
On Referring Expressions in Information
Systems derived from Conceptual Models

Alexander Borgida†, David Toman‡ and Grant Weddell‡

†Department of Computer Science, Rutgers University, New Brunswick, USA
borgida@cs.rutgers.edu

‡Cheriton School of Computer Science, University of Waterloo, Canada
{david,gweddell}@uwaterloo.ca

Abstract. We apply recent work on referring expression types to the
issue of identification in conceptual modelling. In particular, we consider
how such types yield a separation of concerns in a setting where an In-
formation System based on a conceptual schema is to be mapped to
a relational schema plus SQL queries. We start from a simple object-
centered representation (as in semantic data models), where naming is
not an issue because everything is self-identified (possibly using surro-
gates).We then allow the analyst to attach to every class a preferred
“referring expression type”, and to specify uniqueness constraints in the
form of generalized functional dependencies. We show (1) how a number
of well-formedness conditions concerning an assignment of referring ex-
pressions can be efficiently diagnosed, and (2) how a concrete relational
schema and SQL queries over this schema are derived from a combination
of the conceptual schema and queries over it, once identification issues
have been separately resolved as above.

1 Introduction

The Entity Relationship notation, and its many extensions, were designed with
the explicit purpose of helping to derive relational database schemata from the
conceptual model. One feature of the relational model, namely that attribute
fillers must be values such as strings and integers, means that relationships
between entities need to be represented as relationships between their “names”
(primary keys), and therefore all entities need to have primary keys. This resulted
in (E)ER modelers having to pay premature attention to naming issues. For
example:

(a) One cannot create tables representing relationships before one has decided
on how entities are going to be externally named.

(b) One needs to distinguish right from the beginning “weak entitiy sets”, like
ROOM, with attributes room-num and capacity, which are insufficient to act
as an external key, from regular entity sets like BUILDING, with attribute
address that can identify it. This is necessary even though no deep onto-
logical factors distinguish ROOM and BUILDING.



(c) If entity set PERSON is identified by ssn, and it has subclass FAMOUS-PERSON,
then the latter must inherit its identifier from the superclass. This, despite
the fact that we might prefer as identifier the attribute name for FAMOUS-PERSON,
or maybe even star-name (like Bono or The Edge), which is only applicable
to FAMOUS-PERSON.

(d) Certain entity sets are introduced by generalization as the union of very het-
erogeneous sub-classes; for example, LEGAL-ENTITY is the generalization of
PERSON and COMPANY, for the purpose acting as participant in relationships
such as ownership. In such cases, one is forced to immediately create an ar-
tificial attribute, (e.g., legal-entity-number), which replaces the natural
keys of PERSON (e.g., ssn) and COMPANY (e.g., corp-name and city). Since
legal-entity-number is meaningless to end users, programmers must al-
ways remember to perform joins so as to include the usual keys of the sub-
classes, depending on the individuals returned.

Note that when using an object-centered modelling notation supporting object
identity, such as most semantic data models since Taxis [4], problems (a) and (b)
do not arise at the beginning because relationships are stated between objects
themselves. Our essential starting point is that one can therefore postpone the
naming issue to a separate pass. Unfortunately, problems like (c) and (d) persist.
We propose a multi-part approach to address these. The following outlines the
remainder of the paper and how our results provide a basis for this approach:1

(1) After this enumeration, we introduce by example a simple conceptual
modelling notation, C, that has the common features of so-called “attribute-
based” semantic models, such as those surveyed in Table 12 of [3]. The data
model is based on the familiar object-centered view of the world consisting of
individual objects, with attributes that can have as values either other objects
or atomic values, such as SQL datatypes. The objects are grouped into classes,
satisfying a variety of constraints, such as subclass hierarchies, disjointness and
coverage relating to other classes, and a general form of functional dependency.
As we hope to illustrate below, C can serve as a lingua franca for standard con-
ceptual models such as EER, UML class diagrams, DL-Lite ontologies, and so
on. The important point is that C does this without the need to decide external
referring expressions for objects. In Section 2, we provide a slight syntactic vari-
ant, Car, of C, which gives it more of a relational flavor by making “internal”
object identifiers visible as “abstract” attribute values.

(2) As with all object-centered conceptual models, one can use arbitrary
SQL-like queries over C, and especially Car schemas, where variables range over
extents of classes, in order to express data access requirements. In Section 2, we
also introduce SQLpath, a core of SQL in which it is possible to employ “dotted
path notation” (e.g., x.manager.salary) to avoid explicit foreign key joins, and
hence make queries shorter.2

1 The outline is followed by a sequence of examples that illustrate intuitively the entire
process. The remainder of the paper is a more formal development of the ideas.

2 This and other earlier language features of C were already available in Taxis [4] and
GEM [7].



(3) In a separate, orthogonal pass, modellers specify (i) functional dependency-
like constraints that include keys, and (ii) preferred naming schemes for each
class in a referring expression type language, introduced in Section 3. The nota-
tion makes it possible to address situations like (b), (c) and (d) above.

(4) Given a Car schema, a referring expression type assignment and a set
of SQLpath queries, algorithms can be given to perform several key tasks:

– In Section 3, we show how to verify that the referring expressions comprising
the naming schemes in (3) above do indeed uniquely identify objects in tables
and queries.

– In Section 4, we how show how the referring expression types in (3) guide the
replacement of abstract attributes in a C schema with sequences of concrete
attributes, thus obtaining a concrete relational schema.

– In Section 4, we also show how to translate any SQLpath query into a provably
equivalent regular SQL query over the concrete relational schema, thereby
eliminating all path expressions as well as non-printable object ids that might
have been returned by the query.

We illustrate the above using a situation where legal entities, which are either
persons or companies, can own vehicles (one owner per vehicle), while persons
can drive vehicles. A conceptual schema expressed in C might be given as follows:3

class PERSON (ssn: INT, name: STRING, isa LEGAL-ENTITY,

disjoint with VEHICLE)

class COMPANY (corp-name: STRING, city: STRING, isa LEGAL-ENTITY)

class LEGAL-ENTITY (covered by PERSON, COMPANY)

class VEHICLE (vin: INT, make: STRING, owned-by: LEGAL-ENTITY)

class CAN-DRIVE (driver: PERSON, driven: VEHICLE)

Given this schema, a modeller will then be able to express the following queries
in SQLpath:

– “The name of anyone who can drive a vehicle made by Ford”:

select d.driver.name from CAN-DRIVE d

where d.driven.make = ’Ford’

– “The owners of GM vehicles”:

select v.owned-by from VEHICLE where v.make = ’GM’

Note that as it stands, the second query does not specify how the (heterogeneous)
owners, which share no common concrete attributes that can identify them, will
be described in the final answer.

Concurrently with writing queries, modellers can address external naming
preferences. Note that this might require adding (or discovering) functional de-
pendencies from which one can derive key/uniqueness information. The naming
process might start by stating that ssn is a key for PERSON, and that the com-
bination of attributes (corp-name,city) is a key for COMPANY; and then associ-
ating referring expression types “ssn=?” to class PERSON, and “(corp-name=?,

3 We explain the correspondence to a Car schema in the next section.



city=?)” to class COMPANY, making these key values the references. (Note that
PERSON might have had other keys.) A referring expression type for LEGAL-ENTITY
objects might be given as follows:

PERSON → ssn=?; COMPANY → (corp-name=?, city=?).

Were it possible for an object to be both a person and a company, the use of “;”
expresses a preference for using ssn attribute values for identifying the object.

Once it has been verified that this assignment of referring expression types is
well-formed in the sense that it resolves all identification issues (see Section 3), it
then becomes possible to automatically map the schema originally given by mod-
ellers to a concrete relational schema with additional primary key attributes and
with “object pointer” attributes replaced by (sequences of) concrete attributes.
In turn, SQLpath queries are similarly translated to executable SQL queries over
this schema (see Section 4). To illustrate, the following are (parts of) the concrete
tables that would be produced for PERSON, LEGAL-ENTITY and VEHICLE:

table PERSON (ssn INT, name STRING, primary key (ssn), . . . )
table LEGAL-ENTITY (disc enum{’PERSON’,’COMPANY’}, ssn INT,

corp-name STRING, city STRING, primary key (disc, ssn, corp-name, city))

table VEHICLE (vin, make, owner-disc, owner-ssn,owner-co-name,owner-city,

foreign key (owner-disc, owner-ssn, owner-corp-name, owner-city)

references LEGAL-ENTITY (disc, ssn, corp-name, city) )

Note how identification for LEGAL-ENTITY objects is ultimately resolved: four
attributes are added, with attribute disc acting as a discriminant in variant
records. (We assume inapplicable attributes are always initialized with default
non-null values.) To illustrate how SQLpath queries are mapped, consider the
second example query above. It maps to the following executable query:

select v.disc, v.ssn, v.corp-name, v.city from VEHICLE v

where v.make = ’GM’.

2 Abstract Relational Databases

We now introduce Car, a minor variant of the modeling language used in Sec-
tion 1 examples. Essentially, it makes object identifiers programmer visible, in
order to bring data declaration and manipulation syntax closer to SQL, which
is more familiar to application programmers.

Definition 1 (Car: A more relational but still abstract view of C) Let
TAB, AT, and CD be sets of table names, attribute names, and concrete do-
mains (data types), respectively, and let OID be an abstract domain of identi-
fiers/surrogates, disjoint from all concrete domains. A Car schema Σ is a set of
abstract table declarations of the form

table T ( self OID, A1 D1, . . . , Ak Dk, ϕ1, . . . , ϕ` )

where T ∈ TAB, self ∈ AT is the primary key of T (a distinguished attribute
identifying the aggregation (A1, . . . , Ak ∈ AT)); Di ∈ CD ∪ {OID}, and ϕj are
constraints attached to the abstract table T (see below). 2



To illustrate, we begin translating class PERSON into Car as follows:

table PERSON( self OID, ssn INT, name STRING, . . .

Note the occurrence of attribute self — the user visible object identifier. There
are five kinds of constraints relevant to identification issues, and which we use
in our examples:4

1. (foreign keys) foreign key (A) references T

2. (specialization) isa T

3. (cover constraints) covered by {T1, . . . , Tm}
4. (disjointness constraints) disjoint with T

5. (path functional dependencies) pathfd Pf1, . . . ,Pfn → Pf

Continuing with the translation of class PERSON to Car, we add three constraints:

. . . isa LEGAL-ENTITY, disjoint with COMPANY, pathfd ssn → self ).

The first two constraints assert that self values of PERSON tuples are a subset
of self values of LEGAL-ENTITY tuples, and are disjoint from self values of
COMPANY tuples; the third asserts that any pair of PERSON tuples agreeing on ssn

also agree on self (i.e., ssn is a key for PERSON). In fact, pathfds are more
general and powerful: one can declare

table OFFICE( self OID, office-num INT, located-in OID,

foreign key (located-in) references BUILDING,

pathfd office-numb, located-in.address → self )

once having specified that buildings have addresses. This says that (i) each value
of located-in must appear as the self value of a BUILDING tuple, and (ii) the
office number and the address of the office’s building form a key for offices. The
latter addresses the issue (b) of weak entity identification, using the power of
attribute paths, located-in.address in this case.

We call attributes ranging over Di ∈ CD concrete, since their values are
atomic, such as the INTegers, and the remaining attributes abstract. Also, with-
out loss of generality, we assume that every attribute Ai, other than self, is
included in the declaration of at most one abstract table, and write Home(Ai) to
refer to this table. If Ai is abstract, we assume there is a foreign key constraint for
Ai to some abstract table, referred to as Dom(Ai). Thus, Home(ssn) = PERSON

and Dom(located-in) = BUILDING in the above. Finally, an instance I of an
abstract table T is a (finite) set of k + 1 tuples in which self ranges over OID

and is the primary key of T , and Ai range over Di.

For a table T in schema Σ, we write Σ |= ϕ ∈ T to denote the fact that
a particular constraint ϕ for T (possibly not explicitly stated) logically follows
from the constraints in schema Σ. For example, the above declaration of PERSON
logically entails that “(pathfd ssn, name→ self)” also holds for PERSON. And
if {T1, T2} cover T , then so does {T1, T2, S} for any S.

4 To adhere to SQL’99 syntax, a formulation using a general assertion would be
needed in most cases.



With respect to a particular abstract table T ′, a foreign key constraint
requires each A value of a T ′ tuple to also occur as a self value for some T
tuple. (Note that A must therefore be abstract.)

The meaning of isa, cover and disjoint constraints is obvious, relating the
self values of various tables.

Path functional dependencies are a strict generalization of keys and functional
dependencies common in classical relational modelling, and considerably extend
how identification issues can be resolved. In particular, such constraints allow
attribute paths in place of attributes, as illustrated in the case of OFFICE above.
Paths are defined as follows:

Definition 2 (Attribute Paths) An attribute path Pf is an expression of the
form A1.A2. . . . .Ak, where Ai ∈ AT and k ≥ 1, and is well defined for an abstract
table T if k = 1 and A1 is self, or if Home(A1) = T ′, Σ |= (isa T ′) ∈ T and
either k = 1 or Σ |= (foreign key A1 references T ′′) ∈ T ′ and the attribute
path A2. · · · .Ak is well defined for T ′′. 2

The value of an attribute path corresponds to navigating the attributes starting
from (the key attribute self of) a particular tuple t ∈ T . In relational terms the
navigation corresponds to a sequence of foreign key joins.

The meaning of pathfd Pf1, . . . ,Pfn → Pf is then that two tuples in a T ′

instance that agree on the values of all Pfi must also agree on the value of Pf.
The problem of deciding when Σ |= ϕ ∈ T holds can be reduced to reasoning

about logical consequence in the description logic DLFD [5], which is decidable.
If no cover constraints occur in Σ, it also becomes possible to reduce such ques-
tions to reasoning about logical consequence in the description logic CFDI∀−nc [6],
which is decidable in PTIME. (Further details, however, are beyond the scope
of this paper.)

We introduce next a core relational algebra fragment of SQL that incorpo-
rates attribute paths:

Definition 3 (SQLpath) The following grammar gives the syntax for (an ide-
alized) SQL-like query language over instances of C schema:

Q ::= T x (table reference)
| select x1.Pf1, . . . , xk.Pfk Q (projection)
| from Q,Q (product)
| Q where x.Pf1 = y.Pf2 (selection)
| Q union Q (union)
| Q minus Q (set difference)

As in SQL, we require that all variables are appropriately bound with a “T x”
clause, and denote T by Bound(x); that Pf is well defined for Bound(x) for any
term “x.Pf”; that variables in subqueries of the from clause are disjoint; and
that the subqueries in the union and minus operations are union compatible.
We also assume the standard SQL-like interpretation of the above syntax. 2

In summary, SQLpath deviates from standard SQL in three ways:

1. In addition to standard atomic datatypes, we have introduced an abstract
domain OID (this then allows abstract attributes, and the ability to refer
directly to abstract identifiers with expressions of the form “x.A”).



2. We allow the use of attribute paths in place of single attributes in where

conditions.
3. We allow “T x” as a query (where SQL would require “select ∗ from T x”).

We also allow obvious syntactic sugar to make examples more readable, such as
using conjunction in the where clauses, and multi-arity from clauses instead of
the nested use of from.

Less obviously, terms of the form “x1.Pf .A” occurring in select and where

clauses can ultimately be replaced by terms of the form “x2.A” by repeatedly
applying the following rewrite rules (including a symmetric version of the first
rule for right-hand-sides of a selection condition):

“Q where x1.A.Pf1 = x2.Pf2” ;

“(from Q,T x3 where x1.A = x3. self) where x3.Pf1 = x2.Pf2”

and

“select . . . , x1.A.Pf1, . . . Q” ;

“select . . . , x2.Pf1, . . . ((from T x2, Q) where x1.A = x2. self)”,

where, in all cases, Σ |= (foreign key (A) references T ) ∈ Bound(x1) and
Pf1 is well defined for T . Additional rewrite rules can ensure, for terms of the
form “x.A”, that home tables of A-values correspond to the bound tables for
variables (i.e., are not inherited by isa constraints):

“Q where x1.A1 = x2.A2” ;

“(from Q,Home(A1) x3 where x1. self = x3. self) where x3.A1 = x2.A2”,

where Home(A1) 6= Bound(x1). For example, applying such rewritings to our
introductory query

select d.driver.name from CAN-DRIVE d
where d.driven.make = ’Ford’

would ultimately produce the query

select p.name from CAN-DRIVE d, PERSON p, VEHICLE v
where v.make = ’Ford’ and d.driven = v.self and d.driver = p.self.

(1)

Note that this requires, e.g., confirming that

Σ |= (foreign key (driven) references VEHICLE) ∈ CAN-DRIVE

and that make is an attribute of VEHICLE.

3 Managing Identity

By introducing the purely abstract domain OID, Car frees the user from any
need to address identification issues when formulating queries. This enables our
main contribution: a separation of concerns in which identification issues can be
addressed concurrently with the formulation of data access requirements. But
unlike various object models, the values of attributes over this domain, includ-
ing the primary key attribute self, are purely abstract and are not storable in
concrete table instances.



We now show how these issues can be resolved by using a referring expression
type language proposed in [2]. Intuitively, a type in this language defines a space
of first-order formulas free in one variable.5 The objective is for each formula
to be true for exactly one object in OID in every abstract schema instance that
satisfies all schema constraints. The language is given in the following:

Definition 4 (Referring Expression Types and Assignments)
A referring expression type Rt is an instance of a recursive pattern language
given by the grammar:

Rt ::= Pf= ? | Rt ,Rt | G→ Rt , | Rt ; Rt

where Pf is an attribute path ending in a concrete attribute, and where G =
{T1, . . . , T`} is a set of table names called a guard. Let Σ be a Car schema. We
write Re(Rt) to refer to a set of referring expressions φi induced by a given
referring expression type Rt relative to Σ as follows:

Re(Pf= ?) = {x.Pf = a | a a constant}
Re(Rt1,Rt2) = {φ1 ∧ φ2 | φi ∈ Re(Rt i)}

Re({T1, . . . , Tk} → Rt) = {
∧k

i=1(∃y1, . . . , yl.Ti(x, y1, . . . , yl)) ∧ φ | φ ∈ Re(Rt)}
Re(Rt1; Rt2) = Re(Rt1) ∪ {φ ∈ Re(Rt2) | ¬∃ψ ∈ Re(Rt1).(φ ≡ ψ)}

Given T ∈ Tables(Σ), we say that Rt is weakly identifying for T if, for all
instances I of Σ,

I |= ∀x1, x2.(∃y1, . . . , yl.T (x, y1, . . . , yl) ∧ φ(x/x1)) ∧
(∃y1, . . . , yl.T (x, y1, . . . , yl) ∧ φ(x/x2))→ x1 = x2,

holds for all φ ∈ Re(Rt), and that Rt is strongly identifying for T if in addition

I |= ¬∃x.(φ1 ∧ φ2)

holds for all syntactically distinct φ1, φ2 ∈ Re(Rt).

A referring type assignment for Σ is a mapping RTA from Tables(Σ) to referring
expression types. 2

For example, RTA might assign either “ssn=?” or “name=?” as the referring
expression type for PERSON. The former would quality as strongly identifying,
however the latter would not (since, e.g., two people can have the same name).

In [2], it is also shown that any Rt can be converted to a normal form with
the following structure:

G1 → (Pf1,1 = ?, . . . ,Pf1,k1
= ?); . . . ;Gk → (Pfk,1 = ?, . . . ,Pfk,kk

= ?).

We call each subexpression “Gi → (Pfi,1 = ?, . . . ,Pfi,ki
= ?)” of this normal

form separated by “;” a component of Rt . For the remainder of the paper, we
assume RTA(T ) is already in this form, for any T ∈ Σ, and also that each guard
Gi contains at most one table name.6 To improve readability, we omit empty
guards, and write T as shorthand for guard {T}. Finally, we write Fix(Rt , T ) to
denote a normal form Rt with T added to any empty guard. Thus, Fix(Rt , T )

5 Each formula can be viewed as a SQLpathquery computing a table with a single “x”
column.

6 Allowing guards to have more than one table name is a straightforward extension.



will have the form

T1 → (Pf1,1 = ?, . . . ,Pf1,k1
= ?); . . . ;Tk → (Pfk,1 = ?, . . . ,Pfk,kk

= ?). (2)

The next definition deals with such situations in which, e.g., RTA(PERSON) is
given by “PERSON → ssn=?; name=?”. Here, “name=?” will be ignored since
the guard of the first component has precedence and will “catch” any PERSON.

Definition 5 (Non-redundant Referring Types) Let Σ be a Car schema,
RTA a referring type assignment, T ∈ Tables(Σ), and assume Fix(RTA(T ), T ) has
the form (2). We say that the jth component “Tj → (Pfj,1 = ?, . . . ,Pfj,kj

= ?)”
is redundant with respect to T if it satisfies any of the following conditions:

(a) Σ |= (covered by {T1, . . . , Tj−1}) ∈ Tj ,
(b) Σ |= (covered by {T1, . . . , Tj−1}) ∈ T, or
(c) Σ |= (disjoint with Tj) ∈ T.

Given an arbitrary Rt in normal form, we write Prune(Rt , T ) to denote the re-
ferring expression Fix(Rt , T ) from which all components redundant with respect
to T have been removed. 2

It is easy to see that each of the three cases identify a component that can be
safely removed from a referring expression type assignment for a table T : the
first two since any qualifying object will have a referring expression induced by
earlier components, and the latter since the guard will never apply for any T
object.

The following example illustrates another potential problem with a given
RTA: that not all possible referring type assignments can support synthesizing
arbitrary concrete SQL queries:

Example 6 Consider the SQLpath query

select x. self from T1 x, T2 y where x. self = y. self (3)

over a Car schema Σ in which Ti is declared as follows:

create Ti ( self OID, Ai STRING, pathfd Ai → self ). (4)

When RTA(Ti) is given by “Ai = ?”, the ability to compare the OID values is lost
since the differing referring expressions associated with T1 and T2 do not provide
a way to determine if the same object belongs to both tables. The problem is
solved, e.g., by instead defining RTA(T2) as “T1 → A1 = ?;A2 = ?” since T2
objects are then identified by A1 values when also in T1. 2

All such mapping issues are avoided when a referring expression type assignment
is identity resolving, which can be defined as follows:

Definition 7 (Identity Resolving Type Assignments)
Let Σ be a Car schema and RTA a referring type assignment for Σ. Given
a linear order O = (Ti1 , . . . , Tik) on the set Tables(Σ), define O(RTA) as the
following referring expression type:

Fix(RTA(Ti1), Ti1); . . . ;Fix(RTA(Tik), Tik).

We say that RTA is identity resolving if there is some linear order O such that
the following conditions hold for each T ∈ Tables(Σ):

1. Fix(RTA(T ), T ) = Prune(O(RTA), T ),



2. Σ |= (covered by {T1, ..., Tn}) ∈ T , where {T1, ..., Tn} are all tables occur-
ring in the guards in Fix(RTA(T ), T ), and

3. for each component Tj → (Pfj,1 = ?, . . . ,Pfj,kj
= ?) of Fix(RTA(T ), T ), the

following also holds: (i) Pfj,i is well defined for Tj , for 1 ≤ i ≤ kj , and (ensur-
ing strong identification) (ii) Σ |= (pathfd Pfj,1, . . . ,Pfj,kj

→ self) ∈ Tj .

We write Order(RTA) for a fixed choice for such an order when one exists. 2

Given an RTA, the existence ofO can tested by checking for cycles in a graph with
nodes labeled by table names and directed edges connecting tables that appear
in consecutive guards of a referring type assigned by RTA. The linear order is
then any topological sort of the (acyclic) graph. The remaining conditions can
also be checked by appeal to the description logics DLFD [5], and CFDI∀−nc [6]
(see previous section).

Example 8 Consider the SQLpath query and Car schema Σ given by (3) and
(4) in Example 6 above, and also assume RTA(T1) and RTA(T2) are given re-
spectively by “A1 = ?” and “T1 → A1 = ?;A2 = ?”. Then RTA(T2) implies that
T1 must precede T2 in Order(RTA). Indeed, the linear order O = (T1, T2) satisfies
all conditions required for RTA to be identity resolving. In contrast, if RTA(T1)
is instead given by “T2 → A2 = ?;A1 = ?”, then no such linear order O exists
and RTA is not identity resolving. This can be blamed on an inherent ambiguity
on how objects belonging to both tables should be referenced.

More generally, entity sets/classes are often assumed to be disjoint, unless they
participate in an isa hierarchy. In such cases, one should be free to chose the
identifying Rt independently. For example, consider where RTA(Ti) is given by
“Ai = ?”, and where the constraint “disjoint with T2” is added to T1. RTA is
now identity resolving in this case since all conditions hold for O = (T1, T2) (or
for O = (T2, T1)).

Finally, consider the other end of the spectrum, in which it becomes possible to
include a global identifier, say uri, over some concrete domain. In our Ti setting,
this can be achieved by adding to Σ the table

table UNIVERSE ( self OID, uri STRING, pathfd uri → self ),

and by adding constraint “isa UNIVERSE” to T1 and T2. If “uri = ?” is the refer-
ring expression type for all abstract tables, then RTA is also identity resolving.
2

An identity resolving referring type assignment yields a natural way to coerce
referring expression types to more general types. This is based on the observa-
tion that, for a linear order (Ti1 , . . . , Tik), all referring expression types that are
formed as sub-sequences of components of RTA can be simply extended with
additional components as long as the result is still a sub-sequence of Rt .

Definition 9 (Coercion) Let Σ be a Car schema, RTA an identity resolving
referring type assignment for Σ, and Rt1 and Rt2 two referring expressions with
component orders conforming to Order(RTA). We say that Rt1 is a referring
supertype of Rt2 if all components of Rt2 are also components of Rt1, and write
Rt1 ORt2 to denote the least common referring supertype of both Rt1 and Rt2,
that is, a referring expression type with components given by the union of the
components of Rt1 and Rt2 and that are ordered by Order(RTA). 2



Example 10 Consider the SQLpath query

(select x. self T1 x) union (select x. self T2 x) (5)

over schema (4) in Example 6 above, and also assume RTA(T1) and RTA(T2)
are given respectively by “A1 = ?” and “T1 → A1 = ?;A2 = ?”. As Example 8
shows, RTA is an identity resolving type assignment. However, the union op-
eration requires a coercion to a common referring expression type for T1 and
T2. In particular, since Order(RTA) = (T1, T2), RTA(T1)ORTA(T2) defines this
as “T1 → A1 = ?;A2 = ?” (matching RTA(T2)). Thus, an encoding of referring
expressions given by “A1 = ?” in a concrete version of T1 must be extended to
an encoding of “T1 → A1 = ?;A2 = ?” before computing the union operation. In
the next section, we present a simple encoding that enables such coercion. 2

4 Concrete Relational Databases and SQLpath

For a given Car schema Σ, an identity resolving referring type assignment can
serve as a basis to encoding elements of OID with sequences of values for con-
crete attributes that can serve as surrogate keys for the values. We now present
such an encoding, Rep, and show how it leads, in turn, to a concrete relational
database for Σ, and finally to SQL queries over this schema that implement
SQLpath queries. This “closes the loop” on our overall objective for a separation
of concerns.

On Concrete Representation of Referring Expressions

Definition 11 (Rep) Let T and Rt be an abstract table and referring expression
type, where Fix(Rt , T ) is given by

T1 → (Pf1,1 = ?, . . . ,Pf1,k1 = ?); . . . ;Tk → (Pfk,1 = ?, . . . ,Pfk,kk
= ?),

and let Di,j be the underlying concrete domain for the final attribute in each
Pfi,j . Also let Nm(Pf), where Pf = A1. · · · .A`, denote a new attribute name
“A1-...-A`”. We write Rep(Rt , T ) to denote the sequence of concrete attributes

(disc enum{‘T1’, . . . , ‘Tk’},Nm(Pf1,1) D1,1, . . . ,Nm(Pfk,kk
) Dk,kk

).

If Rt consists of a single component, then attribute disc is excluded. 2

Note that Rep uses an auxiliary Nm function to invent new attributes names
simply by replacing “dots” by “dashes”.7 The following example now illustrates
how Rep can be used to encode abstract values occurring in abstract tables:

Example 12 Consider the SQLpath query (5) over schema (4) above (see Ex-
amples 10 and 6), and assume RTA(T1) and RTA(T2) are given respectively by
“A1 = ?” and by “T1 → A1 = ?;A2 = ?”. Then Rep(RTA(T1)) and Rep(RTA(T2))
are given respectively by “(A1 STRING)” and by

“(disc enum{‘T1’, ‘T2’}, A1 STRING, A2 STRING)”.

Now consider where: T1 has object e1 with A1 = ‘abc’, T2 has object e2 with
A2 = ‘bcd’, and both T1 and T2 have object e3 with A1 = ‘cde’ and A2 =

7 Other options for both Nm and Rep are clearly possible, e.g., based on introducing
variant record types.



‘def’. Referring expressions for each ei would then be encoded as follows:8

e1 : (‘abc’),
e2 : (‘T2’, 〈defaultSTRINGvalue〉, ‘bcd’) and
e3 : (‘T1’, ‘cde’, ‘def’).

To compute the union operator, coercion for concrete representations of re-
ferring expressions is necessary. In this case, value sequences encoding refer-
ences to ei will need to be augmented with additional values to conform to
Rep(RTA(T1)ORTA(T2)), which matches Rep(RTA(T2)) (see Example 10). Thus,
the encoding of the referring expression for e1 is extended to

(‘T1’, ‘abc’, 〈defaultSTRINGvalue〉)
prior to evaluating union. 2

As the example illustrates, extending our coercion operator for referring expres-
sion types to their concrete representations is straightforward. In particular, to
coerce a Rep(Rt1, T1) tuple to a Rep(Rt2, T2) tuple, where Rt2 is a referring
supertype of Rt1, it suffices to create the Rep(Rt2, T2) tuple by using the values
from the Rep(Rt1, T1) tuple for the concrete attributes corresponding to com-
mon components, and to assign default values to the remaining columns. We

denote this function by Coerce
(Rt2,T2)
(Rt1,T1)

. To convert a Rep(Rt2, T2) tuple back to a

Rep(Rt1, T1) tuple, we first check if the value of the disc attribute corresponds
to a guard for some component of Rt1 and, if so, we project the former to at-
tributes in Rep(Rt1, T1); the conversion is undefined otherwise. We denote this

function by Restrict
(Rt1,T1)
(Rt2,T2)

. Note that both functions can be expressed using

SQL query constructs, e.g., by using constant expressions in a select clause in
the case of the Coerce function.

To simplify notation, we extend the Coerce and Restrict functions to tuples by
applying the functions component-wise (assuming values of concrete attributes
map to themselves), and omit mention of Ti to improve readability.

The main consequence of a referring expression type assignment RTA that
is identity resolving and of Rep, our suggestion for a concrete encoding of re-
ferring expressions, is that we now have a way to compare possibly different
representations of an OID value:

Lemma 13 Let RTA be an identity resolving type assignment for Σ and R a
set of referring expression types such that {RTA(T ) | T ∈ Tables(Σ)} ⊆ R and
such that R is closed under O. Then, for every e1, e2 ∈ OID, if Rep(Rt1, T1) tuple
t1 and Rep(Rt2, T2) tuple t2 are concrete representations of referring expressions
to e1 and e2, respectively, then e1 = e2 if and only if

CoerceRt1 ORt2
Rt1

(t1) = CoerceRt1 ORt2
Rt2

(t2).

2

The Coerce and Restrict functions are naturally extended to abstract attributes
to produce a list of column names of the representation, to abstract tuples that
may contain several abstract identifiers (we assume that concrete attributes are

8 We assume a non-null default value exists for each concrete domain.



represented by themselves), and, in turn, to abstract database instances and
query answers.

On Concrete Relational Schemata
With Rep, it is straightforward to define a concrete relational schema corre-
sponding to a given Car schema (such as “table PERSON (· · · )” given in our
introduction):

Definition 14 (Mapping Abstract Car Tables to Concrete Relations)
Let T ∈ Σ be an abstract table and RTA an identity resolving referring type
assignment for Σ. The concrete relational table schema Tab(T ) for T is obtained
by appending attributes and constraints to an initially empty sequence s, in
“table T (s)”, in the order they occur in T according to the following:

1. For attribute “self OID”, append columns Rep(RTA(T ), T ) together with a
primary key constraint consisting of these columns.

2. For a concrete attribute “A D”, append same if not already included.

3. For an abstract attribute “A OID”, append columns Rep(RTA(Dom(A), T )
after renaming each column by prefixing with “A-”. Also add a foreign key
constraint from these columns to Tab((Dom(A))).

4. For a constraint ϕ, add a general assertion constraint if ϕ is not the first
occurrence of a foreign key constraint for some attribute.9 2

In addition, whenever multiple foreign keys are declared on T for the same
attribute A, to enforce database integrity we need either to add general asser-
tion constraints that verify the presence of the appropriate value in the other
referenced tables. Alternatively, one may add additional columns (using Rep
repeatedly) and then enforce integrity locally.

Along similar lines, Rep can also be extended, with respect to a referring
type assignment RTA, to instances of abstract tables and to bindings of abstract
values to variables in queries. We write RepRTA to denote this extension.

On Query Translation
To summarize, relational operations on the concrete representation of referring
expressions, in particular equality comparisons, requires that compatibility issues
between referring expression types that can potentially refer to the same value
in OID must be addressed. In our setting, Lemma 13 ensures this for Rep in the
case of an identity resolving type assignment. Hence, to translate a SQLpathQ
to concrete SQL, we can apply rewritings to Q to ensure all terms have the form
“x.A”, for some abstract or concrete attribute A (see Section 2 for more details),
and then apply Map, a recursive procedure:

Definition 15 (Query Compilation) Let Q be a SQLpath query over the ab-
stract schema Σ, and RTA an identity resolving type assignment for Σ. We define
Map, a function that maps Q to concrete SQL by induction on the structure of

9 An assertion can be replaced by a foreign key constraint when ϕ is an isa constraint
to an abstract table T ′ for which RTA(T ′) = RTA(T ).



Q, as follows:

Map(T x) 7→ Tab(T ) x
Map(select x1.A1, . . . , xk.Ak Q) 7→ select RepRTA(x1.A1), . . . ,RepRTA(xk.Ak) Map(Q)

Map(from Q1, Q2) 7→ from Map(Q1),Map(Q2)
Map(Q where x1.A1 = x2.A2) 7→ Q where

Coerce
Rt(x1.A1)ORt(x2.A2)

Rt(x1.A1)
(RepRTA(x1.A1)) = Coerce

Rt(x1.A1)ORt(x2.A2)

Rt(x1.A1)
(RepRTA(x2.A2))

Map(Q1 union Q2) 7→ Coerce
Rt(Q1OQ2)

Rt(Q1)
(Map(Q1))

union Coerce
Rt(Q1OQ2)

Rt(Q2)
(Map(Q2))

Map(Q1 minus Q2) 7→ Restrict
Rt(Q1)

Rt(Q1OQ2)
(Coerce

Rt(Q1OQ2)

Rt(Q1)
(Map(Q1))

minus Coerce
Rt(Q1OQ2)

Rt(Q2)
(Map(Q2)))

Note that Rt(·) denotes the referring types assigned to variables in answer tu-
ples (or, by mild abuse of notation, to all components of a tuple), and also that
equality comparisons on Rep(·) are performed component-wise when needed.
(The type assignments originate from RTA and “T x” operators, and are pre-
served through the query save for union operators that convert variables to
least common referring supertypes with respect to the corresponding referring
types in Q1 and Q2.) 2

Observe that the definition of Map is purely syntactic and produces a concrete
SQL query for which the following, our main result, applies:

Theorem 16 Let Σ be a Car schema and let RTA an identity resolving type
assignment for Σ. For any SQLpath query Q over Σ and every database instance
I of Σ:

RepRTA(Q(I)) = (Map(Q))(RepRTA(I)). 2

Example 17 Applying Map to the SQLpath query (1) from Section 2 then yields
the following in SQL when RTA(PERSON) and RTA(VEHICLE) are respectively
given by “ssn=?” and “vin=?”:

select p.name from CAN-DRIVE d, PERSON p, VEHICLE v
where v.make = ’Ford’ and d.driven-vin = v.vin and d.driver-ssn = p.ssn.

2

5 Summary and Future Work

This paper was motivated by two problems that seem to inhere in relational
DBMS: (i) the need to prematurely commit to an “external key” (printable
values) in designing relational schemas; and (ii) the need to choose a single and
simple way to refer to all entities/tuples in a class/table rather than allow for
variations.

To help with this, we proposed a simple semantic data model C, where nam-
ing is not an issue because objects have identity; and a simple extension of SQL,
SQLpath, which allows implicit foreign key joins in the form of “path expres-
sions” such as v.owner.name.10 In the hope of making SQL programmers more

10 We emphasize that neither of these are novel ideas: they have been present in
database semantic models since Taxis [4], and GEM [7].



comfortable, we turned C into Car, a more relational-like version, where object
surrogates are visible as columns in tables (but will not be stored).

Orthogonally to schema and query specification, analysts can specify unique-
ness constraints in the form of path functional dependencies, and especially de-
scribe complex preferred naming schemes for each class/table in the abstract
schema. The language for preferred naming schemes allows us to solve the prob-
lems raised in the beginning, such as having different naming schemes for sub-
classes than for superclasses, and not having to invent new names for general-
izations.

We emphasize that we view the separation of concerns between naming and
schema/query body specification to be a central contribution of this work.

To support this, we provided ways to verify that the naming schemes are
indeed unique, based on the dependencies specified, and algorithms for convert-
ing the abstract schema and queries into ordinary SQL table declarations and
queries, where object (identifiers) are no longer visible.

There are a number of interesting problems that remain to be investigated.
One issue is how to help relieve analysts from the burden of having to write com-
plex referring expressions for every class in the schema. One could start with
default rules: a single key k for class C results in type expression k=?, which
is inherited to all subclasses of C that do not specify keys. More interesting is
the case of subclasses, like FamousPerson of Person, which do specify some-
thing different. The theory of default inheritance in AI would suggest that the
most specific rule apply to each class. Using ideas from [1], one could then auto-
matically generate referring expression types combining the two, e.g., the type
“FAMOUS-PERSON → starName ; ssn” for PERSON. This approach would also have
the advantage of propagating local changes and additions — an important soft-
ware engineering property. Other directions for work include a richer language
for referring expression types, alternatives to the concrete representation, (in-
cluding support for alternative mappings of class hierarchies to relational tables,
which are mentioned in many textbooks).

References

1. Alexander Borgida. Modeling class hierarchies with contradictions. In Haran Boral
and Per-Åke Larson, editors, Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, Chicago, Illinois, June 1-3, 1988., pages 434–
443. ACM Press, 1988.

2. Alexander Borgida, David Toman, and Grant Weddell. On referring expressions
in query answering over first order knowledge bases. In Principles of Knowledge
Representation and Reasoning, 2016. (in press).

3. Richard Hull and Roger King. Semantic database modeling: Survey, applications,
and research issues. ACM Comput. Surv., 19(3):201–260, 1987.

4. John Mylopoulos, Philip A. Bernstein, and Harry K. T. Wong. A language facility
for designing database-intensive applications. ACM Trans. Database Syst., 5(2):185–
207, 1980.

5. David Toman and Grant Weddell. On Attributes, Roles, and Dependencies in De-
scription Logics and the Ackermann Case of the Decision Problem. In Description
Logics 2001, pages 76–85. CEUR-WS vol.49, 2001.



6. David Toman and Grant E. Weddell. On adding inverse features to the description
logic CFD∀

nc. In PRICAI 2014: Trends in Artificial Intelligence - 13th Pacific Rim
International Conference on Artificial Intelligence, Gold Coast, QLD, Australia,
pages 587–599, 2014.

7. Carlo Zaniolo. The database language GEM. In David J. DeWitt and Georges Gar-
darin, editors, SIGMOD’83, Proceedings of Annual Meeting, San Jose, California,
May 23-26, 1983., pages 207–218. ACM Press, 1983.


