on its
need to be insensitive to the distribution of the underlying random
variables.

Next we consider feasibility in the test phase. In Figs. 4-7, we
use box plots to show results on the target « as a function of the
test  for all 15 consumers for three different months. For each
consumer, the test « is calculated as the number of days in the test
month where the energy consumption is fully met by solar for the
time slot under consideration, over the total number of days in the
month. In each box, the central red line denotes the median, the
lower and upper edge of the box are the 25th and 75th percentiles,
respectively, and the whiskers extend to the minimum and maximum
data points not considered outliers. Outliers, if any, are shown as
red plus signs. To check feasibility, it suffices to see whether the
minimum test ¢ among all 15 consumers exceeds the target . Due
to space limitation, we only show three representative months.

From Fig. 4, it is clear that GauSP cannot guarantee feasibility
for all consumers because, for each target «, there is at least one
consumer whose constraint is unmet (except when « equal to 0.99
in Oct. 2016). For example, in the test month Oct. 16, when the
target « is set as 0.75 there is one consumer whose test « is as low as
0.27. In addition, the median test « is, in general, below the target «.
Thus, GauSP is not a desirable approach for solving the matching
problem.

Unfortunately, similar to GauSP, GmmSP2 does not provide fea-
sibility for all consumers. Nevertheless, its feasibility performance
is better than that of GauSP, since from Fig. 5 the median test « is
generally greater than that of the target a.

Unlike the two prior algorithms, GmmSPb ensures feasibility in
all cases. However, GmmSP2 is quite conservative especially in the
lower range of «, in that the test « is much higher than the target
in general. For example, in as many as seven test months all test o
are greater than 0.95 regardless of the values of the target a.

Finally, in Fig. 7, we find that, DRSP, when feasible in the train-
ing phase, is also feasible in the test phase. Despite this, given that
DRSP cannot find a feasible solution for typical values of ¢ > 0.9,
we do not recommend it as a solution.

To sum up, based on feasibility in both the training phase and test
phase, the only acceptable solution is GmmSPb.

6.3.3 Optimality. In this section, we compare the performance
of GmmSPb with that of Oracle. Since GauSP, GmmSP2, and
DRSP cannot ensure feasibility, we do not include these algorithms
since the comparison would be meaningless without feasibility. From
Fig. 8, with the target @ equal to 0.99, the total amount of the al-
located solar generation to Type I consumers under GmmSPb is 3
(Oct. 2016), 2.4 (May 2017), and 1.9 (Aug. 2017) times, respectively,
that under Oracle. On the other hand, with the same amount of the
allocated solar as that under Oracle, it is possible for GmmSPb to
achieve the target a equal to 0.9 (Aug. 2017), but can also be lower
than 0.75 (Oct. 2016).
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7 DISCUSSION AND CONCLUSIONS
7.1 Discussion

We now discuss some limitations of our work and propose future
directions. To begin with, our modeling of both soalr generation
and load is fairly simplistic, based on the Gaussian distribution and
Gaussian Mixture Models. In future work, we plan to study more
sophisticated models (e.g., based on higher order Markov chain),
which can better reflect the characteristics of solar and loads, and
can be updated dynamically on changes. Of course, this makes the
matching algorithm far more challenging.



Second, in Section 4.2, using the GMM approach, we used a
heuristic to solve the the non-convex optimization problem GmmSP-
P2. This could potentially be made more efficient, a topic for future
work.

Finally, we design the matching scheme for priority I consumers
based on some technical assumptions which significantly simplify
our analysis. In particular, the i.i.d. assumption on the distributions
of the solar and energy consumption may be far from reality. For
example, solar output is highly affected by ambient temperature and
solar irradiance and is in general non-stationary. Nevertheless, the
matching that we produce meets the target when using the recom-
mended GMMSPDb approach.

7.2 Conclusions

We consider a solar-based microgrid where a VPP acts as a market
maker and contracts are directly made between solar producers and
consumers. For the matching design of Priority I consumers, we pro-
pose three approaches and four algorithms, i.e., GauSP, GmmSP2,
GmmSPb, and DRSP, which are based on different assumptions
on the distributions of the solar and energy consumption. Based on
experiments in a realistic setting, we find that GmmSPb can always
meet our design requirement and is thus recommended. We also
provided sequential control strategy for the admission of Priority I
and II consumers so that the solar allocation is feasible.
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PROOF OF PROPOSITION 2

Define a new random variable 0; € {1,2,-- -, H;}. Suppose that the
realization of 0; is h. Then we draw a sample of w; from the h-th
Gaussian component. After introducing 6;, we have the following
equivalence:

Pr(ijZj <0)>a

H;
= ZPr(ijZj <0,0j=h)>a

h=1
H;
= Z 7 n Pr(@] 2 <010, = h) > a
h=1
H; T
, ~Zi Hj
= Z”j,hq) — |z (19)
= IZ2 21

where the equivalence in (19) holds because given 0; = h, ijz j 18

J

Gaussian distributed with the mean pu” pZj and variance zJ.TZ i hZj-

Note that z; can be represented as a linear function of the optimiza-
tion variable y (defined in (6)) as z; = BE;y. Then the equivalence
is obvious [8] .
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