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Abstract

Current transaction systems for geo-distributed datastores
either have high transaction processing latencies or are un-
able to support general transactions with dependent opera-
tions. In this paper, we introduce CrossStitch, an efficient
transaction processing framework that reduces latency by re-
structuring each transaction into a chain of state transitions,
where each state consists of a key operation and computa-
tion. Transaction states are processed sequentially, and the
transaction code and data is sent directly to the next hop
in the chain. CrossStitch transactions can be organized such
that all states in a location are processed before transitioning
to a state in a different location. This allows CrossStitch to
significantly reduce the number of inter-location crossings
compared to transaction systems that retrieve remote data
to a single location for processing. To provide transactional
properties while preserving the chain communication pat-
tern, CrossStitch introduces a pipelined commit protocol that
executes in parallel with the transaction and does not require
any centralized coordination. Our evaluation results show
that CrossStitch can reduce the latency of geo-distributed
transactions when compared to a traditional 2PC-based dis-
tributed transaction system. We demonstrate that CrossStitch
can reduce the number of round trips by more than half for
TPC-C-like transactions.

1. Introduction

Data is being generated at a rapidly increasing rate around
the world. Many believe that effectively using and managing
this data is one of the next great computing challenges [1].
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This challenge is especially difficult for interactive applica-
tions with strict latency requirements. Providing low write
latency for these applications requires a storage system that
stores data near the data source. However, providing low
read latency requires geo-replicating the data to reduce the
number of high-latency network round trips. These oppos-
ing requirements have led to significant work on trading off
consistency for lower latency [12]. By reducing consistency
guarantees, data updates can be performed locally and then
disseminated asynchronously to other geographic locations.
Unfortunately, not all applications can accept weak consis-
tency guarantees. This includes any application that uses
transactions as transactional requirements demand a strongly
consistent storage system.

Although these interactive applications may have strict
latency requirements, many of them have sufficient latency
budgets to allow for a small number of remote read or write
operations. For simple transactions where all data operations
can be executed in parallel, an application can use Sinfo-
nia [7] to combine data operations with the commit proto-
col to complete the transaction in only two network round-
trips. Alternatively, for predefined transactions that are con-
ducive to transaction chopping [21], an application can use
Lynx [21] to transform a transaction into a chain of smaller
transactions. Through static analysis, Lynx can ensure that
if the first hop of the chain commits, all of the remaining
hops will eventually commit. This can reduce the number
of network round trips before a transaction returns control
to the application. However, Lynx does not reduce the to-
tal transaction completion time or preserve transaction or-
dering, which means that transaction 7» may be serialized
before 77 even though the client waited until 7 returned
before submitting 7.

In this paper, we introduce CrossStitch, an efficient trans-
action processing framework for geo-distributed datastores.
CrossStitch supports general transactions without any oper-
ational restrictions. Instead of specifying a transaction as a
sequential set of computation and data operations between
a pair of begin and commit statements, CrossStitch trans-
actions are modelled as a series of state transitions where



each state consists of a single key operation and arbitrary
computation. A CrossStitch transaction is passed, on each
state transition, to the storage server responsible for the
next state’s key. Upon receiving a transaction, the storage
server performs the state’s key operation and computation,
and sends the transaction to the next server responsible for
the next state transition. CrossStitch’s transaction processing
model allows for fewer network round trips on the critical
path than traditional transaction processing systems that ex-
ecute the entire transaction on a single client using remote
read and write operations as needed or systems that combine
code-shipping with a tree-based commit protocol [17].

Moreover, this model enables CrossStitch transactions to
have a communication pattern similar to RPC Chains [19], in
which back-and-forth traffic between the client and storage
servers at different geographical locations are replaced with
a single chain of state transitions across storage servers. By
providing the transaction with the key’s location informa-
tion, the CrossStitch framework offers the transaction writer
the tools to construct a chain in a way that minimizes the
number of inter-location crossings.

The key challenge to providing a chain communication
pattern for transactions is in eliminating centralized trans-
action coordination while still providing a fault-tolerant
mechanism to atomically commit or abort each transaction.
Using traditional two-phase commit (2PC) with CrossStitch
transactions would require forwarding each transaction to
the coordinator on each hop in the chain. This is necessary to
accurately track storage server membership for a transaction
in the event of a server or network failure. Therefore, 2PC or
any coordinator-based atomic commit protocol would create
back-and-forth traffic between the coordinator and the stor-
age servers and be unable to preserve CrossStitch’s chain
communication pattern.

CrossStitch addresses this problem by introducing a pipe-
lined commit (PLC) protocol that is loosely based on linear
2PC [2], but can execute in parallel with a CrossStitch trans-
action such that the transaction can partially commit on each
state transition. Much like linear 2PC, PLC only requires that
the transaction manager at each storage server communicate
with the transaction managers at the next and previous hop
in the chain. However, PLC does not need to wait until the
transaction is ready to commit or abort before initiating the
commit protocol. This is possible because PLC exchanges an
additional message between adjacent transaction managers
to discover transaction managers further down the chain be-
fore indicating that it is ready to commit. This additional
information enables PLC to atomically commit or abort a
transaction even in the event of up to k server or network
failures, while requiring at most k additional network round-
trips on the critical path.

We evaluate CrossStitch using both synthetic workloads
and TPC-C transactions on a working prototype. Our re-
sults show that, by rewriting the transactions into a series of

state transitions, CrossStitch can reduce the number of net-
work round-trips between different geographical locations
by more than half compared to a traditional 2PC-based dis-
tributed transaction system.

Overall, our work makes three contributions:

e We present a novel approach of restructuring general
transactions into a series of state transitions where each
state consists of a key operation and computation.

e We introduce a pipelined commit protocol that, when
combined with state transition-based transactions, can
preserve CrossStitch’s chain communication pattern.

e We evaluate the performance of a working CrossStitch
prototype and show that it requires less than half the
number of inter-location crossings than a traditional
2PC-based distributed transaction system for TPC-C-like
transactions.

2. Background and Related Work

Many distributed datastores [9, 12, 15] trade off features
such as transactional support in favour of obtaining high
availability and low response time for their clients. Nonethe-
less, reliable transaction processing remains critical for ap-
plications that run on these geo-distributed datastores. Ex-
amples of such applications include social networking, col-
laborative editing, and financial management. Transactions,
which provide ACID (atomicity, consistency, isolation and
durability) properties, are necessary to ensure the integrity
of the underlying data.

In order to provide distributed transactional support, tra-
ditional transaction processing systems, particularly those
that follow the XOpen model, exchange a significant number
of messages between the client, the transaction’s coordina-
tor, and participating servers. Consequently, this may cause
the completion time of a transaction to increase, particularly
in the case where the client, coordinator and participating
servers are not in the same geographical location

A popular atomic commit protocol that is frequently used
in distributed storage systems is the two-phase commit pro-
tocol. This protocol requires a significant number of mes-
sages between the coordinator and the participating servers.
Additional optimizations, such as linear 2PC, can reduce the
number of messages. In linear 2PC, vote requests are not
sent concurrently; instead, the coordinator and neighbouring
participants vote in a linear order. However, by still relying
on a coordinator, linear 2PC does not reduce the number of
cross-datacenter roundtrips compared to 2PC. In addition to
the 2PC and linear 2PC, Mohan et al. [17] present the R*
commit protocol that organizes the commit messages and the
coordinator and participants into a tree. The R* commit pro-
tocol is an extension of 2PC which reduces inter-datacenter
message traffic and log writes.



2.1 Geo-Distributed Storage Systems

Many existing geo-distributed storage systems are designed
so that they may serve their clients locally in order to re-
duce latency. Most of these systems offer a simple key-value
interface to access and store data, while some offer a multi-
dimensional map structure [8, 10].

Geo-distributed storage systems can reduce end-user la-
tency by using local replicas to serve their clients. This
comes at a cost of having a higher write latency to ensure
that updates are propagated to all replicas. To improve per-
formance, these systems may also use a weaker consistency
model. For example, Dynamo [12] provides eventual con-
sistency, which in turn allows updates to be propagated to
servers asynchronously, but requires that end-users reconcile
diverging versions of data. Some geo-distributed storage sys-
tems, such as Yahoo’s PNUTs [9] and Cassandra [15], can
provide stronger consistency guarantees. However, PNUTs
does not offer serializable transactions, which makes it un-
suitable for some applications. Cassandra does provide sup-
port for lightweight transactions, but lightweight transac-
tions are restricted to keys on a single partition [4]. This is
not suitable for use in geo-distributed storage systems where
transactions may span multiple partitions in different data-
centers.

2.2 Transaction Processing Frameworks

More recent geo-distributed storage systems provide trans-
actional support. However, they may not be appropriate for
a general workload or for the public cloud. For example,
Megastore [8] partitions its data, replicates partitions sep-
arately, and provides serializable transactions within a par-
tition. The write latency for Megastore ranges from 100-
400 ms, which may be too high for latency-sensitive appli-
cations. Google also developed Spanner [10], which relies
on knowledge of clock uncertainty and time synchroniza-
tion to provide external consistency. However, Spanner re-
lies on centralized transaction managers to coordinate trans-
actions that span different Paxos [16] groups, which can lead
to a significant number of cross-datacenter roundtrips when
the Paxos groups are not in the same geographical location.
Moreover, Spanner is designed for long-lived transactions;
thus, its design may not be suitable for many short-lived geo-
distributed transactions that execute in the cloud.

In addition to transaction frameworks that are built as
part of a storage system, there has been additional work on
frameworks that use various strategies such as restricting
transactions to a certain partition, conducting static analy-
sis or scheduling beforehand, or offering an alternate consis-
tency model for transactions. G-Store [11] migrates all keys
to a single server before executing the transaction, which re-
quires a transaction to have a priori knowledge of key ac-
cesses. Transaction processing systems, such as Lynx [21]
and Calvin [20], use static analysis or scheduling to pre-
vent transaction conflicts. In Lynx, transactions are broken

down into a series of hops and static analysis is performed
in order to determine if the transaction can successfully com-
plete. This enables Lynx to return control to the transaction
after the first hop. However, Lynx does reduce transaction
completion or preserve transaction ordering. It also only al-
lows application-initiated aborts at the first hop. Further-
more, since chains are static, all participating servers must
be known at the start of the transaction. Calvin [20] inter-
cepts transactions in order to perform transaction schedul-
ing. It determines the sequence of transaction execution and
applies the same sequence to all of the replicas. Similar to
Lynx, Calvin requires a transaction to declare its read and
write operations beforehand so that its scheduler can acquire
the appropriate locks for the transaction.

Rococo [18] structures a transaction into a collection of
atomic pieces, uses a centralized coordinator to aggregate
dependency information, and distributes pieces to servers in
order to establish an ordering of the operations. By requiring
a centralized coordinator, Rococo may not be suitable for
geo-distributed transactions with strict latency requirements.
Rococo also does not allow user-initiated aborts. Lastly,
Sinfonia [7] introduces mini-transactions where operations
can be executed within the commit protocol. However, all
items that are accessed by a mini-transaction must be known
at transaction creation time.

2.3 RPC Chains

CrossStitch’s communication pattern is similar to the work
found in RPC Chains [19], which chains together multiple
RPC invocations to enable computation to flow from server
to server. Unlike RPC Chains, CrossStitch provides ACID
properties for transactions and does not allow subchains
or subtransactions. CrossStitch builds on the approach pre-
sented in RPC Chains by organizing transaction servers into
a chain while providing transactional guarantees.

3. Architecture

In this section, we detail the construction of a CrossStitch
transaction and describe the CrossStitch transaction process-
ing framework and architecture. Furthermore, we present
CrossStitch’s pipelined atomic commit protocol and demon-
strate how CrossStitch overlaps it with transaction execu-
tion by interleaving their respective messages. By doing so,
CrossStitch is able to reduce the number of cross-datacenter
roundtrips and transaction latency.

3.1 A CrossStitch Transaction

CrossStitch is designed to provide support for general trans-
actions. These transactions may have arbitrary dependencies
among key operations and may not have a priori knowledge
of all key accesses. Unlike a traditional transaction, which
consists of operations between begin and commit state-
ments, CrossStitch transactions are structured as a series of
states. Each CrossStitch state is characterized by a key op-
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Requests the customer’s order

State 1 (Exe

class index(transaction):

def start_state(self, cus_id):
cus_key=cus_id+“_ORDER"
return self.get(“state_1", [cus_id], cus_key)

®

def final_state(self, no_op, item_id):
return item_id

<
Figure 1: An Example Transaction’s Implementation. The
contains a key access and some computation. We depict the

eration and some computation and is executed on a single
server.

The states of a CrossStitch transaction form a single
chain, where a state in the chain may have a dependency
on the result of a previous state. CrossStitch state transitions
occur when a key operation is encountered, thereby mov-
ing the transaction’s execution to the server that hosts the
requested key. Consequently, a state’s execution terminates
upon a key operation, and the transaction terminates when a
state aborts or encounters a return statement, which contains
the result of the transaction, to the client.

To enable computation of CrossStitch states across differ-
ent servers, CrossStitch servers marshal and send the trans-
action’s implementation, which includes the implementation
of all CrossStitch states, and any intermediate data that is re-
quired, the server that hosts the transaction’s current key op-
eration. Transaction designers may re-order states such that
keys, which are co-located at the same geographical loca-
tion, are adjacent to each other in the CrossStitch transaction
chain. This reorganization enables the reduction of cross-
datacenter round trips and latency.

3.1.1 An Example Transaction

We demonstrate how CrossStitch executes a transaction us-
ing an example that places an order for a customer as illus-
trated in Figure 1. In this example, the underlying datastore
maintains customer information such as the orders that are
placed and the items that the customer wishes to purchase.
Seller information, such as the inventory of an item, may be
located remotely from the customer as the distribution center
may be in a different geographical region from the client.
The transaction takes in a customer identification num-
ber as a parameter, and begins execution when the client
executes the start_state, which makes a request for the cus-
tomer’s order information located on Server;. The order in-

Finds the item that is ordered

def state_1(self, order, cus_id):
item_req_key = order + “_ITEM_REQ"
return self.get( “state_2" [cus_id],

Final State (Executed on Server 4)
Notifies client that order has been placed

cuted on Server 1) State 2 (Executed on Server 2)
Determines the inventory of the item, which

may be located remotely from the client.

O,

->

def state_2(self, req_item, cus_id):
item_stock_key = req_item +“_STOCK"
return self.get("state_3", [cus_id, req_item],
item_stock_key)

item_req_key)

©

Ap—

State 3 (Executed on Server 3)
Places a customer order

def state_3 (self, item_id, cus_id, req_item):
cus_ord_key = cus_id+ “_PLACED_ORDER"
if not item_id: self.abort()
return self.put(“final_state”, [item_id],
cus_ord_key, req_item)

lf—
transaction is partitioned into multiple states, where each state
code that is run on each server

formation is used in state_I to determine the item that the
customer is planning to purchase, which requires retrieving
the item information from Servers. Before the purchase can
be made, state_2 determines the inventory location and for-
wards the transaction to state_3 on Servers to determine if
there is inventory available. Finally, the customer’s order is
placed on Servery, and the item identifier is returned to the
client by final_state. In this transaction, the customer infor-
mation may be in one geographical location, while the in-
ventory and order information may be in different geograph-
ical location. For the purpose of illustration, this transaction
has been shortened to not include operations for updating
the distributor’s inventory, and for not returning an order
identifier. Adding this to the example requires two additional
states.

3.2 Concurrency Control

CrossStitch employs multi-version timestamp ordering for
optimistic concurrency control. Every version of an item in
CrossStitch’s datastore maintains a read timestamp, which is
the most recent time object was accessed, and a write times-
tamp, which is the time when an object was last updated.
Both timestamps are used to determine if a transaction needs
to abort. Timestamps are specified by the client instead of a
time server.

Since timestamps are used to determine the transaction
ordering, clocks on CrossStitch clients and servers must be
loosely synchronized. Otherwise, large clock skews can lead
to a higher abort rate. To mitigate the problem of differing
system times, CrossStitch clients and servers can synchro-
nize themselves using NTP [5] or utilize atomic clocks if
they are available to reduce spurious aborts due to clock
skew.
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Figure 2: CrossStitch’s messaging chain. The figure depicts the different types of messages that are sent between participating
servers of the transaction. We describe CrossStitch’s messaging pattern and atomic commit protocol in Section 3.3

3.3 Pipelined Commit Protocol

CrossStitch introduces a pipelined commit protocol (PLC) to
ensure transactional atomicity. Unlike transaction process-
ing systems that use two-phase commit (2PC) or linear 2PC,
PLC does not have a centralized coordinator. In 2PC, the
centralized coordinator sends a vote request message to all
participating servers and commits the transaction if and only
if all participants decide to commit. Once a server votes to
commit a transaction, it cannot later unilaterally abort. In-
stead of using a centralized coordinator, PLC distributes the
role of the coordinator across the participating servers in a
transaction. It also forwards the vote commit message se-
quentially to the participating servers in a manner similar to
linear 2PC.

In PLC, a server (Server;) is ready to commit a trans-
action when it forwards the transaction to the next server
(Server;;+1) as part of a state transition. Upon receiving
and processing a transaction message, Server; ;i assumes
the role of the coordinator and returns an acknowledgement
message to the previous server. The acknowledgement mes-
sage includes the location of Server; s, which allows the
transaction to complete in the event that Server;, fails. A
server sends a precommit message, which indicates that it is
voting to commit the transaction, when it receives a precom-
mit message from the previous server and an acknowledge-
ment message from the next server. By sending a precommit
message, the server indicates that it is delegating the commit
decision to the next server. The last server in the chain be-
comes the final coordinator and performs a variant of Paxos
commit [14] with two transaction replicas. Once the Paxos

commit completes, it sends a commit or abort message to the
client and the participating servers.

The boxed area in Figure 2 illustrates PLC with a Cross-
Stitch transaction with three key operations. It shows the
transaction, acknowledgement, and precommit messages be-
tween adjacent states. The example also shows the Paxos
commit messages between the final server and the trans-
action replicas.

PLC’s design provides transactional atomicity by ensur-
ing that a server cannot unilaterally abort once it has dele-
gated the commit decision to the next server in the chain.
Prior to sending the precommit message, a server can abort
at any time and the following servers in the transaction chain
will eventually timeout waiting on a precommit message and
abort the transaction. As an optimization, the server initi-
ating the abort will send forward abort messages to sub-
sequent servers in the chain to avoid long timeouts. In the
event that Server;;; fails before sending the transaction
to Server;;2, Server; will eventually timeout and query
Server; o on the status of the transaction. Server;;o can
then abort the transaction if it has not received a precommit
message from Server;,1. We address the problem of a sin-
gle server failure causing multiple adjacent states to fail in
Section 3.5.1. Additionally, we provide a detailed argument
of CrossStitch’s liveness and safety in Section 4.

By removing the need for a centralized coordinator
and interleaving PLC messages with transaction messages,
CrossStitch can provide a chained communication pattern.
This can reduce the number of cross-datacenter roundtrips
if the chain is partitioned such that the majority of adjacent
states are executed in the same datacenter.



3.4 Reducing Cross-Datacenter Messages

CrossStitch’s primary objective is to reduce the number of
round-trips between geographically distant datacenters. Typ-
ically, a transaction processing system with a centralized co-
ordinator requires a significant number of cross-datacenter
round trips since requests for remote data are made through
the coordinator. Although these systems have a straight-
forward transaction implementation, CrossStitch trades off
a bit of complexity in transaction implementation in favour
of a chained communication pattern, which can reduce the
number of cross-datacenter round trips.

In order to reduce the number of cross-datacenter round-
trips using a chained communication pattern, the transaction
needs to minimize the number of adjacent states in differ-
ent geographical locations. This can be done by rearrang-
ing states for transactions which have some flexibility in
their operation ordering. Many transactions support such re-
arranging, including the TPC-C-like transactions we use in
Section 5 to evaluate the performance of CrossStitch.

A secondary benefit of a chained communication pattern
is that, by reducing the number of cross-datacenter opera-
tions, sequential operations in a transaction are performed
in quick succession, which reduces the opportunity for over-
lapping transactions to cause dirty reads. As a result, Cross-
Stitch can provide a lower abort rate than traditional trans-
action processing systems even when the CrossStitch trans-
action consists of additional operations and the transaction
completion time of the systems are equal.

3.5 Adding Replication

In order to provide high availability, we can introduce ad-
ditional messages to CrossStitch that are used to support
replication. Upon encountering a put request at the end of a
transaction state, a server will forward the transaction to the
server responsible for the put request’s key and to the key’s
replica. The replica will perform the put operation and the
computation associated with the next state in order to repli-
cate the put request and determine the next key access in the
transaction chain so that a notify message can be sent to the
next server. The next server waits until it receives a notifi-
cation message from the previous server’s replica before it
can send a precommit message. Figure 2 illustrates both the
transaction and replication messages.

This replication scheme, together with PLC, can provide
availability with up to one server process failure. We can ex-
tend both protocols to support up to k failures by increasing
the number of replicas per key to £ and the number of trans-
action replicas to 2k, and by requiring that a server has re-
ceived k notification messages if the previous state requested
a put operation and k acknowledgement messages from the
next k servers in the chain before sending a precommit mes-
sage.

3.5.1 Adjacent States

In some transactions, adjacent states may be executed on
the same server. Consequently, a server failure can cause
multiple server processes to fail, which in turn will result
in simultaneous failure of adjacent states. In this event, there
are cases where PLC would not be able to determine whether
or not it can safely commit or abort a transaction. To address
this issue, we can group together adjacent states from the
same server as a single logical state. The acknowledgement
message from a logical state must include the server for
the state succeeding the logical state. This will ensure that
a single server failure will not result in the simultaneous
failure of adjacent states.

Grouping adjacent states on the same server is only suf-
ficient when CrossStitch is configured to only support one
server process failure. In order to support £ failures, Cross-
Stitch must ensure that, for any sequence of k states, each
state is on a different server. To accomplish this, a Cross-
Stitch transaction must introduce additional no-op states on
different servers within the same datacenter that are only
used to satisfy the aforementioned restriction and provide
the required level of availability.

3.6 Design Details

A CrossStitch server must keep track of the messages that
it has received and the operations that it has performed for
each transaction state in order to correctly handle excep-
tional cases. These cases include timing out while waiting
for a message, receiving an abort message after sending a
precommit message, and performing a cascading abort due
to a transaction reading uncommitted writes where the un-
committed transaction eventually aborts. Internally, a Cross-
Stitch server is implemented as a state machine where state
transitions occur from receiving messages or from time-
out events. For the case of handling timeouts, a CrossStitch
server will know which servers to contact in order to deter-
mine whether it should continue to wait or request a subse-
quent server in the transaction chain to abort the transaction.

4. Liveness and Safety

In this section, we outline CrossStitch’s liveness and safety
properties. We demonstrate that CrossStitch transactions ei-
ther commit or abort (liveness) in the presence of a sin-
gle server failure and that CrossStitch provides transactional
isolation and atomicity (safety). We assume in our liveness
and safety argument that servers fail silently. Further details
on CrossStitch’s liveness and safety properties are found
in [13].

4.1 Liveness

We present CrossStitch’s liveness properties by showing that
all CrossStitch transactions complete, despite the presence
of a single, silent failure. We define that a transaction com-
pletes when a final result is determined and the transaction
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abort once it is in precommit state.

commits or aborts. In order to ensure that the appropriate
messages have been received by a server for it to delegate its
commit decision to the subsequent server in the transaction
chain, all CrossStitch servers maintain internal state, which
we depict in Figure 3. The internal state of a server refers to
a server’s status regarding the PLC messages that it has re-
ceived, as opposed to a CrossStitch state, which consists of a
key operation and computation. CrossStitch utilizes message
metadata, such as knowledge of other servers in the trans-
action chain, and timeout mechanisms to determine server
failures and to also determine if a transaction commits or
aborts. As CrossStitch servers maintain the internal state of
each executed transaction state, they can determine which
other servers to query in the event of a failure.

Once a server receives and executes a transaction, it has
executed its assigned transaction state and waits for the ac-
knowledgement and precommit messages before it passes
the role of coordinator to the next server in the transaction
chain. We say that a server is in precommit state if it has
executed its assigned transaction state, received an acknowl-
edgement message and a precommit message, and delegated
the commit decision to the subsequent server in the trans-
action chain. A server enters the commit state when it has
received a commit message and the abort state when it has
received an abort message.

We now demonstrate CrossStitch’s liveness property for
a single, silent server failure. We begin by considering that
Server; is in precommit state. As mentioned in Section 3.6,
once a server is in precommit state, it cannot abort the trans-
action. In order for Server; to be in precommit state, it must
have received a precommit message from Server;_; (hence
Server;_; must also be in precommit state) and an acknowl-
edgement message from Server;;1. For Server;;1 to have
sent an acknowledgement message, it must have executed its
assigned transaction state; thus, Server; 1 has knowledge
of Server; . Server; receives metadata that indicates that

Server; o is two servers forward in the transaction chain;
thus, Server; can now query Server;;o in the event that
the transaction times out.

We now suppose that Server;;; fails silently. It is un-
certain if Server;; completed executing its corresponding
transaction state and/or has sent its acknowledgement mes-
sage. If Server; does not receive an acknowledgement mes-
sage after a predetermined timeout, Server; can safely abort
the transaction since it is not in precommit state. However,
if Server; is in precommit state, it can query Server; s
to determine the state of the transaction. If Server; o has
not received the transaction or is not in precommit state,
Server; o can abort the transaction on Server;’s behalf as
S erver;yo has not entered precommit state.

However, if Server; s is in the precommit state, then this
indicates that the transaction has progressed, and Server;
should now wait for the commit message from the final
server in the transaction chain. Before committing the trans-
action, the final server in the transaction chain, which is act-
ing as the final coordinator, will attempt to notify Server;;
that the transaction has committed. If Server;;; is un-
available, the keys that Server;41 is hosting will failover
to Server;y1’s replica. Upon recovering from its failure,
Server;+1 will check with other servers in the transaction
chain regarding the status of the transaction and will also
synchronize itself with its replica before resuming its origi-
nal role. Therefore, all transactions either commit or abort if
an intermediate server fails.

In the event that the end server (Server,,) fails, the pre-
ceding server (Server,_1) may query the transaction repli-
cas to determine if the transaction should commit or abort.
The transaction replicas will follow the Paxos commit pro-
tocol to determine if the transaction commits or aborts.

4.2 Safety

We now show that CrossStitch provides transactional iso-
lation and atomicity. As mentioned in Section 3.2, Cross-
Stitch uses multiversion timestamp ordering, which ensures
that CrossStitch transactions provide serializable isolation.
CrossStitch provides atomicity since CrossStitch servers in
a transaction chain do not have differing final internal states.
Suppose two servers in the transaction chain are in differ-
ent final internal states. For a server to be in commit state,
the end server (Server,) must have successfully completed
the transaction. By CrossStitch’s specification, all previous
servers in the transaction chain must have been in the pre-
commit state. Therefore, no server in the transaction chain
could have aborted; otherwise, at least one server in the
transaction chain would not have been in the precommit
state. For a server to be in the abort state, it must have either
received an abort message or have aborted the transaction.
If a server receives an abort message, then at least one other
server in the transaction chain must have aborted the trans-
action. Consequently, the server that initiates the abort can-
not be in precommit state as it did not successfully execute



its transaction state or performed a user abort. Therefore,
CrossStitch is safe as no two servers in a transaction chain
can be in differing final internal states.

5. Evaluation

We evaluate CrossStitch against a traditional transaction pro-
cessing system by comparing transaction completion time,
throughput, and abort rates of synthetic transactions which
consist of a mixture of sequential read and write operations,
and TPC-C-like transactions.

5.1 Experimental Setup

Our experimental setup consists of four machines when
simulating a single or two datacenter environment and six
machines when simulating a three datacenter environment.
Each machine has two 2.10GHz Intel(R) Xeon(R) CPU E5-
2620 v2 CPUs and 64GB of RAM. For our experiments that
simulate geographically distant datacenters, we partition our
machines into groups of two, where each group represents
a single datacenter. Multiple server instances are executed
on one machine, and clients are executed on the other. We
use tc [6], a network traffic control and shaping applica-
tion for Linux, to add latency between machines to simulate
geographically-distant datacenters.

In addition to CrossStitch, we implemented a traditional
transaction processing framework based on a flat transaction
processing system model that uses 2PC to ensure transac-
tional atomicity; we refer to this framework as the 2PC sys-
tem. When executing a transaction in the 2PC system, a
client first selects a coordinator and then sends all read and
write requests to the coordinator. The coordinator relays the
read and write requests to the appropriate servers and keeps
track of the transaction participants. To allow for greater
concurrency, read operations immediately return future ob-
jects; thus, a read operation does not block until the result of
the read is needed. Write operations are asynchronous and
require the client to store a local copy of updated values that
have not been committed. Similar to CrossStitch, our 2PC
system replicates write operations to ensure that each value
is stored on two servers.

To allow for a fair evaluation, our 2PC system and Cross-
Stitch share much of the same code base, including their con-
currency control mechanism and their key-value datastore.
Both systems use multi-version timestamp ordering; there-
fore, the difference in abort rate between these systems is
not the result of the implementation or the type of concur-
rency control.

5.2 Synthetic Workload

We first use a synthetic workload to determine the perfor-
mance characteristics of CrossStitch and our implemented
2PC system. We compare their performance in a single dat-
acenter deployment to quantify the overhead of forward-
ing a transaction from server to server, and also in a multi-
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Figure 4: Completion Time vs. Chain Length. Each trans-
action consists of 80% read operations
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tions

datacenter deployment to determine the performance impact
of wide-area network latency on the two systems.

5.2.1 Single Datacenter Evaluation

To quantify the overhead of forwarding a transaction across
servers in a chain communication pattern, we first evalu-
ate CrossStitch and our 2PC system in a single datacenter
environment. In order to evaluate general transactions with
dependencies between key operations, our synthetic trans-
actions are characterized as a sequence of dependent read
or write operations. In this workload, keys are four byte
strings, values are 1 KB strings, and key popularity follows a
uniform random distribution. Unless otherwise stated, each
transaction consists of 80% read and 20% write operations
and contains a total of ten operations.

In Figure 4, we vary the number of operations per trans-
action. As expected, as the number of operations increase,
the completion time of CrossStitch and the tradition system
increase linearly. CrossStitch introduces a small increase in
completion time per operation due to the overhead of mar-
shalling and unmarshalling the transaction’s data and imple-
mentation.

In the next experiment, we evaluate CrossStitch’s perfor-
mance with different percentages of read operations in a ten
operation transaction. Figure 5 shows that CrossStitch’s per-
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Figure 6: Completed transaction throughput of CrossStitch
and 2PC in a single datacenter environment

formance is largely independent of the read percentage. This
is because CrossStitch’s replication messages are sent in par-
allel with the transaction messages, which makes writes only
marginally slower than reads since the next server must still
wait until it receives a message from each replica. In con-
trast, reads are significantly faster than writes for the 2PC
system because writes are asynchronous due to client-side
buffering where reads are synchronous because of order de-
pendencies. For transactions that consist of mostly read op-
erations, CrossStitch has similar performance to our 2PC
system even in a single datacenter environment.

5.2.2 Throughput and Scalability

To compare the throughput and scalability of CrossStitch
and our 2PC system, we determine the maximum number
of successful transactions per second that each system can
support for 8 to 20 servers. To do so, we increase the number
concurrent clients until we saturate the system.

Figure 6 shows that the completed transaction through-
put of CrossStitch shows similar scaling properties to our
2PC system when the servers are all in the same datacen-
ter. The results show that CrossStitch has a completed trans-
action throughput that is slightly less than our 2PC sys-
tem. This is likely due to the additional overhead of mar-
shalling/unmarshalling the data and transaction implemen-
tation. The overhead is more pronounced in this experiment
than in the previous single client experiment because over-
head from simultaneous transactions can compound.

We also evaluate CrossStitch’s scalability for geo-distributed

transactions. For this experiment, four machines are par-
titioned into groups of two and fc is used to add 50 ms
of latency between each group of machines. One machine
in a group is responsible for running the server processes
while the other executes the clients. Transactions are struc-
tured such that the first set of operations are executed at
the same datacenter as the client, and the remaining opera-
tions are executed at a remote datacenter. CrossStitch will
therefore require two cross-datacenter roundtrips to process
each transaction. In contrast, the traditional transaction sys-
tem requires five cross-datacenter roundtrips on average.
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Figure 7: Completed transaction throughput of CrossStitch
and 2PC in a two-datacenter environment with 50 ms la-
tency
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Figure 8: Completion Time vs. Datacenter Latency

Four round trips are attributed to remote read operations,
and one round trip is attributed to the commit operation. As
a result, when processing a transaction, the traditional sys-
tem incurs more latency. Figure 7 shows that CrossStitch
has a higher throughput than our 2PC system. More impor-
tantly, CrossStitch’s throughput scaling is largely unaffected
by the additional 50 ms latency. In contrast, our 2PC sys-
tem’s throughput does not scale with more servers with the
additional 50 ms latency. We analyze the reason for this
behaviour in the next section.

5.2.3 Increasing Latency Between Datacenters

To evaluate the performance of CrossStitch in a geo-dis-
tributed environment with different latencies between dat-
acenters, we repeat the same experiments in Section 5.2.2
but with latencies from 50 to 150 ms and fix the number
of servers to eight. We again assume that data accesses in a
transaction are organized so that key operations on the same
datacenter are grouped together, and that the client performs
local key operations before performing remote operations.
Figure 8 shows the effect of cross-datacenter latency on
transaction completion time. The latency indicated on the x-
axis is the round-trip between the two simulated datacenters.
Since CrossStitch transactions require two cross-datacenter
round-trips, the latency of a CrossStitch transaction is al-
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Figure 10: Completed Transaction Throughput vs Datacen-
ter Latency

ways twice of the cross-datacenter roundtrip latency. For our
2PC system, since transactions are 80% read operations and
there is an equal number of servers at each datacenter, it must
perform, on average, four remote read requests. Since read
operations are not asynchronous, each read will require one
round trip. As a result, each two-phase commit transaction
requires five round trips (four for read operations and one
for the commit protocol). Therefore, as datacenter latency
increases, the completion time increase at a much higher rate
than CrossStitch. Note that in this experiment, unlike in pre-
vious latency experiments, we use enough clients to saturate
the system instead of just a single client.

Since CrossStitch transactions have a lower completion
time than 2PC transactions in a geo-distributed environment,
there is a smaller window for overlapping operations from
different transactions to occur. We find that a large percent-
age of the aborts are a result of write operations causing
pending read operations to be invalid. Many aborts are also
due to cascading aborts. A cascading abort occurs when an
uncommitted transaction’s read operation reads another un-
committed transaction’s write operation; however, the trans-
action of the pending write operation aborts, causing the
dependent read operation to be invalid. Figure 9 shows the
number of successful transactions (out of 1000) compared to
the latency between datacenters. Because CrossStitch trans-
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Figure 11: Successful Transaction Throughput vs. Datacen-
ter Configuration. Datacenter latencies used are 1:(70ms,
40ms, 50ms), 2:(140ms, 164ms,308ms) and 3:(463ms,
546ms, 318ms)

actions complete more quickly and have less operations that
overlap between transactions than our 2PC system, it has a
significantly higher completion rate than our 2PC system.
The transaction completion rate for CrossStitch remains con-
stant until the cross-datacenter latency is 150 ms. As a result
of the higher transaction completion rate, the throughput of
completed transactions for CrossStitch is also greater than
the 2PC system as shown in Figure 10. The drop in through-
put for CrossStitch is due to the increase in the number of
concurrent transactions due to the higher cross-datacenter la-
tency, which results in greater overhead.

5.2.4 Three Datacenters

We also evaluate CrossStitch and the traditional transaction
processing system across three datacenters. For this experi-
ment, we use a similar setup to that found in Section 5.2.3;
however, we use additional machines for servers and clients.
Our evaluation includes three experimental configura-
tions that represent geographically distributed locations. Our
first configuration simulates datacenters located in New York
(USA), California (USA), and Texas (USA). The second
configuration uses London (UK), California (USA), and
Hong Kong. Lastly, the third configuration simulates dat-
acenters that are located in Brisbane (Australia), Shanghai
(China), and Paris (France). The latency between these lo-
cations were determined from measurements taken on De-
cember 25, 2014 in [3]. For each of the configurations, the
latencies that are used are (70ms, 40ms, 50ms), (140ms,
164ms, 308ms) and (463ms, 546ms, 318ms) respectively.
Again, we sort our operations such that local operations
are performed before remote operations. As shown in Fig-
ure 11, CrossStitch’s improvement over our 2PC system is
relative to the latency between the datacenters. In all cases,
CrossStitch has higher throughput than our 2PC system.

5.3 Evaluation Using TPC-C-like Transactions

In addition to the results presented in Section 5.2, we com-
pare CrossStitch with our implemented 2PC system using



more realistic transactions that involve sequential and depen-
dent key operations. Specifically, we evaluate CrossStitch
and our 2PC system using two TPC-C-like transactions.
These transactions are based on the order status and stock
level transactions. The order status transaction reads all or-
der lines for a customer’s order information, and the stock
level transaction counts all stock in a district that is below
a given threshold. We first perform a worst case theoretical
analysis for both CrossStitch and our 2PC system.

5.3.1 Theoretical Analysis

In our evaluation, the keys and values used in our transac-
tions are specified in the TPC-C-guidelines. Keys can con-
sist of multiple fields, and we partition our data across data-
centers based on the these fields. Warehouse keys are parti-
tioned according to the warehouse identifier. Keys that per-
tain to history, district, customers, orders, new orders and
orderlines are partitioned according to their district identi-
fier. Lastly, items and stock are partitioned according to their
item identifier. Although stock information may be parti-
tioned on the warehouse identifier, our evaluation uses a sin-
gle warehouse. Therefore, we partition the stocks on item
identifiers to achieve better load balancing across servers. In
our experiments, we partition our keys in across two data-
centers.

To demonstrate that CrossStitch has the potential to sig-
nificantly improve upon a traditional 2PC system, we per-
form a worst-case analysis on the roundtrip latencies that a
transaction incurs. In our analysis, we assume that the client
is located at a different datacenter from the data. Further-
more, for the 2PC system that utilizes two-phase commit,
the client and coordinator are co-located on the same data-
center.

We begin by considering the order status transaction
which retrieves customer information, followed by the cus-
tomer’s order, and finally all order lines. The operations in
the order status transaction are dependent on one another.
Consequently, the 2PC system would require at least three
round trips to obtain the data plus an additional round trip
for the commit protocol. On the other hand, the CrossStitch
client sends the transaction to the remote datacenter and the
servers of the remote datacenter perform the transaction and
send the result to the client. As there is a round of acknowl-
edgement and precommit messages sent between the client
and the first server in the transaction chain, we include the
expected round trip time that includes the commit protocol
CrossStitch incurs two round trips.

Similarly, the stock level transaction retrieves a district,
orders that pertain to the retrieved district, order lines of
orders that are read, and the stock associated with the or-
der lines. In this transaction, there are four read operations
that are dependent on each other. Therefore, if the client was
located on a remote datacenter, the 2PC system would re-
quire five round trips whereas CrossStitch will require two

Transaction | Traditional | CrossStitch
Order Status 3+1 2
Stock Level 4+1 2

Figure 12: Worst case round trip comparison for a traditional
system vs. CrossStitch
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Figure 13: The average completion time of the ORDER
STATUS transaction as datacenter latency varies

round trips. The results of this analysis are summarized in
Figure 12.

5.3.2 Results of TPC-C-like Transactions

In this experiment, we compare the transaction completion
time for the order status and stock level transaction using
CrossStitch and the 2PC system. Figure 13 shows the trans-
action completion time of the order status transaction for
CrossStitch and the 2PC system where we vary the datacen-
ter latency. The results demonstrate that CrossStitch requires
two fewer round trips than the traditional system when com-
pleting the order status transaction. As datacenter latency in-
creases, the improvement that CrossStitch provides is more
evident. We also consider the case where there is no latency
between the two datacenters. We see that CrossStitch has a
higher average transaction completion time when there is no
datacenter latency, which is attributed the CrossStitch’s over-
head of marshalling, sending, and unmarshalling a trans-
action. As datacenter latency increases, the 2PC system in-
curs more latency than CrossStitch, demonstrating that in-
curring CrossStitch’s overhead latency is worthwhile is such
situations.

In the case of the stock level transaction, we reduce the
number of inventory items that are retrieved in order to not
overwhelm the servers. We found that a single transaction
sends upwards of a couple hundred of key requests, many
of which are concurrent. Given that our server deployment
for both CrossStitch and the traditional system consists of
eight servers, these servers become inundated with requests,
thereby causing the transaction completion time for our 2PC
system to be significantly higher than expected. As a result,
instead of retrieving the entire stock for the last 20 orders
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Figure 14: The average completion time of the STOCK
LEVEL transaction as datacenter latency varies

in a district, we retrieve the stock of a single item from a
single order in a district and a single order line of an order.
By doing so, our servers are not overrun with key opera-
tions, and the transactions in the traditional system complete
in our expected time. We also change the stock level trans-
action for CrossStitch in this manner to provide a fair com-
parison between the two systems. As shown in Figure 14,
CrossStitch provides a significant improvement over the 2PC
system as was expected by our analysis in Figure 12. We
note that a stock level transaction might not require any
cross-datacenter trips, resulting in a lower completion time
than our worst-case analysis. Nonetheless, Figure 14 demon-
strates that CrossStitch provides lower latency than our 2PC
system.

5.4 Analytical Comparisons

In our evaluation, we implemented a flat transaction process-
ing system that uses a centralized coordinator to send key
requests and perform the commit protocol. Improvements
upon our implemented flat transaction processing system in-
cludes the system presented in the R* System [17], where
the commit protocol is executed in a tree-like fashion. In
this system, the root node of the commit tree acts as the
coordinator, leaf nodes are participants, and the remaining
nodes serve as both coordinator and participants. The vote
of a node depends on the vote of its children and its part of
the transaction.

An improvement upon the flat transaction processing sys-
tem is to use code shipping, where code and key requests are
delivered to the remote datacenter, with the R* commit pro-
tocol. Such a transaction processing system would require
only one round-trip for a group of remote key accesses, as
opposed to one round-trip for every remote key access.

As an R*-like system with code-shipping was not avail-
able to us, we analytically determine the expected number of
round trips that are required to complete a transaction. In our
analysis, we assume that local key accesses and computa-
tion are small compared to cross-datacenter round-trip time;
thus, we only consider cross-datacenter round-trip time in
our analysis. We analyze synthetic transactions that consist
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Figure 15: The number of round trips incurred as the number
of datacenters travelled increases

of multiple, sequential key accesses. We compare the round
trips incurred by our implemented, flat transaction process-
ing system, a system that uses code shipping and the R*
commit protocol, and CrossStitch.

All operations in our analyzed transactions are sequential
and occur one after another. In Figure 15, we depict the re-
lationship between the number of datacenters that the trans-
action contacts and the number of round trips that transaction
execution will incur. The various lines indicate the number
of operations that occur per datacenter. In the case of Cross-
Stitch and code-shipping with the R* commit protocol, as
operations are done locally, cross-datacenter latency is in-
curred per group of operations as opposed to each time a
key is accessed. However, as the number of key accesses on
remote datacenters increases, the flat transaction processing
system incurs significantly more round trips.

As CrossStitch performs the pipelined commit protocol
during transaction execution, the latency that is incurred by
CrossStitch as a result of cross-datacenter round trips is less
than a transaction processing system that uses code-shipping
and a R* commit protocol. The difference in latency between
CrossStitch and a system that uses code-shipping and the R*
commit protocol becomes greater as the number of remotely
accessed datacenters increase. As shown in Figure 15, if a
transaction accesses data on six remote datacenters, Cross-
Stitch incurs four round trips while the transaction process-
ing system that uses code shipping and the R* commit pro-
tocol incurs ten round trips.

6. Conclusion

In this paper, we have presented CrossStitch, an efficient
transaction processing framework for geo-distributed data-
stores. We described the CrossStitch transaction structure
and architecture, and we presented CrossStitch’s pipelined
atomic commit protocol that executes in parallel with the
transaction, thereby masking commit latency with execu-
tion latency and preserving a chained communication pat-
tern across servers. We also provided detailed liveness and
safety arguments for CrossStitch. Our performance evalua-



tion showed that CrossStitch performs significantly better a
traditional transaction processing system using 2PC.
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