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Abstract. When two methods are invoked on the same object, the dis-
patch behaviours of these method calls will be correlated. If two cor-
related method calls are polymorphic (i.e., they dispatch to different
method definitions depending on the type of the receiver object), a pro-
gram’s interprocedural control flow graph will contain infeasible paths.
Existing algorithms for data-flow analysis are unable to ignore such in-
feasible paths, giving rise to loss of precision.

We show how infeasible paths due to correlated calls can be eliminated for
Interprocedural Finite Distributive Subset (IFDS) problems, a large class
of data-flow analysis problems with broad applications. Our approach
is to transform an IFDS problem into an Interprocedural Distributive
Environment (IDE) problem, in which edge functions filter out data flow
along infeasible paths. A solution to this IDE problem can be mapped
back to the solution space of the original IFDS problem. We formalize
the approach, prove it correct, and report on an implementation in the
WALA analysis framework.

1 Introduction

A control-flow graph (CFG) is an over-approximation of the possible flows of
control in concrete executions of a program. It may contain infeasible paths that
cannot occur at runtime. The precision of a data-flow analysis algorithm depends
on its ability to detect and disregard such infeasible paths. The Interprocedural
Finite Distributive Subset (IFDS) algorithm [16] is a general data-flow analysis
algorithm that avoids infeasible interprocedural paths in which calls and returns
to/from functions are not properly matched. The Interprocedural Distributive
Environment (IDE) algorithm [18] has the same property, but supports a broader
range of data-flow problems.

? This research was supported by the Natural Sciences and Engineering Research
Council of Canada and the Ontario Ministry of Research and Innovation.
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This paper presents an approach to data-flow analysis that avoids a type
of infeasible path that arises in object-oriented programs when two or more
methods are dynamically dispatched on the same receiver object. If the method
calls are polymorphic (i.e., the method invoked depends on the run-time type
of the receiver), then their dispatch behaviours are correlated, and some of the
paths between them are infeasible. A recent paper [21] made this observation
but did not present any concrete algorithm to take advantage of it.

Our approach transforms an IFDS problem into an IDE problem that pre-
cisely accounts for infeasible paths due to correlated calls. The results of this
IDE problem can be mapped back to the data-flow domain of the original IFDS
problem, but are more precise than the results of directly applying the IFDS
algorithm to the original problem. We present a formalization of the transfor-
mation and prove its correctness: specifically, we prove it still soundly considers
all paths that are feasible, and that it avoids flow along all paths that are infea-
sible due to correlated calls.

We implemented the correlated-calls transformation and the IDE algorithm
in Scala, on top of the WALA framework for static analysis of JVM bytecode [5].
Our prototype implementation was tested extensively by using it to transform an
IFDS-based taint analysis into a more precise IDE-based taint analysis, and ap-
plying the latter to small example programs with correlated calls. Our prototype
along with all tests will be made available to the artifact evaluation committee.

The remainder of this paper is organized as follows. Section 2 presents a
motivating example. Section 3 reviews the IFDS and IDE algorithms. Section 4
presents the correlated-calls transformation, states the correctness properties3,
and discusses our implementation. Related work is discussed in Section 5. Finally,
Section 6 presents conclusions and directions for future work.

2 Motivation

We illustrate our approach using a small example that applies our technique to
improve the precision of taint analysis. A taint analysis computes how string
values may flow from “sources”, which are typically statements that read un-
trusted input, to “sinks”, which are typically security-sensitive operations such
as calls to a database. In previous research [2, 6], taint analysis algorithms have
been formulated as IFDS problems.

Figure 1 shows a small Java program. The program declares a class A with
a subclass B, where A defines methods foo() and bar() that are overridden in
B. We assume that secret values are created by an unspecified function secret(),
which is called in A.foo() on line 2. Any write to standard output is assumed
to be a sink (e.g., the call to System.out.println() in B.bar()). Depending on the
number of arguments passed to the program, the main() method of the example
program creates either an A-object or a B-object. The program then calls foo()
on this object on line 18, which is followed by a call to bar() on the same object.

3 Detailed proofs of our lemmas and theorems can be found in the Appendix.



Data Flow Analysis in the Presence of Correlated Calls 3

1 class A {
2 String foo { return secret (); }
3 void bar( String s) {}
4 }
5 class B extends A {
6 String foo {
7 return ”not secret”;
8 }
9 void bar( String s) {

10 System.out. println (s );
11 }
12 }
13

14 class Main {
15 static void main(String [] args) {
16 A a = (args == null)
17 ? new A() : new B();
18 String v = a.foo ();
19 a.bar(v);
20 }
21 }

Fig. 1: Example program containing
correlated calls

startmain

a = args==null ?

new A() : new B()

callfoo

returnfoo

v = a.foo()

callbar

returnbar

endmain

startA.foo

return secret()

endA.foo

startA.bar

endA.bar

startB.foo

return "not secret"

endB.foo

startB.bar

print(s)

endB.bar

Fig. 2: Control flow supergraph for the ex-
ample program of Figure 1. Dashed lines
depict interprocedural edges. An infeasible
path is shown in bold.

We wish to answer the following question: Is it possible for the untrusted
value that is read on line 2 to flow to the print statement? Consider the control-
flow supergraph for the example program that is shown in Figure 2. The nodes
in this graph correspond to statements, method entry points (start nodes) and
method exit points (end nodes). For each method call, the graph contains a
distinct call-node and a return-node. Edges in the graph reflect intraprocedural
control flow, flow of control from a caller to a callee (edges from call-nodes to
start-nodes), or flow of control from a callee back to a caller (edges from end-
nodes to return-nodes).

In our example, the control flow within each method is straightforward and
all interesting issues arise from interprocedural control flow. In particular, since a
may point to either an A-object or a B-object, the call on line 18 may dispatch to
either A.foo() or to B.foo(), as is reflected by edges from the node labeled callfoo
to the nodes labeled startA.foo() and startB.foo() and by edges from the nodes

labeled endA.foo and endB.foo to the node labeled returnfoo . Similarly, there are
edges from the node labeled callbar to the nodes startA.bar() and startB.bar() , and

edges from the nodes labeled endA.bar and endB.bar to the node labeled returnbar .

An IFDS analysis propagates data-flow facts along the edges of a control
flow supergraph such as the one in Figure 2. The IFDS algorithm already avoids
flow along infeasible paths from one call site, through a target method, and
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returning to a different call site of the target method. However, in this example,
all methods are called in exactly one place, so IFDS is unable to eliminate data
flow along any of the paths shown in the figure. As a result, IFDS-based taint
analysis algorithms such as [2, 6] would report that the secret value read on
line 2 might flow to the print statement on line 10.

As we discussed previously, the calls to foo() and bar() may dispatch to the
implementations in classes A and B, because the receiver variable a may be
bound to objects of type A or B at run time. However, the methods foo() and
bar() are invoked on the same object. Thus the behaviours of the method calls
are correlated : if the call to foo() dispatches to A.foo(), then the call to bar()
must dispatch to A.bar(), and analogously for B.foo() and B.bar(). Consequently,
paths such as the one shown in bold in Figure 2 where the calls dispatch to
A.foo() and B.bar() are infeasible.

Our main contribution is an algorithm for transforming an IFDS problem
into an IDE problem that expresses the feasibility of paths in light of correlated
calls. The approach associates with each interprocedural CFG edge a function
that records the types of variables that are used as the receiver of correlated
method calls. Paths that are composed of edges in which the same receiver
expression has different types are infeasible, and the propagation of data-flow
facts along such paths is prevented. Applying our technique to an IFDS-based
taint analysis would enable the resulting IDE-based taint analysis to determine
that no secret value can flow from line 2 to the print statement on line 10.

While the discussion in this section has focused on the specific problem of
taint analysis, our technique generally applies to any data-flow-analysis problem
that can be expressed in the IFDS framework. This includes many common anal-
ysis tasks such as reaching definitions, constant propagation, slicing, typestate
analysis, pointer analysis, and lightweight shape analysis.

2.1 Occurrences of Correlated Calls

How often do correlated calls occur in practice? To assess the benefit of the
correlated-calls analysis, we counted the number of correlated calls that occur in
programs of the Dacapo benchmarks [3], using the WALA framework [5]. Our
goal was to obtain an upper bound on the number of redundant IFDS-result
nodes that could be potentially removed by our analysis. The results are shown
in Table 2 in the Appendix.

In these programs, on average, 3% of all call sites C are polymorphic call
sites CP . Out of these polymorphic call sites, a significant fraction (39%) are
correlated call sites Cb. We also see that, on average, each correlated-call receiver
is involved in approximately three correlated calls.

2.2 An Example from the Scala Collections Library

The Scala collections library contains the trait TraversableOnce that is shared
by both collections and iterators over them. The toArray method of this trait
creates an array and copies the contents of the collection or iterator into it:
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val result = new Array[B](this. size )
this .copyToArray(result , 0)

When this refers to an iterator rather than a collection, the call to this.size
extracts all elements of the iterator to count them. At the call to copyToArray,
the iterator is already empty, so nothing is copied to the newly created array.
One could design an IFDS analysis to detect this kind of bug.

However, the implementation of TraversableOnce.toArray is actually correct
because the above code is guarded with a test: if (this.isTraversableAgain) ...
When the isTraversableAgain method returns false, as it does for an iterator, the
toArray method uses a different (less efficient) implementation. The bug report
would therefore be a false positive. The isTraversableAgain method is easy to
analyze: it returns the constant true in a collection and the constant false in an
iterator. However, in order to eliminate the false positive bug report, an analysis
would need to rule out infeasible paths using correlated calls. Specifically, the
following path triggers the bug, but is infeasible: first, call isTraversableAgain
on a collection, returning true, then call size and copyToArray on an iterator.
Our correlated calls analysis could determine that this path is infeasible because
it calls the collection version of isTraversableAgain but the iterator versions of
size and copyToArray. The relevant code from TraversableOnce and other related
traits is shown in Figure 6 in the Appendix.

3 Background

This section defines terminology and presents the IFDS and IDE algorithms.

3.1 Terminology and Notation

The control-flow graph of a procedure is a directed graph whose nodes are in-
structions, which contains an edge from n1 to n2 whenever n2 may execute
immediately after n1. A CFG has a distinguished start node startp and end node
endp. Following the presentation of Reps et al. [16, 18], we follow every call
instruction with a no-op instruction, so that every call node is immediately fol-
lowed by a return node in the CFG. The control-flow supergraph of a program
contains the CFGs of all of the procedures as subgraphs. In addition, for each
call instruction c, the supergraph contains a call-to-start edge to the start node
of every procedure that may be called from c, and an end-to-return edge from
the end node of the procedure back to the call instruction.

A call site is monomorphic if it always calls the same procedure. In an object-
oriented language, a call site r.m(. . .) can dynamically dispatch to multiple meth-
ods depending on the runtime type of the object pointed to by the receiver r. A
call site that calls multiple procedures is called polymorphic. We define a func-
tion lookup to specify the dynamic dispatch: if s is the signature of m and t is
the runtime type of the object pointed to by r, lookup(s, t) gives the procedure
that will be invoked by the call r.m(. . .). We also define a function τ that may
be viewed as the inverse of lookup: given a signature s and a specific invoked
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procedure f , τ(s, f) gives the set of all runtime types of r that cause r.m(. . .) to
dispatch to f : τ(s, f) = {t | lookup(s, t) = f}.

A path in the control-flow supergraph is valid if it follows the usual stack-
based calling discipline: every end-to-return edge on the path returns to the site
of the most recent call that has not yet been matched by a return. The set of all
valid paths from the program entry point to a node n is denoted VP(n).

A lattice4 is a partially ordered set (S,v) in which every subset has a least
upper bound, called join or t, and a greatest lower bound, called meet or u.
A meet semilattice is a partially ordered set in which every subset only has a
greatest lower bound. The symbols ⊥ and > are used to denote the greatest
lower bound of S and of the empty set, respectively.

We denote a map m as a set of pairs of keys and values, with each key
appearing at most once. For a map m, m(k) is the value paired with the key k.
We denote by m[x→ y] a map that maps x to y and every other key k to m(k).

3.2 IFDS

The IFDS framework [16] is a precise and efficient algorithm for data-flow analy-
sis that has been used to solve a variety of data-flow analysis problems [4, 9, 12,
22]. The IFDS framework is an instance of the functional approach to data-flow
analysis [19] because it constructs summaries of the effects of called procedures.
The IFDS framework is applicable to interprocedural data-flow problems whose
domain consists of subsets of a finite set D, and whose data-flow functions are
distributive. A function f is distributive if f(x1 u x2) = f(x1) u f(x2).

The IFDS algorithm is notable because it computes a meet-over-valid paths
solution in polynomial time. Most other interprocedural analysis algorithms are
either: (i) imprecise due to invalid paths, (ii) general but do not run in polynomial
time [7, 19], or (iii) handle a very specific set of problems [8].

The input to the IFDS algorithm is specified as (G∗, D, F, MF , u), where
G∗ = (N∗, E∗) is the supergraph of the input program with nodes N∗ and
edges E∗, D is a finite set of data-flow facts, F is a set of distributive data-flow
functions of type 2D → 2D, MF : E∗ → F assigns a data-flow function to each
supergraph edge, and u is the meet operator on the powerset 2D, either union
or intersection. In our presentation, the meet operator will always be union, but
all of the results apply dually when the meet is intersection.

The output of the IFDS algorithm is, for each node n in the supergraph, the
meet-over-all-valid-paths solution MVPF (n) =

d
q∈VP(n)MF (q)(>), where MF

is extended from edges to paths by composition.

Overview of the IFDS Algorithm The key idea behind the IFDS algorithm
is that it is possible to represent any distributive function f from 2D to 2D by a
representation relation Rf ⊆ (D ∪ {0})× (D ∪ {0}). The representation relation

4 The definitions that we give here are of complete lattices and semilattices. Since all
of the (semi)lattices discussed in this paper are required to be complete, we omit
the complete qualifier.
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0 u v w

Rf

Fig. 3: Rf = {(0, 0),
(0, u), (w, w)}

0 u v w

Rf

Rg

0 u v w

Rg ◦Rf

Fig. 4: Rg ◦Rf

can be visualized as a bipartite graph with edges from one instance of D∪{0} to
another instance of D ∪ {0}. The IFDS algorithm uses such graphs to efficiently
represent both the input data-flow functions and the summary functions that it
computes for called procedures. Specifically, the representation relation Rf of a
function f is defined as:

Rf = {(0, 0)} ∪ {(0, dj) | dj ∈ f(∅)} ∪ {(di, dj) | dj ∈ f({di}) \ f(∅)}.

Example 1. Given D = {u, v, w} and f(S) = S \ {v} ∪ {u}, the representation
relation Rf = {(0, 0), (0, u), (w, w)}, which is depicted in Figure 3.

The representation relation decomposes a flow function into functions (edges)
that operate on each fact individually. This is possible due to distributivity:
applying the flow function to a set of facts is equivalent to applying it on each
fact individually and then taking the union of the results.

The meet of two functions can be computed as simply the union of their
representation functions: Rfuf ′ = Rf ∪ Rf ′ . The composition of two functions
can be computed by combining their representation graphs, merging the range
nodes of the first function with the corresponding domain nodes of the second
function, and finding paths in the resulting graph.

Example 2. If g(S) = S \ {w} and f(S) = S \ {v} ∪ {u}, then Rg ◦ Rf =
{(0, 0), (0, u)}, as illustrated in Figure 4.

Composition of two distributive functions f and f ′ corresponds to finding
reachable nodes in a graph composed from their representation relations Rf
and Rf ′ . Therefore, evaluating the composed data-flow function for a control
flow path corresponds to finding reachable nodes in a graph composed from the
representation relations of the data-flow functions for individual instructions.

It is this graph of representation relations that the IFDS algorithm operates
on. In this graph, called the exploded supergraph, each node is a pair (n, d),
where n ∈ N∗ is a node of the control-flow supergraph and d is an element of
D∪{0}. For each edge (n→ n′) ∈ E∗, the exploded supergraph contains a set of
edges (n, di)→ (n′, dj), which form the representation relation of the data-flow
function MF (n→ n′). The IFDS algorithm finds all exploded supergraph edges
that are reachable by realizable paths in the exploded supergraph. A path is
realizable if its projection to the (non-exploded) supergraph is a valid path (i.e.,
if it is of the form (n0, d0)→ (n1, d1)→ · · · → (nm, dm) and where n0 → n1 →
· · · → nm is a valid path).
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startmain

a = args==null ?

new A() : new B()

callfoo

returnfoo

v = a.foo()

callbar

returnbar

endmain

0 v
startA.foo

return secret()

endA.foo

ret0

λ
m
.⊥

b

λm
.m

[a
→
m

(a
) ∩ {A}

]

startA.bar

endA.bar

s0

λm
.m

[a
→
m

(a
) ∩

{A
}]

startB.foo

return "not secret"

endB.foo

0
startB.bar

print(s)

endB.bar

s0

λm.m[a → m(a) ∩ {B}]

Fig. 5: An example program demonstrating correlated-call edge functions on the 0-
node path for Listing 1. All non-labeled edges are implicitly labeled with identity
functions id. The variable ret denotes the return value of the A.foo method.

Example 3. The exploded supergraph for Listing 1 is shown in Figure 5. The
labels on the edges will be explained in Section 3.3 We can see that there is a
realizable path, highlighted in bold, from the start node of the exploded graph
to the variable s at the node print(s) in the B.bar method. This means that s

is considered secret at that node.

3.3 IDE

The IDE algorithm [18] extends IFDS to interprocedural distributive environment
problems. An IDE problem is one whose data-flow lattice is the lattice Env(D,L)
of maps from a finite set D to a meet semilattice L of finite height, ordered
pointwise. Like IFDS, IDE requires the data-flow functions to be distributive.

The input to the IDE algorithm is (G∗, D, L, MEnv) where G∗ is a control-
flow supergraph, D is a set of data-flow facts, L is a meet semilattice of finite
height, and MEnv : E∗ → (Env(D, L)→ Env(D, L)) assigns a data-flow function
to each supergraph edge.

The output of the IDE algorithm is, for each node n in the supergraph, the
meet-over-all-valid-paths solution MVPEnv(n) =

d
q∈VP(n)MEnv(q)(>Env), where

>Env = λd.> is the top element of the lattice of environments, and MEnv is
extended from edges to paths by composition.

Overview of the IDE Algorithm Just as any distributive function from
2D to 2D can be represented with a representation relation, it is also possible to
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represent any distributive function from Env(D,L) to Env(D,L) with a pointwise
representation. A pointwise representation is a bipartite graph with the same
nodes 5 and edges as a representation relation, except that each edge is labelled
with a micro-function, which is a function from L to L.

Thanks to distributivity, every environment transformer t : Env(D,L) →
Env(D,L) can be decomposed into its effect on >Env and on a set of environments
>Env[di → l] that map every element to > except one (di). Formally,

t(m)(dj) = λl.t(>Env)(dj) u
l

di∈D

λl.t(>Env[di → l])(dj).

The functions λl. · · · in this decomposition are the micro-functions that appear
on the edges of the pointwise representation edges from 0 to each dj and from
each di to each dj .

6 The absence of an edge in the pointwise representation from
some di to some dj is equivalent to an edge with micro-function λl.>.

Example 4. In the exploded supergraph in Figure 5, the micro-functions are
shown as labels on the graph edges. Every edge without an explicit label has the
identity as its micro-function. The micro-functions on the three edges from the
node return secret() to the node endA.foo together represent the environment
transformer λe.e[ret→ λm.⊥ u λm.m].

To eliminate infeasible paths due to correlated calls, we encode the taint
analysis using environments e ∈ Env(D,L), where D is the set of variables and
L is a map from receiver variables to sets of possible types. The interpretation
of such an environment e is that a given variable v ∈ D may contain a secret
value in an execution in which the runtime types of the objects pointed to by
the receiver variables are in the sets specified by e(v).

The meet of two environment transformers t1, t2 is computed as the union
of the edges in their pointwise representations. When the same edge appears in
the pointwise representations of both t1 and t2, the micro-function for that edge
in t1 u t2 is the meet of the micro-functions for that same edge in t1 and in t2.

The composition of two environment transformers can be computed by com-
bining their pointwise representation graphs in the same fashion as IFDS repre-
sentation relations, and computing the composition of the micro-functions ap-
pearing along each path in the resulting graph.

The IDE algorithm operates on the same exploded supergraph as the IFDS
algorithm (but its edges are labelled with micro-functions). For each pair (n, d)
of node and fact, IDE computes a micro-function equal to the meet of the micro-
functions of all the realizable paths from the program entry point to the pair.

In order to do this efficiently, the IDE algorithm requires a representation of
micro-functions that is general enough to express the basic micro-functions of
the data-flow functions for individual instructions, and that supports computing
the meet and composition of micro-functions.

5 The IDE literature uses the symbol Λ for the node that is denoted 0 in the IFDS
literature. We use 0 throughout this paper for consistency.

6 The IDE paper defines a more complicated but equivalent set of micro-functions
that eliminate some duplication of computation.
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A practical implementation of the IDE algorithm requires the input data-
flow functions to be provided in their pointwise representation as exploded su-
pergraph edges labelled with micro-functions. Specifically, the input is generally
provided as a function EdgeFn : (N∗×D)× (N∗×D)→ F , where F is the set of
representations of micro-functions from L to L. Given an exploded supergraph
edge e = (n, d) → (n′, d′), EdgeFn((n, d), (n′, d′)) returns the micro-function
that appears on the exploded supergraph edge e. In an implementation, it can
be convenient to split the function EdgeFn into separate functions that han-
dle the cases when n → n′ is an intraprocedural edge, a call-to-return edge, a
call-to-start edge, or an end-to-return edge.

4 Correlated Calls Analysis

4.1 Transformations from IFDS to IDE

Let G# be the exploded supergraph of an arbitrary IFDS problem. A transfor-
mation T : (G#) → (G#, L, EdgeFn) converts the IFDS problem into an IDE
problem. We consider two IFDS-to-IDE transformations: an equivalence trans-
formation T ≡ (pronounced “t-equiv”) and a correlated-calls transformation T b

S

(pronounced “t-c-c”) for a set of receivers S. Both transformations keep the
exploded supergraph G# the same, and only generate different edge functions.
The solution of the IDE problem can be mapped back to an IFDS solution. If
the equivalence transformation was used, then this solution is identical to the
solution that would be computed by the IFDS algorithm for the original IFDS
problem. If the correlated-calls transformation was used, then this solution is
more precise because it excludes flow along infeasible paths due to correlated
calls.

Equivalence Transformation The lattice for the equivalence transformation
T ≡ is the two-point lattice L≡ = {⊥, >}, where ⊥ means “reachable”, and >
means “not reachable”. The edge functions EdgeFn≡ are defined as

EdgeFn≡ =

{
λe . λm .⊥ if e = (n1,0)→ (n2, d2), where d2 6= 0;

λe . id otherwise.
(1)

At a “diagonal” edge from a 0-fact to a non-0-fact d, the micro function returns⊥
to make the fact d reachable. All other micro-functions are the identity function.

Correlated-Calls Transformation In the correlated-calls transformation T b
R ,

the lattice elements are maps from receivers to sets of types: Lb =
{
m : R→ 2T

}
,

where R is the set of considered receivers and T is the set of all types. For each
receiver r, the map gives an overapproximation of the possible runtime types of
r. Sets of types are ordered by the superset relation, and this is lifted to maps
from receivers to sets of types, so the bottom element ⊥b maps every receiver
to the set of all types, and the top element >b maps every receiver to the empty
set of types. During an actual execution, every receiver r points to an object of
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some runtime type. Therefore, a data-flow fact is unreachable along a given path
if its corresponding lattice element maps any receiver to the empty set of types.

A micro-function f ∈ Lb → Lb defines how the map from receivers to
types should be updated when an instruction is executed. The micro-function
for most kinds of instructions is the identity. On a call to and return from a
specific method m called on receiver r, the micro-function restricts the receiver-
to-type map to map r only to types consistent with the polymorphic dispatch
to method m. Finally, when an instruction assigns an object of unknown type
to a receiver r, the corresponding micro-function updates the map to map r to
the set of all types. This is made precise by the following definition:

Definition 1. Given a previously fixed set S ⊆ R of receivers, the micro-function
εS(e) of a supergraph edge e is defined as:
εS(e) = λm . (2)

m[r → m(r) ∩ τ(s, f)],
if e is a call-start edge r.c() → startf that calls
procedure f with signature s, and r ∈ S;

m[r → m(r) ∩ τ(s, f)]

[v1 → ⊥T ] . . . [vk → ⊥T ],

if e is an end-return edge endf → returnr.c() from
method f with signature s to the return node cor-
responding to the call r.c(), v1, . . . , vk ∈ S are
the local variables in f , and r ∈ S;

m [r → ⊥T ] ,
if e = n1 → n2 and n1 contains an assignment to
r ∈ S;

m otherwise.

In the above definition, the purpose of the set S is to limit the set of consid-
ered receivers. We will use S in Section 4.5.

We can now define EdgeFn, which assigns a micro-function to each edge in
the exploded supergraph. Along a 0-edge, the micro function is the identity. On
a “diagonal” edge from 0 to a non-0 fact that corresponds to some data-flow
fact becoming reachable, εS(e) is applied to ⊥b that maps every receiver to an
object of every possible type. On all other edges, εS(e) is applied to the existing
map before the edge. The is formalized in the following definition.

Definition 2. For each edge e = (n1, d1) → (n2, d2), EdgeFnbS (e) is defined as
follows:

EdgeFnbS (e) =


id if d1 = d2 = 0,

λm . εS(e)(⊥b) if d1 = 0 and d2 6= 0,

λm . εS(e)(m) otherwise.

(3)

Example 5. Consider the program from Figure 1, whose exploded supergraph
appeared in Figure 5. Returning a secret value in method A.foo creates a “diag-
onal” edge from the 0-fact to the method’s return value r. The diagonal edge is
labeled with λm .⊥b, so every receiver is mapped to the set of all types ⊥T . On
the end-return edge from A.foo to main, the set of types of a is restricted by the
micro function λm .m[a → m(a) ∩ {A}] corresponding to the assignment of the
return value r to v. On the call-start edge from main to B.bar, the possible types
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of a are further restricted by the micro-function λm .m[a→ m(a)∩ {B}] on the
edge that passes the argument v to the parameter s. The composition of these
micro functions results in the empty set as the possible types of a, indicating
that this path is infeasible.

4.2 Converting IDE Results to IFDS Results

An IFDS solution RIFDS has type N∗ → 2D: it maps each program point n to a
set of facts d that may be reached at n. An IDE solution RIDE pairs each such
fact d with a lattice element `, so its type is N∗ → (D → L).

In the equivalence transformation lattice L≡, ⊥ means reachable and >
means unreachable. Therefore, an IDE solution ρ computed using T ≡ is con-
verted to an IFDS solution as: U≡(ρ) = λn.{d | ρ(n)(d) 6= >}. In the correlated-
calls transformation lattice Lb, a map that maps any receiver to the empty set of
possible types means that the corresponding data-flow path is infeasible. There-
fore, an IDE solution ρ computed using T b

S is converted to an IFDS solution as

Ub(ρ) = λn.{d | ∀r ∈ S . ρ(n)(d)(r) 6= >T }. (4)

4.3 Implementation of Correlated Calls Micro-Functions

Conceptually, micro-functions are functions from L to L, where L is the IDE
lattice, either L≡ or Lb in our context. The IDE algorithm requires an efficient
representation of micro-functions. The representation must support the basic
micro-functions that we presented in Section 4.1, and it must support function
application, comparison, and be closed under function composition and meet.
We now propose such a representation for the correlated-calls micro-functions.

The representation of a micro-function is a map from receivers to pairs of
sets of types I(r) and U(r), where U(r) is required to be a subset of I(r). We
use the notation 〈I, U〉 to represent such a map, and I(r) and U(r) to look up
the sets corresponding to a particular receiver r. The micro-function takes the
existing set of possible types of the receiver r, intersects it with I(r), then unions
it with U(r): J〈I, U〉K = λm . λr . (m(r) ∩ I(r)) ∪ U(r).

All of the basic micro-functions defined in Definition 1 can be expressed
in this representation. The following lemmas show how function comparison,
composition, and meet can be implemented using basic set operations on I and
U . The proofs of all of the lemmas and theorems are in the Appendix.

Lemma 1. For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,
∀r . I(r) = I ′(r) ∧ U(r) = U ′(r) ⇐⇒ J〈I, U〉K = J〈I ′, U ′〉K . (5)

Lemma 2. For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,
J〈I, U〉 ◦ 〈I ′, U ′〉K = J〈I, U〉K ◦ J〈I ′, U ′〉K ,

where the composition of two micro-function representations is defined as follows:
〈I, U〉 ◦ 〈I ′, U ′〉 = 〈λr . (I(r) ∩ I ′(r)) ∪ U(r), λr . (I(r) ∩ U ′(r)) ∪ U(r)〉 .
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Lemma 3. Let J〈I, U〉KuJ〈I ′, U ′〉K = λm.λr. J〈I, U〉K (m)(r)∪J〈I ′, U ′〉K (m)(r).
For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,

J〈I, U〉 u 〈I ′, U ′〉K = J〈I, U〉K u J〈I ′, U ′〉K , (6)
where the meet of two micro-function representations is defined as follows:

〈I, U〉 u 〈I ′, U ′〉 = 〈λr . I(r) ∪ I ′(r), λr . U(r) ∪ U ′(r)〉 .

4.4 Theoretical Results

The following lemma shows that our analysis is sound, i.e. that the resulting
IDE problem still considers all data-flow paths that are actually feasible.

Lemma 4 (Soundness). Let P be an IFDS problem and p = [startmain, . . . , n]
a concrete execution path, and let d ∈ D. If d ∈MF (p)(∅), then

d ∈ Ub
(
RIDE(T b

R (P ))
)

(n) .

We also show that the result of an IDE problem obtained through a correlated-
calls transformation is a subset of the original IFDS result.

Lemma 5 (Precision). For an IFDS problem P and all n ∈ N∗,
Ub
(
RIDE(T b

R (P ))
)

(n) ⊆ RIFDS(P )(n) . (7)

4.5 Correlated-Call Receivers

We will now show that in a correlated-calls transformation, it is enough to con-
sider only some of the receivers of set R.

Definition 3. If r ∈ R is the receiver of at least two polymorphic call sites,
then we call r a correlated-call receiver, and we define Rb as the set of all such
receivers.

We will show that it is sufficient for the correlated-calls micro-functions to
be defined only on correlated-call receivers. Specifically, a “reduced” correlated-
calls transformation that considers only correlated-call receivers in the micro-
functions yields the same solution as the full correlated-calls transformation (i.e.
no precision is lost).

Lemma 6. Let P be an IFDS problem. Then
Ub
(
RIDE

(
T b
Rb(P )

))
= Ub(RIDE

(
T b
R (P )

)
) . (8)

4.6 Efficiency

Both the IFDS and IDE algorithms have been proven to run in O(ED3) time [16,
18], where E is the number of edges in the (non-exploded) supergraph, and D is
the size of the set of facts. The IDE algorithm may evaluate micro-functions up to
O(ED3) times, so this running time must be multiplied by the cost of evaluating
a micro-function. We show that the micro-functions in the correlated-calls IDE
analysis can be evaluated in time O(RbT ), where Rb is the number of correlated-
call receivers Rb and the T is the number of run-time types. Therefore, the
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overall worst-case cost of the correlated-calls IDE analysis is O(ED3RbT ). In
practice, Rb is much smaller than R, so Lemma 6 is significant for performance.

Specifically, the complexity proof for the IDE algorithm requires the imple-
mentation of the micro-functions to be efficient according to a list of specific
criteria. Our micro-function implementation does satisfy the criteria:

Lemma 7. The correlated-call representation of a micro function is efficient
according to the IDE criteria [18] and the required operations on micro-functions
can be computed in time O(RbT ).

4.7 Implementation of the Correlated-Calls Analysis

We implemented the correlated-calls analysis in Scala [15]. Our implementation
analyzes JVM bytecode compiled from input programs written in Java. We use
WALA [5] to retrieve information about an input program, such as its control-
flow supergraph and the set of receivers and their types. Since WALA does
not contain an implementation of the IDE algorithm, we implemented it from
scratch; we are working on contributing our infrastructure to WALA.

We tested our correlated-calls analysis using an IFDS taint-analysis as a
client analysis. To this end, we converted the IFDS taint analysis into an IDE
problem with an implementation of T b

Rb . We extensively tested the correlated-
calls analysis to ensure that, in the absence of correlated calls, the analysis
produces the same results as an IFDS-equivalent analysis, and that it produces
more precise results in the presence of correlated calls as expected.

To evaluate the practicality of our approach, we applied two variants of the
IFDS taint analysis to the SPEC JVM98 benchmarks: (i) an equivalent IDE
taint analysis obtained using T ≡, and (ii) an IDE taint analysis obtained using
T b
Rb that avoids imprecision due to correlated method calls.

The equivalence analysis is there for two reasons: (i) to explain how a correlated-
calls-IDE problem can be derived from an IDE problem that has the same mean-
ing as the original IFDS problem, and (ii) to provide a base line against which to
compare the efficiency of the correlated-calls analysis. We compare the efficiency
of the correlated-calls analysis against the equivalence-IDE analysis instead of
the IFDS analysis because the time complexities of an IFDS and an equivalent
IDE analysis are the same: an equivalent IDE analysis is just an IFDS analysis
in which all edges are labeled with identity micro functions, and all operations
on those functions are optimized to be constant-time.

The running times tb of the correlated-calls and t≡ equivalence analyses
are shown in Table 1. In the table, N∗r is the number of reachable nodes in the
control-flow supergraph, and N#

r the number of reachable nodes in the exploded
supergraph.

The results suggest that the overhead of tracking correlated calls is accept-
able. In particular, the correlated-calls analysis takes at most twice as long as
the equivalence analysis. The absolute times range from a few seconds on the
smaller SPEC programs to about two hours on javac.
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Table 1: Running times of the analyses

Benchmark N∗
r N#

r t≡ tb

compress 2,155 24,730 0:00:02 0:00:04
db 2,285 22,938 0:00:06 0:00:12
jack 17,602 284,625 0:06:06 0:11:31
javac 40,430 510,810 0:46:06 1:45:57
jess 14,448 316,418 0:10:19 0:13:33
mpegaudio 11,959 224,886 0:01:57 0:00:54
mtrt 3,597 88,267 0:00:34 0:00:33
raytrace 3,597 88,267 0:00:38 0:00:37

Our implementation is a research prototype and many opportunities for op-
timization remain. For the specific combination of this IFDS client analysis and
these benchmark programs, tracking correlated calls did not impact precision.

5 Related Work

The IFDS algorithm is an instance of the functional approach to data-flow anal-
ysis developed by Sharir and Pnueli [19]. IFDS has been used to encode a variety
of data-flow problems such as typestate analysis [12, 23] and shape analysis [9].
IFDS has been used [2, 22] and extended [10] to solve taint-analysis problems.

Naeem and Lhoták [13] proposed several extensions of IFDS. In particular,
they propose several techniques for improving the algorithm’s efficiency, as well
as a technique that improves expressiveness by extending applicability to a wider
class of dataflow analysis problems. These extensions are orthogonal to, and
could be combined with the approach presented in this paper. Our work differs
from theirs by targeting analysis precision, not efficiency or expressiveness.

Bodden et al. [4] presents a framework for applying IFDS analyses to soft-
ware product lines. Their approach enables the analysis of all possible products
derived from a product line in a single analysis pass. Like our approach, their
approach transforms IFDS problems to IDE problems. The micro-functions keep
track of the possible program variations specified by the product line. Rodriguez
and Lhoták evaluate a parallelized implementation of the IFDS algorithm using
actors [17] that can take advantage of multiple processors.

The idea of using correlated calls to remove infeasible paths in data-flow
analyses of object-oriented programs was introduced by Tip [21]. The possibility
of using IDE to achieve this is mentioned, but not elaborated upon. Our work
is the first to present and implement a concrete solution.

Recent work on correlation tracking for JavaScript [20] also eliminates infea-
sible paths. Instead of infeasible paths between dynamically dispatched method
calls, their approach eliminates infeasible paths between reads and writes of dif-
ferent properties of an object. The approach differs from ours in that it targets
points-to analysis rather than IFDS analyses, in that it targets infeasible paths



due to different property names rather than different dynamically dispatched
methods, and in that it employs context sensitivity to improve precision.

Our approach superficially resembles, but is orthogonal to, context sensi-
tivity, including the CPA algorithm [1] and such variations as object sensitiv-
ity [11]. Context-sensitive points-to analysis is orthogonal to our work because
it analyzes the flow of data (pointers), whereas we analyze control flow paths.
Also, object-sensitive points-to analysis is flow-insensitive, while IFDS and IDE
are flow-sensitive analyses. Note that our transformation only makes sense in a
flow-sensitive setting since a flow-insensitive analysis already introduces many
infeasible control flow paths.

It would be possible to simulate the effect of our correlated calls transfor-
mation in the following way inspired by context-sensitivity: we could re-analyze
each method in a number of contexts. There would be a separate context for
every possible assignment of concrete types to all of the pointers in the method
that are used as receivers at a call site. The number of such contexts for each
method would be O(RT ), where R is the number of receiver pointers in the
method and T is the number of possible concrete types that could be assigned
to a receiver pointer. Our approach computes equally precise analysis results but
avoids this exponential cost.

6 Conclusions

Previous algorithms for data-flow analysis are unable to avoid propagating data-
flow facts along infeasible paths that arise in the presence of correlated polymor-
phic method calls. We present an approach for transforming an IFDS problem
into an IDE problem in which path feasibility is encoded into functions asso-
ciated with edges in an exploded control-flow supergraph. The solution to this
IDE problem can be mapped back to the solution space of the original IFDS
problem, and is more precise for some client programs because data flow along
infeasible paths is prevented. We present a formalization of the transformation,
prove its correctness, and briefly report on preliminary experiments with our
prototype implementation. Full proof details are available in the Appendix. As
future work, it is possible to adapt our approach to work on IDE problems. We
would convert an initial IDE problem into a more complex IDE problem, such
that the solution of the latter generates a more precise solution to former, by
preventing data flow along infeasible paths.
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tracking for points-to analysis of JavaScript. In ECOOP’12, pages 435–458,
2012.

[21] Tip, F. Infeasible paths in object-oriented programs. Sci. Comput. Pro-
gram., 97:91–97, 2015.

[22] Tripp, O., Pistoia, M., Fink, S. J., Sridharan, M., and Weisman, O. TAJ:
effective taint analysis of web applications. In PLDI’09, pages 87–97, 2009.

[23] Zhang, X., Mangal, R., Grigore, R., Naik, M., and Yang, H. On abstraction
refinement for program analyses in Datalog. In PLDI’14, page 27, 2014.



Data Flow Analysis in the Presence of Correlated Calls 19

7 Appendix

In this appendix we present the proofs to the Lemmas introduced in Section 4,
the table illustrating frequencies of correlated calls from Section 2.1, and the
code discussed in Section 2.2.

7.1 Correlated Calls Occurrences

Table 2 shows how often correlated calls occur in practice. The number of all call
sites in a program is denoted as C. Polymorphic call sites are denoted as CP ,
and correlated call sites as Cb. The number of classes T and the number of lines
of code are shown in the last two columns. The first four columns indicate the
overall number of various call sites and correlated-call receivers in a program.
The next three columns indicate the ratio of polymorphic to all call sites, the
ratio of correlated to polymorphic call sites, and the ratio of correlated call sites
to correlated-call receivers. In this context, we deem a call site to be polymorphic
if its statically computed call graph contains edges from the call site to multiple
target methods. We deem a call site to be a correlated call site if it is polymorphic
and there is at least one other polymorphic call site on the same receiver.

Table 2: Frequencies of correlated-call occurrences in the Dacapo benchmarks

Benchmark C CP Cb |Rb| CP
C

Cb

CP

Cb

|Rb| T LOC

antlr 11,557 494 342 66 4% 69% 5 411 33,356
bloat 24,000 1,087 398 101 4% 37% 4 600 24,846
chart 25,849 685 213 67 3% 31% 3 856 49,408
eclipse 5,958 78 17 6 1% 22% 3 313 18,636
fop 7,944 97 17 6 1% 18% 3 398 44,875
hsqldb 7,860 185 25 8 2% 14% 3 429 47,116
jython 18,369 613 125 52 3% 20% 2 574 36,741
luindex 8,840 110 24 9 1% 22% 2 397 19,345
lusearch 9,408 258 63 23 3% 2% 2 460 19,442
pmd 15,636 174 34 12 1% 20% 2 606 20,690
xalan 6,706 82 17 6 1% 21% 2 337 39,268
Geom. mean 10,931 309 119 38 3% 39% 3 469 30,061

7.2 TraversableOnce Trait from Scala Standard Library

Figure 6 presents the code from Scala’s TraversableOnce trait discussed in Sec-
tion 2.2.
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24 trait GenTraversableOnce[+A] extends Any {
25 ...
26 def isTraversableAgain : Boolean
27 ...
28 }
29

30 trait TraversableOnce[+A] extends Any with GenTraversableOnce[A] {
31 ...
32 def size : Int = {
33 var result = 0
34 for (x <− self) result += 1
35 result
36 }
37 ...
38 def toArray[B >: A : ClassTag]: Array[B] = {
39 if ( this . isTraversableAgain ) {
40 val result = new Array[B](this. size )
41 this .copyToArray(result , 0)
42 result
43 }
44 else this . toBuffer .toArray
45 }
46 ...
47 }
48

49 trait Iterator [+A] extends TraversableOnce[A] {
50 ...
51 def isTraversableAgain = false
52 ...
53 }
54

55 /∗∗ A template trait for traversable collections of type ‘ Traversable [A ]‘.
56 ...
57 ∗/
58 trait TraversableLike [+A, +Repr] extends Any
59 with HasNewBuilder[A, Repr]
60 with FilterMonadic [A, Repr]
61 with TraversableOnce[A]
62 with GenTraversableLike[A, Repr]
63 with Parallelizable [A, ParIterable [A]]
64 {
65 ...
66 final def isTraversableAgain : Boolean = true
67 ...
68 }

Fig. 6: Relevant code from TraversableOnce and related traits.
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7.3 Proofs

Representation of Micro Functions We start by presenting the proofs to
the lemmas about the representation of micro functions.

Lemma 1. For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,
∀r . I(r) = I ′(r) ∧ U(r) = U ′(r) ⇐⇒ J〈I, U〉K = J〈I ′, U ′〉K . (5)

Proof. First, we need to show that for all r ∈ R, if I(r) = I ′(r) and U(r) = U ′(r),
then J〈I, U〉K = J〈I ′, U ′〉K. Indeed, we can see that

J〈I, U〉K = λm.λr.(m(r) ∩ I(r)) ∪ U(r))

= λm.λr.(m(r) ∩ I ′(r)) ∪ U ′(r))
= J〈I ′, U ′〉K .

For the other direction:
J〈I, U〉K = J〈I ′, U ′〉K

=⇒ J〈I, U〉K (λr.∅) = J〈I ′, U ′〉K (λr.∅)
=⇒ (λm.λr.(m(r) ∩ I(r)) ∪ U(r))(λr.∅) = (λm.λr.(m(r) ∩ I ′(r)) ∪ U ′(r))(λr.∅)
=⇒ λr.(∅ ∩ I(r)) ∪ U(r) = λr.(∅ ∩ I ′(r)) ∪ U ′(r)
=⇒ λr.U(r) = λr.U ′(r)

=⇒ U = U ′

Similarly:
J〈I, U〉K = J〈I ′, U ′〉K

=⇒ J〈I, U〉K (I) = J〈I ′, U ′〉K (I)

=⇒ (λm.λr.(m(r) ∩ I(r)) ∪ U(r))(I) = (λm.λr.(m(r) ∩ I ′(r)) ∪ U ′(r))(I)

=⇒ λr.(I(r) ∩ I(r)) ∪ U(r) = λr.(I(r) ∩ I ′(r)) ∪ U ′(r)
=⇒ λr.(I(r) ∩ I(r)) = λr.(I(r) ∩ I ′(r)) since ∀r.U(r) ⊆ I(r)

=⇒ ∀r. I(r) = I(r) ∩ I ′(r)
=⇒ ∀r. I(r) ⊆ I ′(r)

Symmetrically, we can also establish that ∀r.I ′(r) ⊆ I(r) by applying the func-
tions to I ′ instead of to I. Therefore, I = I ′.

Lemma 2. For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,
J〈I, U〉 ◦ 〈I ′, U ′〉K = J〈I, U〉K ◦ J〈I ′, U ′〉K ,

where the composition of two micro-function representations is defined as follows:
〈I, U〉 ◦ 〈I ′, U ′〉 = 〈λr . (I(r) ∩ I ′(r)) ∪ U(r), λr . (I(r) ∩ U ′(r)) ∪ U(r)〉 .



22 Marianna Rapoport, Ondřej Lhoták, and Frank Tip

Proof.
J〈I, U〉 ◦ 〈I ′, U ′〉K

= J〈λr . (I(r′) ∩ I ′(r)) ∪ U(r), λr . (I(r) ∩ U ′(r)) ∪ U(r)〉K
=λm . λr . (m(r) ∩ (I(r) ∩ I ′(r)) ∪ U(r)) ∪ (I(r) ∩ U ′(r)) ∪ U(r)

=λm . λr . (m(r) ∩ I ′(r)) ∪ I(r) ∪ (U ′(r) ∩ I(r)) ∪ U(r)

=λm . λr . (((m(r) ∩ I ′(r)) ∪ U ′(r)) ∩ I(r)) ∪ U(r)

=λm . (λm′ . λr . (m′(r) ∩ I(r)) ∪ U(r)) ((λr . (m(r) ∩ I ′(r)) ∪ U ′(r)))
= (λm . λr . (m(r) ∩ I(r)) ∪ U(r)) ◦ (λm . λr . (m(r) ∩ I ′(r)) ∪ U ′(r))
= J〈I, U〉K ◦ J〈I ′, U ′〉K .

Lemma 3. Let J〈I, U〉KuJ〈I ′, U ′〉K = λm.λr. J〈I, U〉K (m)(r)∪J〈I ′, U ′〉K (m)(r).
For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,

J〈I, U〉 u 〈I ′, U ′〉K = J〈I, U〉K u J〈I ′, U ′〉K , (6)
where the meet of two micro-function representations is defined as follows:

〈I, U〉 u 〈I ′, U ′〉 = 〈λr . I(r) ∪ I ′(r), λr . U(r) ∪ U ′(r)〉 .

Proof.
J〈I, U〉 u 〈I ′, U ′〉K

= J〈λr . I(r) ∪ I ′(r), λr . U(r) ∪ U ′(r)〉K
=λm . λr . (m(r) ∩ (I(r) ∪ I ′(r)) ∪ U(r) ∪ U ′(r)
=λm . λr . (m(r) ∩ I(r)) ∪ U(r) ∪ (m(r) ∩ I ′(r)) ∪ U ′(r)
=λm . λr . J〈I, U〉K (m)(r) ∪ J〈I ′, U ′〉K (m)(r)

= J〈I, U〉K u J〈I ′, U ′〉K .

Efficiency We will next introduce the complexity proof for the correlated-calls
algorithm. To satisfy the complexity requirements of the IDE algorithm, we need
to provide an implementation of the IDE lattice and micro-functions that satisfy
the following list of criteria [18]:

1. There is a representation for the identity and top functions.
2. The representation is closed under the meet and composition operations.
3. The micro functions form a finite-height lattice.
4. The apply, meet, composition, and equality-check operations can be com-

puted in constant time (independent of E and D).
5. There is a constant bound on the storage space for a micro function repre-

sentation.

Lemma 7. The correlated-call representation of a micro function is efficient
according to the IDE criteria [18] and the required operations on micro-functions
can be computed in time O(RbT ).

Proof.

1. The identity function is represented as λr . 〈⊥T , >T 〉. The top function is
represented as λr . 〈>T , >T 〉.
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2. Lemmas 2 and 3 show that the representation of micro functions is closed
under composition and meet.

3. To show that our representation for micro functions forms a lattice with
finite height, let us first show that Lb

Rb : Rb → 2T forms a lattice. Since T
is a finite set, (2T , ⊆) is a finite-height lattice. Rb is a finite set. Hence, the
mapping

Rb 7→ 2T = {(r, t) | r ∈ Rb, t ∈ 2T } = Lb
Rb

also forms a finite-height lattice [14].
Furthermore, Lb

Rb is a finite set. Every element of Lb
Rb can be applied to

|Rb| receivers, where each receiver is mapped to a set of types. There are
|Rb| · 2|T | different possibilities to form those mappings, so

|Lb
Rb | = |Rb| · 2|T |.

Therefore, Lb
Rb 7→ Lb

Rb also forms a finite-height lattice.
4. All operations can be computed in O(Rb × T ) time.
5. The space bound is O(Rb × T ).

Soundness and Precision In this part of the Appendix we prove the Lemmas
of Soundness and Precision of the correlated-calls analysis.

To prove the Soundness Lemma, we first introduce Lemmas 8 and 9.
As previously we will denote the top element in the environment lattice

as >Env.
For the purpose of the proofs, we will rewrite Equation (3) that defines an

edge function as follows:

EdgeFnbS = λe .

{
id if d1 = d2 = 0,

λm . ε(e)(δ(m)) otherwise,
(9)

where S ⊆ R, d1 and d2 are the source and target facts, and for a map m ∈ Lb
U ,

δ(m) is either m or ⊥b:

δ(m) =

{
⊥b if d1 = 0

m otherwise.
(10)

Additionally, for a path p = [startmain, . . . ] and a fact d ∈ D, we will denote
the lattice element that is mapped to d according to the flow functions of path
p as follows:

ξ(p, d) = MEnv(p)(>Env)(d) . (11)
The following Lemma shows that the lattice elements (receiver-to-types maps)

of a correlated-calls IDE analysis correctly overapproximate the possible types
of a receiver in a program execution.

Lemma 8. Let p = [startmain, . . . , n] be some concrete execution trace of the
program, and let r ∈ R be a receiver. If after the execution trace p, at node n, r
points to an object of runtime type t, and d ∈ D is a fact such that d ∈MF (p)(∅),
then

t ∈ ξ(p, d)(r) . (12)

Proof. By induction on the length of the trace.
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Basis: p = [startmain]. Then there is no instruction at which a receiver r could
be instantiated, and the Lemma is trivially true.

Induction hypothesis: Let p = [startmain, . . . , nk−1], and let τ be the set of
types to which ξ(p, dk−1) maps r:

τ = ξ(p, dk−1)(r) . (13)
Assume that for a concrete execution path p = [startmain, . . . , nk−1], at node
(nk−1, dk−1), the Lemma holds, i.e. t ∈ τ.

Induction step: Let p′ = [startmain, . . . , nk−1, nk] and t′ ∈ T be the type to
which r is mapped at nk.

For each i, let ei be the edge ((ni−1, di−1), (ni, di)). Note that
e1 = ((startmain, 0), (n1, d1)) .

Observe that
ξ(p′, d) = MEnv(p

′)(>Env)(d)

= (MEnv(ek) ◦MEnv(ek−1) ◦ . . . ◦MEnv(e1)) (>Env)(d)

= MEnv(ek) (MEnv(p)(>Env)) (d) .

As shown in Sagiv et al. [18], the relationship between environment trans-
formers and edge functions can be described with the following equation. For an
edge (n1, n2) ∈ E∗ an environment env that maps D to L, and a fact d ∈ D,
MEnv((n1, n2))(env)(d)

= EdgeFn((n1, 0), (n2, d))(>) u
l

d′∈D

EdgeFn((n1, d
′), (n2, d))(env(d′)) .

(14)
Then, according to (14),

MEnv(ek) (MEnv(p)(>Env)) (d)(r)

=

(
EdgeFnbR((nk−1, 0), (nk, d))(>b)u

l

d′∈D

EdgeFnbR((nk−1, d
′), (nk, d))(MEnv(p)(>Env)(d

′))

)
(r)

⊇
l

d′∈D

EdgeFnbR((nk−1, d
′), (nk, d))(MEnv(p)(>Env)(d

′))(r)

⊇EdgeFnbR((nk−1, dk−1), (nk, d))(ξ(p, dk−1))(r) .
Therefore,

EdgeFnbR(ek)(ξ(p, dk−1))(r) ⊆ ξ(p′, d)(r) . (15)

We will now show that
t′ ∈ EdgeFnbR(ek)(ξ(p, dk−1))(r) ,

which, due to (15), means that the Lemma holds.

According to (9), there are two cases in which EdgeFnbR(ek) could fall.

If dk−1 = dk = 0, then dk /∈ MF (p)(∅), since it does not belong to the set
D, and the Lemma trivially holds.

Otherwise,
EdgeFnbR(ek) = λm .ε(ek)(δ(m)) .
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It follows that
EdgeFnbR(ek)(ξ(p, dk−1))(r) = (λm .ε(ek)(δ(m)))(ξ(p, dk−1))(r)

= ε(ek)(δ(ξ(p, dk−1)))(r). (16)
Let us denote the lattice element δ(ξ(p, dk−1)) with ∆:

∆ = δ(ξ(p, dk−1)) .
Note that since ∆, according to (10), can be either ⊥b or ξ(p, dk−1), it always
maps r to a set containing t:

t ∈ ∆(r) . (17)
Note also that unless the instruction at nk−1 contains an assignment for r, r is
mapped to the same object of type t as at node nk−1, and t = t′. Therefore, for
the non-assignment instructions, it is sufficient to prove that t ∈ ∆(r).

Depending on the instructions at the nodes nk−1 and nk, there are four cases:

1. The instruction at nk−1 is an assignment for a receiver r′ ∈ R. Since εR(ek) =
λm .m[r′ → ⊥T ],

EdgeFnbR(ek)(ξ(p, dk−1))(r) = (λm .m[r′ → ⊥T ])(∆)(r)

= ∆[r′ → ⊥T ](r) .
In the resulting map, r′ is mapped to ⊥T . Then

(a) if r = r′, then EdgeFnbR(ek)(ξ(p, dk−1))(r) = ⊥T , which contains t′.
(b) If r 6= r′, then r has not been reassigned a value, and still maps to the

same object of type t. The receiver r is mapped to ∆(r), which, according
to (17), contains t. Since t = t′, ∆(r) contains t′.

2. ek is a call-start edge with signature s, and f is the called procedure. Then
EdgeFnbR(ek)(ξ(p, dk−1))(r) = (λm .m[r′ → m(r′) ∩ τ(s, f)])(∆)(r)

= ∆[r′ → ∆(r′) ∩ τ(s, f)] ,
where r′ is the receiver of the call.

– If r′ = r, then ∆(r′) = ∆(r) which contains t. Since t ∈ τ(s, f), it follows
that t ∈ ∆(r) ∩ τ(s, f), and t ∈ EdgeFnbR(ek)(ξ(p, dk−1))(r).

– If r′ 6= r, see (1b).

3. ek is an end-return edge, r1, . . . , rk ∈ R are the local variables in the callee
method, r′ is the receiver of the call site corresponding to the return node
nk, and f is the called method with signature s. Then

εR(ek) = λm .m[r′ → m(r′) ∩ τ(s, f)][r1 → ⊥T ] . . . [rk → ⊥T ].
If r ∈ {r1, . . . , rk}, see Case 1. Otherwise, the case is analogous to Case 2.

4. The node contains any other instruction. Then
EdgeFnbR(ek)(ξ(p, dk−1))(r) = id(∆)(r) = ∆(r),

which contains t according to (17).

We will now show that on a node of a concrete execution path, the correlated-
calls analysis does not map receivers to >T . In other words, the analysis never
considers nodes of a concrete execution path unreachable.

Lemma 9. Let p = [startmain, . . . , n] be a concrete execution path, r ∈ R a
receiver, and d ∈ D a data-flow fact. Then

d ∈MF (p)(∅) ⇐⇒ ξ(p, d)(r) 6= >T . (18)
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Proof. We start by proving that if d ∈ MF (p)(∅), then ξ(p, d)(r) 6= >T , by
induction on the length of the execution trace.

Basis: Let p = [startmain]. Since the only realizable path corresponding to p
is [(startmain, 0)], there is no fact d ∈ D such that d ∈MF (p)(∅), and the claim
follows immediately.

Induction hypothesis: Let p = [startmain, . . . , nk−1]. Let τ be the set of types
to which r is mapped by ξ(p, dk−1):

τ = ξ(p, dk−1)(r) . (19)
Assume the Lemma holds for a concrete execution path

p = [startmain, n1, . . . , nk−1] ,
i.e. τ 6= >T for an arbitrary r ∈ R and dk−1 ∈ D.

Induction step: Let p′ = [startmain, n1, . . . , nk−1, nk] be a concrete execution
path.

Let ek = ((nk−1, dk−1), (nk, d)). As shown in (15),
ξ(p′, d)(r) ⊇ EdgeFnbR(ek)(ξ(p, dk−1))(r) .

From Definition 2, we can see that unless ek is a call-start edge or an end-
return edge, the result follows from the induction hypothesis. More formally, if
ek is not a call-start or end-return edge, then for all m ∈ Lb

R,
EdgeFnbR(ek)(m) v m.

The edge function corresponding to the call-start and end-return edges is the
only place in which the set of types that a receiver maps to can be reduced.

Assume that ek is a end-return edge with a call on the receiver r′ ∈ R with
a signature s to a function f .
EdgeFnbR(ek)(ξ(p, dk−1))(r)

= (λm .m[r′ → m(r) ∩ τ(s, f)][r1 → ⊥T ] . . . [rl → ⊥T ]) (ξ(p, dk−1))(r)

= (ξ(p, dk−1)[r′ → τ ∩ τ(s, f)][r1 → ⊥T ] . . . [rl → ⊥T ]) (r) ,
where r1, . . . , rl ∈ R are the local variables in the called method.

If r ∈ {r1, . . . , rl}, then EdgeFnbR(ek)(ξ(p, dk−1))(r) = ⊥T 3 t7.
Otherwise, if r = r′, then EdgeFnbR(ek)(ξ(p, dk−1))(r) = τ ∩ τ(s, f).
According to Lemma 8 and by the induction hypothesis, the runtime type t

of r must be contained in ξ(p, dk−1)(r) = τ. At the same time, by definition, t is
part of τ(s, f). Therefore, t ∈ τ ∩ τ(s, f) ⊆ EdgeFnbR(ek)(ξ(p, dk−1))(r), which
means that EdgeFnbR(ek)(ξ(p, dk−1))(r) 6= >T .

The same reasoning applies to the case where ek is a call-start edge.

For the other direction, we need to show that if ξ(p, d)(r) 6= >T , then d ∈
MF (p)(∅).

The fact that ξ(p, d)(r) 6= >T means that there exists a realizable path
corresponding to the fact d along path p, and, by definition, d must be contained
in MF (p)(∅).

For the following proofs, recall from Section 4.2 that the result of an IDE
analysis maps a lattice element to each node in the exploded supergraph. Specif-

7 In the case of a recursive call, it is possible that both r ∈ {r1, . . . , rl} and r = r′.
In that case, the set to which r will be mapped would be still “overwritten” by ⊥T .
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ically, for an IDE problem Q, the result RIDE(Q) : N∗ → (D → L) maps nodes
of the supergraph to pairs of data-flow facts and lattice elements [18]:

RIDE(Q) = λn . λd .MVPEnv(n, d)) . (20)
We can now prove the Soundness Lemma.

Lemma 4 (Soundness). Let P be an IFDS problem and p = [startmain, . . . , n]
a concrete execution path, and let d ∈ D. If d ∈MF (p)(∅), then

d ∈ Ub
(
RIDE(T b

R (P ))
)

(n) .

Proof. According to (20), we can rewrite (4) as
Ub(RIDE(T b

R (P )))(n) = {d′ | ∀r ∈ R .MVPEnv(n, d
′))(r) 6= >T }

=

d′ | ∀r ∈ R . l

q∈VP(n)

MEnv(q)(>Env)(d
′)(r) 6= >T


=

d′ | ∀r ∈ R . l

q∈VP(n)

ξ(q, d′)(r) 6= >T

 .

According to Lemma 9, since d ∈ MF (p)(∅), then for any r ∈ R, ξ(p, d)(r) 6=
>T . Since ξ(p, d)(r) is a non-empty set that is contained in

d
q∈VP(n) ξ(q, d)(r),

it follows that l

q∈VP(n)

ξ(q, d)(r) 6= >T .

Therefore, d ∈ Ub(RIDE(T b
R (P )))(n).

Lemma 5 (Precision). For an IFDS problem P and all n ∈ N∗,
Ub
(
RIDE(T b

R (P ))
)

(n) ⊆ RIFDS(P )(n) . (7)

Proof. Let P be an IFDS problem. Recall from Section 4.2 that the result of an
IFDS analysis RIFDS(P ) maps supergraph nodes n ∈ N∗ to sets of data-flow
facts δ ∈ 2D. Specifically,

RIFDS(P ) = λn .MVPF (n)

=
l

q∈VP(n)

MF (q)(>).

At the same time,
Ub
(
RIDE(T b

R (P ))
)

(n) =
{
d | ∀r ∈ R .RIDE(T b

R (P ))(n)(d)(r) 6= >T
}

=

d | ∀r ∈ R . l

q∈VP(n)

ξ(q, d)(r) 6= >T

 .

This means that for any given d ∈ Ub(RIDE(T bR(P )))(n) and path q ∈ VP(n),
ξ(q, d) 6= >T . Therefore, according to Lemma 9, d ∈ MF (q)(>). It follows that
d ∈

d
q∈VP(n)MF (q)(>), which is equal to RIFDS(P )(n). Hence, we have shown

that if d ∈ Ub(RIDE(T bR(P )))(n), then d ∈ RIFDS(P )(n).

Correlated-Call Receivers We will now present the proof for Lemma 6 which
shows that in a correlated-calls analysis, it is enough to consider only correlated-
call receivers Rb.
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In this section, we will denote the set of realizable paths corresponding to a
valid path p and a fact d as RP(p, d).

First, we introduce a Lemma showing that the types to which a given receiver
is mapped in the result of the algorithm is not affected by other receivers and
the types to which they are mapped.

Lemma 10. Let P be an IFDS problem. Let N∗ be the supergraph for P , D
the set of data-flow facts, n ∈ N∗ a node, and p = [startmain, . . . , n] a path in
the supergraph. Let d ∈ D ∪ {0}. Then for any realizable path p′ ∈ RP(p, d), set
S ⊆ R, and receiver r ∈ S,

EdgeFnbS (p′)(>b)(r) = EdgeFnb{r}(p
′)(>b)(r) . (21)

Proof. By induction on the length of p.
Basis: p′ = [(startmain, 0)]. Then EdgeFnbS (p′) = id = EdgeFnb{r}(p

′), and the
Lemma follows directly.

Induction hypothesis: Suppose that for a path q = [(startmain, 0), . . . , (nk−1, dk−1)],
where q ∈ RP(n, d), the Lemma holds, i.e. both edge functions map r to the same
set of types τ:

τ = EdgeFnbS (q)(>b)(r)

= EdgeFnb{r}(q)(>b)(r) .

Induction step: Let q′ = [(startmain, 0), . . . , (nk−1, dk−1), (nk, dk)] and the
edge ek = ((nk−1, dk−1), (nk, dk)).

Observe that for any set U ⊆ R such that r ∈ U ,
EdgeFnbU (q′)(>b)(r) = EdgeFnbU (ek)(EdgeFnbU (q)(>b))(r) . (22)

We can see from (9) that there are two cases.
If dk−1 = dk = 0, EdgeFnbS (ek) = id = EdgeFnb{r}(ek), and, due to (22),

EdgeFnbS (q′)(>b)(r) = τ

= EdgeFnb{r}(q
′)(>b)(r) .

Otherwise, there are four sub-cases.

1. ek is a call-start edge, r′.c() is the call site at nk−1 with signature s, f is the
called procedure, and r′ ∈ U . Then

EdgeFnbU (ek) = λm . δ(m)[r′ → δ(m)(r) ∩ τ(s, f)] .
There are two sub-cases.
(a) If r = r′, then, according to (22), the resulting set of types

EdgeFnbU (q′)(>b)(r) = δ(EdgeFnbU (q)(>b))(r) ∩ τ(s, f).
If dk−1 = 0, then δ(EdgeFnbU (q)(>b))(r) = ⊥b(r) = ⊥T . If dk−1 6= 0,
then δ(EdgeFnbU (q)(>b))(r) = EdgeFnbU (q)(>b)(r) = τ. The set τ(s, f)
is the same for either case.
Therefore, the value of EdgeFnbU (q′)(>b)(r) has the same result regard-
less of U , which means that EdgeFnbS (q′)(>b)(r) = EdgeFnb{r}(q

′)(>b)(r),
and the Lemma holds.

(b) If r 6= r′, then
EdgeFnbU (q′)(>b)(r) = δ(EdgeFnbU (q)(>b))(r) , (23)

which, as we have seen in Case (1a), does not depend on U , and the
Lemma holds.
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2. ek is an end-return edge, r1, . . . , rl ∈ U are the local variables in the callee
method, r′.c() is the call corresponding to the return node at nk, f is the
called method with signature s, and r′ ∈ U . Then
EdgeFnbU (ek) = λm . δ(m)[r′ → δ(m)(r) ∩ τ(s, f)][r1 → ⊥T ] . . . [rl → ⊥T ] .

There are three sub-cases.

(a) If r ∈ {r1, . . . , rl}, then regardless of the value of U ,
EdgeFnbU (q′)(>b)(r) = ⊥T ,

and the Lemma holds.

(b) Otherwise, if r = r′, the case is analogous to Case (1a).

(c) If r /∈ {r′, r1, . . . , rl}, then see Case (1b).

3. nk−1 contains an assignment for r′ ∈ U . Then
EdgeFnbU (ek) = λm . δ(m)[r′ → ⊥T ] .

If r = r′, see Case (2a). If r 6= r′, see Case (1b).

4. Otherwise,
EdgeFnbU (ek) = λm . δ(m) ,

and the case is analogous to Case (1b).

The following Lemma shows that the correlated-calls analysis computes the
results for each receiver independently, or separately. To compute the set of types
to which a receiver r is mapped at each exploded-graph node, we can exclude
all other receivers in the program from the analysis (recall from (3) that the
set of receivers that are considered in the analysis is specified by the set S in a
correlated-calls transformation T b

S ). Therefore, for a given receiver r, the results
of a T b

S - and a T b
{r}-analysis are the same.

Lemma 11. Let P be an IFDS problem. Let N∗ be the supergraph for P , D
the set of data-flow facts, and S ⊆ R a set of receivers. Then for any n ∈ N∗,
d ∈ D, and receiver r ∈ S,

RIDE

(
T b
S (P )

)
(n)(d)(r) = RIDE(T b

{r}(P ))(n)(d)(r) . (24)

Proof. Recall from Section 3.3 that

MVPEnv(n) =
l

q∈VP(n)

MEnv(q)(>) (25)

According to (20), (25), and (14),
RIDE

(
T b
S (P )

)
(n)(d)(r) = MVPEnv(n, d)(r)

=

 l

q∈VP(n)

MEnv(q)(>Env)(d)

 (r)

=

 l

q∈VP(n)

l

q′∈RP(q, d)

EdgeFnbS (q′)(>b)

 (r)

=
⋃

q∈VP(n)

⋃
q′∈RP(q, d)

EdgeFnbS (q′)(>b)(r) . (26)
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Then from Lemma 10,

RIDE

(
T b
S (P )

)
(n)(d)(r) =

⋃
q∈VP(n)

⋃
q′∈RP(q, d)

EdgeFnb{r}(q
′)(>b)(r)

= RIDE

(
T b
{r}(P )

)
(n)(d)(r) .

The next lemma shows that the set of types to which a receiver is mapped in
a correlated-calls lattice element can be represented as an intersection of static-
type function applications τ(si, fi).

Lemma 12. For an IFDS problem P , a node n ∈ N∗, and fact d ∈ D, let
p ∈ RP(n, d) be a realizable path and r ∈ R a receiver. Then there exists a non-
negative number γ of calls on the receiver r with signatures sγ to the functions fγ ,
for which

EdgeFnb{r}(p)(>b)(r) =
⋂
γ≥0

τ(sγ , fγ) .

Proof. Let p have the following form8:
p = [(startmain, 0), (n1, 0), . . . , (nk, 0), (nk+1, dk+1), . . . , (nk+l, dk+l)] ,

where l ≥ 1 and the facts for all nodes up to nk are equal to 0 and dk+i ∈ D for
0 < i ≤ l.

As previously, for all i, we will denote the edge (ni, ni+1) by ei.

From (3) we can infer that
EdgeFnb{r}(p) = EdgeFnb{r}(ek+l) ◦ . . . ◦ EdgeFn

b
{r}(ek+2) ◦ (λm . β) ◦ id ◦ . . . ◦ id ,

where

β =


⊥b[r → τ(s, f)] if (nk, nk+1) is a call-start or end-return edge, and

the call site r.c() with signature s to the function

f corresponds to the call-start or end-return edge,

⊥b otherwise9.

Therefore,

EdgeFnb{r}(p)(>b) =
(
EdgeFnb{r}(ek+l) ◦ . . . ◦ EdgeFn

b
{r}(ek+2)

)
((λm . β)(>b))

=
(
EdgeFnb{r}(ek+l) ◦ . . . ◦ EdgeFn

b
{r}(ek+2) ◦ id

)
(β) . (27)

We can now prove the lemma by induction on l.

Basis: If l = 1, then EdgeFnb{r}(p)(>b) = id(β) = β. There are two cases.

8 It can be shown from the definition of a pointwise representation in Sagiv et al. [18]
that in a realizable path, there is never an edge from a fact of the set D to a 0
fact. Therefore, we can represent p as a sequence of nodes that has a prefix of 0-fact
nodes, after which all nodes are non-0 facts.

9 Since dk = 0 and dk+1 6= 0, the micro function for the edge ek+1 is equal to
λm . ε{r}(ek+1)(⊥b). From the definition of εS (2) we can see that the only case
where ε{r}(ek+1)(m) would not be equal to ⊥b is when ek+1 is call-start or end-
return edge.



Data Flow Analysis in the Presence of Correlated Calls 31

If β = ⊥b, then
EdgeFnb{r}(p)(>b)(r) = β(r)

= ⊥T ,
and γ = 0.

If β = ⊥b[r → τ(s, f)], then
EdgeFnb{r}(p)(>b)(r) = τ(s, f) ,

and γ = 1.
Induction hypothesis: Assume that for a path p = [(startmain, 0), . . . , (nk+l, dk+l)],

the Lemma holds for γ = N , where N ≥ 0.
Induction step: Let p′ = [(startmain, 0), . . . , (nk+l, dk+l), (nk+l+1, dk+l+1)].
Recall that
EdgeFnb{r}(p

′)(>b)(r) = EdgeFnb{r}(ek+l+1)
(
EdgeFnb{r}(p)(>b)

)
(r) .

From (2) we can see that unless ek+l+1 is a call-start or end-return edge
corresponding to a call on the receiver r, then EdgeFnb{r}(ek+l+1)(r) must be

equal to either ⊥T or m(r), where m = EdgeFnb{r}(p)(>b).

If EdgeFnb{r}(ek+l+1)(r) = ⊥T , then the Lemma holds for γ = 0.
Otherwise,

EdgeFnb{r}(ek+l+1)(>b)(r) = EdgeFnb{r}(p)(>b)(r)

=
⋂
N

τ(sN , fN ) ,

and therefore γ = N .
Suppose that ek+l+1 is a call-start edge with a call on the receiver r with

signature s to a function g. Then, according to (2),
EdgeFnb{r}(ek+l+1) = λm .m[r → m(r) ∩ τ(s, g)] .

Therefore,
EdgeFnb{r}(p

′)(>b)(r)

= λm .m[r → m(r) ∩ τ(s, g)]
(
EdgeFnb{r}(p)(>b)

)
(r)

= EdgeFnb{r}(p)(>b)(r) ∩ τ(s, g)

=

(⋂
N

τ(sN , fN )

)
∩ τ(s, g) ,

and the Lemma holds for γ = N + 1.
The case where ek+l+1 is an end-return edge is analogous to the previous

case.

We now show that a receiver will be only mapped to >b if it is the receiver
of a correlated call.

Lemma 13. For an IFDS problem P , let n ∈ N∗ be a node, and d ∈ D a data-
flow fact such that there exists a realizable path p ∈ RP(n, d). Let T be the set
of all types in the program. If there exists a receiver r ∈ R such that

EdgeFnb{r}(p)(>b)(r) = >T ,
then r ∈ Rb.
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Proof. Observe that if there is a supergraph path from a method call with sig-
nature s to the start of f , then the set τ(s, f) is always non-empty. Let r.c() be
a call on a receiver r ∈ R with a method signature s to a function f . If the call
site is monomorphic, then τ(s, f) contains all types T ′ ⊆ T that are compatible
with the static type of r. If the call site is polymorphic, then τ(s, f) ⊂ T ′, since
some types t ∈ T ′ cause dispatch to a method other than f .

According to Lemma 12,

EdgeFnb{r}(p)(>b)(r) =
⋂
γ≥0

τ(sγ , fγ).

Let τi = τ(si, fi). For a given k, let r.mk() be the call site corresponding
to τk, and T ′ the set of types compatible with the static type of r. Then the
following is true:

– τk 6= >T ;
– if τk = T ′ then the corresponding call site is monomorphic;
– if τk ⊂ T ′ then the call site is polymorphic.

From the conditions of the Lemma,⋂
γ≥0

τγ = >T . (28)

If all τk = T ′, then
⋂
γ≥0 τγ is also equal to T ′. Since T ′ 6= >T , this is a

contradiction.
If exactly one τk ⊂ T ′ and the rest are equal to T ′, then

⋂
γ≥0 τγ is equal to

τk, which cannot be >T either.
Therefore, there are at least two sets, τi and τj , which are strict subsets of

T ′. Since both τi and τj are non-empty and their intersection equals >T , τi and
τj must be disjoint. If τi and τj are disjoint, they must correspond to different
call sites.

In other words, there are at least two calls on the same receiver for which the
static-type function is a strict subset of the set of types compatible with a given
receiver r. It follows that both calls have to be polymorphic. Therefore, r ∈ Rb.

We will now show that if a receiver ever gets mapped to top, then it is a
correlated-calls receiver.

Lemma 14. For an IFDS problem P , let n ∈ N∗ be a node, and d ∈ D a data-
flow fact such there exists a realizable path p ∈ RP(n, d). Then, if there exists a
receiver r ∈ R, such that

RIDE

(
T b
{r}(P )

)
(n)(d)(r) = >T ,

then r ∈ Rb.

Proof. As shown in (26),

RIDE

(
T b
{r}(P )

)
(n)(d)(r) =

⋃
q∈VP(n)

⋃
q′∈RP(q, d)

EdgeFnb{r}(q
′)(>b)(r) .

Since the latter is equal to >T , it follows that for each realizable path p′ to node
n, EdgeFnb{r}(p

′)(>)(r) = >T . According to Lemma 14, this is only possible if

r ∈ Rb.
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Finally, we present the proof for Lemma 6 which states that a correlated-calls
analysis that considers all receivers computes the same result as an analysis that
considers only correlated-call receivers.

Lemma 6. Let P be an IFDS problem. Then
Ub
(
RIDE

(
T b
Rb(P )

))
= Ub(RIDE

(
T b
R (P )

)
) . (8)

Proof of Lemma 6. By definition of Ub,
Ub(RIDE

(
T b
R (P )

)
) = {d |RIDE(T b

R (P ))(n)(d) = `, ∀r . `(r) 6= >T }
= {d | ∀r ∈ R, RIDE(T b

R (P ))(n)(d)(r) 6= >T }.
Since, according to Lemma 14, RIDE(T b

{r}(P ))(n)(d)(r) can only be equal to

>T when r ∈ Rb, we can conclude that
Ub(RIDE

(
T b
R (P )

)
) = {d |∀r ∈ Rb, RIDE(T b

Rb(P ))(n)(d)(r) 6= >T }
= Ub(RIDE

(
T b
Rb(P )

)
).
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