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ABSTRACT
An increasing number of programming languages compile
to the Java Virtual Machine (JVM), and program analy-
sis frameworks such as WALA and SOOT support a broad
range of program analysis algorithms by analyzing bytecode.
While this approach works well when applied to bytecode
produced from Java code, its efficacy when applied to other
bytecode has not been studied until now.

We present qualitative and quantitative analysis of the
soundness and precision of call graphs constructed from JVM
bytecodes produced for Python, Ruby, Clojure, Groovy, Scala,
and OCaml applications. We show that, for Python, Ruby,
Clojure, and Groovy, the call graphs are unsound due to
use of reflection, invokedynamic instructions, and run-time
code generation, and imprecise due to how function calls are
translated. For Scala and OCaml, all unsoundness comes
from rare, complex uses of reflection and proxies, and the
translation of first-class features in Scala incurs a significant
loss of precision.

1. INTRODUCTION
The Java Virtual Machine (JVM) has been used to im-

plement programming languages such as Python [21], Ruby
[36], Clojure [15], Groovy [3], Scala [25], and OCaml [23]. By
compiling these languages to JVM bytecode, language im-
plementors significantly reduce the work to implement their
languages. Moreover, JVMs are available for a wide range
of platforms, making portability easier.

The Java Virtual Machine was designed for portable and
efficient implementation of Java. By defining a relatively
small set of bytecode instructions with clear semantics, the
task of creating an interpreter or just-in-time compiler for
Java is simplified significantly. The virtual machine ab-
stracts away from the complexity and idiosyncrasies of Java.

The JVM has become a popular platform for develop-
ing static program analysis frameworks for Java, such as
WALA [17] and SOOT [37]. These frameworks support a
broad range of algorithms for static pointer analysis, call
graph construction, data-flow analysis, and others. A JVM-
based approach works well for Java because JVM bytecode

is fairly close to Java. As a result, bytecode-based analysis
frameworks are widely used in academia and industry.

We investigate how well this JVM-bytecode-based approach
works when applied to bytecode produced from other lan-
guages. This is unknown as there is generally a much larger
“gap” between source code and the JVM bytecodes to which
they are translated. For example, we found that the Jython
compiler translates a single function call in a Python pro-
gram into a sequence of 5 method calls in bytecode, as will
be discussed in Section 3.

We focus on call graph construction because call graphs
are a prerequisite for most other program analysis tasks.
We will examine the bytecodes for programs in the Python,
Ruby, Clojure, Groovy, Scala, and OCaml languages. We
study two issues: (i) the soundness of static call graphs com-
puted from JVM bytecode for each language (i.e., whether
they contain all methods and call edges that can arise in ex-
ecution), and (ii) the precision of the static call graphs are
(i.e., how many nodes and edges they contain that cannot
arise in any program execution).

We conduct qualitative and quantitative experiments for
each language. In the qualitative experiments, we inspect
call graphs constructed by compiling a small “standard” ex-
ample to bytecode, where we focus on the translation of
function and method calls. We look for use of reflection, dy-
namic code generation, and invokedynamic instructions that
challenge static analysis.

For the quantitative experiments, we use 11 programs
from the Computer Language Benchmark Game suite [12]
(hereinafter CLBG) with versions available in each language1.
After compiling these programs to JVM bytecode, we con-
struct static call graphs using a standard 0-CFA analysis
[35] that is part of the WALA program analysis framework.
We construct dynamic call graphs using an instrumentation-
based dynamic call graph builder also part of WALA. Be-
cause the JVM cannot run with an instrumented version of

1fastaredux does not have an implementation in
Python, Groovy, and OCaml. Also, knucleotide and
fannkuchredux do not have implementations in Groovy.
For missing implementations, we ported existing implemen-
tations in CLBG to the target language. We verified cor-
rectness by comparing their output against expected output
detailed in CLBG.
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the Java standard library, we abstract the Java standard li-
brary with a single node in both the dynamic and static call
graphs. Using ProBe [19], a call graph comparison tool, we
measure unsoundness by identifying nodes and edges in the
dynamic call graph but not the static one. Similarly, po-
tential imprecision is identified when static call graphs are
much larger than dynamic ones. We manually examine a
number of such cases to identify if the static analysis is im-
precise, or if the discrepancy occurs because code coverage
is low. We conducted all of our experiments using Oracle’s
Java 8u25 JVM running on a machine with eight dual-core
AMD Opteron 1.4 GHz CPUs (running in 64-bit mode) and
capped the available RAM at 16 GB.

We conclude that call graphs constructed for the dynam-
ically typed languages Python, Ruby, Clojure, and Groovy
using bytecode-based static analysis are unsound, because of
pervasive use of reflection, dynamic code generation, and in-

vokedynamic instructions. Even if these challenges were over-
come, the call graphs constructed for several of these lan-
guages (Python and Ruby) would remain highly imprecise
because of the way in which function calls are translated.

For the statically typed languages OCaml and Scala, the
results are better. All unsoundness comes from uses of re-
flection and proxies, which occur rarely in practice. In the
case of Scala, precision is degraded because type information
is lost when compiling features such as closures. The OCaml
compiler uses MethodHandles to implement closures, but in
a way that can be analyzed soundly by a static analysis.

The rest of this paper is organized as follows. Section 2
briefly reviews MethodHandles and invokedynamic, two re-
cently introduced JVM features already used by several of
the languages. Then, each of Sections 3–8 presents the
experiments for one of the languages. Section 9 discusses
threats to validity. Related work is discussed in Section 10.
We conclude in Section 11.

2. BACKGROUND
In Java 7, the Java Virtual Machine was extended with

MethodHandles and invokedynamic instructions, two features
that facilitate the implementation of dynamic languages by
deferring until run time the association between call sites
and the methods that they invoke. These features are being
adopted rapidly by language implementors, and several of
the language implementations being studied in this paper
already make use of them2. These dynamic features pose
new challenges for static analysis, but the static analysis
community has not paid significant attention to them until
now. Therefore, we provide a brief review of the new JVM
features, and the challenges they pose for static analysis.

MethodHandles.
According to the Java documentation, a method handle

is “a typed, directly executable reference to an underlying
method, constructor, field, or similar low-level operation,
with optional transformations of arguments or return val-
ues”3. Informally, a method handle is a constant value that
uniquely identifies a method and how it should be invoked

2Note that, starting with Java 8, the bytecodes generated
from Java programs also make use of invokedynamic when
lambda-expressions (closures) are being compiled. Thus, the
analysis challenges noted here are broadly applicable to stat-
ically typed and dynamically typed languages.
3See http://docs.oracle.com/javase/8/docs/api/java/

(e.g., as a static call, or a virtual call). Furthermore, method
handles can apply transformations to the sequence of argu-
ments passed to the encapsulated method (e.g., unpacking
an array into a sequence containing its values).

Method handles can be embedded in a class file’s constant
pool as constants to be loaded using ldc instructions. A
new type of constant pool entry, CONSTANT MethodHandle,
refers directly to an associated CONSTANT Methodref, CON-

STANT InterfaceMethodref, or CONSTANT Fieldref constant
pool entry. Alternatively, method handles can be cre-
ated at run time by calling one of the factory methods in
class java.lang.invoke.MethodHandles.Lookup (e.g., MethodHan-

dles. Lookup.findVirtual), with arguments that specify the en-
capsulated method’s parameter types and return type.

The method encapsulated by a method handle can be in-
voked by calling the MethodHandle.invoke() method, with ar-
guments that should be bound to the method’s receiver (in
the case of virtual methods) and formal parameters.

In effect, the functionality provided by method handles
is similar to that provided by the Java reflection API, but
access checking is performed only once, upon creation of the
handle, whereas java.lang.reflect.Method.invoke() performs an
access check for each reflective call.

The invokedynamic instruction.
The invokedynamic instruction provides a mechanism for

dynamically binding a method call to a target method at
run time. It works as follows:
• When an invokedynamic instruction executes for the first

time, its associated bootstrap method is executed. The
association between invokedynamic instructions and their
associated bootstrap methods is recorded in the boot-
strap table, a new component of JVM .class files.
• A bootstrap method returns a java.lang.invoke.CallSite

object that encapsulates a MethodHandle that identifies
the method to be invoked. This method can be re-
trieved using the CallSite.getTarget() method, which is
automatically invoked by the JVM at run time.
• The CallSite object returned by a bootstrap method is

cached, so that for subsequent executions of an invoke-

dynamic instruction, the JVM only needs to retrieve the
method handle by executing CallSite.getTarget().

This method call resolution mechanism is considerably more
flexible than the one that is used for the other JVM instruc-
tions for calling methods. In particular, invokevirtual and
invokeinterface instructions specify a target method, and a
call made through one of these instructions dispatches to a
method that transitively overrides this target method. In
other words, for invokevirtual and invokeinterface instructions,
the name and parameter types of the method to be invoked
are known at compile time, and a static analysis can analyze
the inheritance hierarchy to conservatively approximate the
set of methods that may be invoked by the call.

In the case of invokedynamic, there is no obvious way for a
static analysis to approximate the set of possible call targets.
The code in bootstrap methods can be arbitrarily complex,
and there are no compile-time constraints on the name and
parameter types of the method that is invoked subsequently.
Further complicating matters, CallSite objects returned by
bootstrap methods may be mutable call sites, for which the
encapsulated method handle may be updated at run time.

lang/invoke/MethodHandle.html.
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1 ##hello.py
2 def foo() :
3 bar()
4 def bar() :
5 print ”hello world”
6 foo()

Figure 1: A simple Python program.

3. PYTHON
Python [21] is a popular dynamically-typed object-oriented

programming language. In addition to classes and objects, it
supports lists, sets, and dictionaries as built-in data struc-
tures. Other key Python features include lambda expres-
sions, comprehensions, and generators. Jython [18] is an
implementation of Python that runs on the JVM. In our
experiments, we used Jython version 2.7-b3, which is com-
patible with Python 2.7. Jython is closely integrated with
the JVM platform, and allows users to import Java classes
and export projects as standard .jar files.

3.1 Translation to JVM bytecode
We will use the small Python program of Figure 1 to il-

lustrate how Jython translates Python source code to JVM
.class files. This program declares two functions, foo and bar.
The program calls foo on line 6, foo calls bar on line 3, which
in turns prints “hello world” on line 5.

For the program of Figure 1, the Jython compiler gener-
ates a class hello$py that contains the main application logic.
In general, the Jython compiler maps each function call in
the Python source code to a sequence of method calls in the
generated bytecode. As an example, we consider the trans-
lation of the call from foo to bar on line 3 in Figure 1. For
this call, the following sequence of calls is generated:

1. hello$py.foo$1() calls a method PyObject. call () in the
Jython runtime libraries,

2. PyObject. call () invokes another library method, Py-

Code.call(). This call is dynamically dispatched to Py-

BaseCode.call(),
3. PyBaseCode.call() invokes another call() method in the

same class that dispatches to an overriding definition
in PyTableCode.

4. PyTableCode.call() invokes hello$py.call function() in the
class containing the translated application functions.

5. hello$py.call function() contains a switch statement in which
each branch calls one of the application functions de-
pending on the value of its first parameter, fid. The
value of fid originates from an instance field PyTableCode.

func id that is read in method PyTableCode.call(). In
the case where call function() was indirectly invoked by
foo$1, this field will be set in the constructor of PyTable-

Code to a value that will result in the selection of the
branch of the switch that invokes hello$py.bar$2().

3.2 Qualitative Analysis
Suppose we want to construct a call graph for the program

of Figure 1 by analyzing the bytecodes generated for it by the
Jython compiler. As mentioned, method hello$py.call function()

calls each of f$0(), foo$1(), and bar$2(), which correspond to
the top-level code and the functions foo and bar in the Python
source code. For any other method call in the program
(e.g., the call to foo from top-level code), a similar chain of
call edges exists that includes method hello$py.call function().

static dyn. D\S S\D static dyn. D\S S\D
BT 10,446 1,791 90 8,745 110,533 3,151 229 107,611
FK 10,400 1,784 80 8,696 100,214 3,105 203 97,312
FA 10,478 3,354 161 7,285 110,723 6,693 406 104,436
FR 10,479 3,361 150 7,268 110,605 6,712 383 104,276
KN 10,462 4,950 779 6,291 106,933 10,729 1,618 97,822
MB 10,441 1,801 94 8,734 107,835 3,158 233 104,910
NB 10,462 1,826 89 8,725 109,548 3,246 224 106,526
PD 10,289 1,768 82 8,603 104,166 3,114 213 101,265
RD 10,332 4,737 794 6,389 92,420 9,954 1,542 84,008
RC 10,374 4,525 418 6,267 95,154 9,847 1,039 86,346
SN 10,415 1,807 114 8,722 102,930 3,204 278 100,004

                        nodes                         edges

Table 1: Count of nodes and edges in the static and
dynamic call graphs of the Jython CLBG programs.

Consequently, every call site in a Python source file is trans-
lated into a chain of method calls that involves hello$py.call

function(), which calls every method corresponding to a func-
tion in the same Python file4.

Based on this observation, it is difficult to see how a
bytecode-based analysis of the JVM bytecodes produced by
Jython could compute a useful call graph. Projecting chains
of call edges involving call function() to the corresponding
functions in the Python source code would result in a com-
plete graph where every function is reachable from every
call site. A standard context-sensitive analysis would need
to account for at least 4 levels of calling context (i.e., 4-CFA
in the terminology of [14]) to be able to resolve method
calls inside functions such as hello$py.call function() precisely.
Furthermore, resolving the calls inside the switch statement
inside call function() requires precise tracking of integer num-
bers stored in heap locations that are used to identify the
different functions. This is beyond the current state-of-the-
art in call graph construction. Therefore, we conclude that
producing precise call graphs from JVM bytecodes produced
by Jython is infeasible.

So far, we have only discussed the precision of the con-
structed call graphs. However, there are significant chal-
lenges related to soundness as well. In further experiments,
we observed that the constructed call graphs are unsound
because all methods in imported modules are missing. In-
vestigation revealed that this is because Jython generates
code that relies on reflection to implement module import,
and static analysis frameworks such as WALA typically are
unable to reason about reflective code.

3.3 Quantitative Analysis
Table 1 shows the number of nodes and edges in the

static and dynamic call graphs for the Jython programs
in our benchmark suite5. Also shown are the number of

4Jython generates a separate class for each Python source
file, each with its own call function() method.
5Due to space constraints, we encode the names of the
CLBG benchmarks in the tables with results as fol-
lows: BT=binarytrees, FK=fannkuchredux, FA=fasta,
FR=fastaredux, KN=knucleotide, MB=mandelbrot,
NB=nbody, PD=pidigits, RD=regexdna, RC=revcomp,
SN=spectralnorm.
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7 ## hello.rb
8 def bar
9 print ”Hello , World!\n”

10 end
11

12 def foo
13 bar
14 end
15

16 foo

Figure 2: A simple Ruby program.

nodes/edges that are in the dynamic call graphs but not
in the static call graphs (columns D\S), and that are in
the static call graphs but not in the dynamic call graphs
(columns S\D) 6. On average, about 75% of the methods
and about 95% of the edges in the static call graphs do not
occur in the dynamic call graphs. This significant impreci-
sion mainly arises from the call chains involving call function()

discussed above. Moreover, features such as module imports
that are implemented using reflection cause about 7% of the
methods and 9% of the edges in the dynamic call graphs to
be absent from the static call graphs.

4. RUBY
Ruby is a popular object-oriented programming language

that supports duck typing, which means that the type of an
object is defined by the operations that it supports. One of
Ruby’s key features is the code block, which allows program-
mers to pass a block of code as a parameter to a function,
which can execute it using a yield statement.

JRuby7 is a Java implementation of Ruby. In our exper-
iments, we used JRuby version 1.7.13. Programmers can
invoke “jrubyc” to compile their Ruby application into JVM
bytecode. Interestingly, the JRuby compiler can optionally
generate code that makes use of the invokedynamic instruc-
tion. In order to understand the impact of this feature, we
conducted two sets of experiments, one with the use of in-

vokedynamic enabled, and one where it was disabled.

4.1 Translation to JVM bytecode
Figure 2 shows a simple Ruby program similar to the

Python program discussed previously. This program defines
functions foo and bar, and top-level code that invokes foo.
Furthermore, foo calls bar, and bar prints “hello world”.

The JRuby compiler translates each Ruby source file into
a separate class that defines methods main(), load(), and

file (). The generated classes contain an additional method
for each function in the Ruby source code8. For the program
of Figure 2, a class hello with methods method 0$RUBY$bar

and method 1$RUBY$foo is generated. Each function call in
the Ruby source code is translated to a sequence of method
calls in the generated bytecode. For the call from foo to bar,
the following sequence is generated:

6The tables presented in Section 4–8 for the other languages
under consideration have exactly the same structure.
7https://github.com/jruby/jruby/wiki/AboutJRuby
8In fact, JRuby generates two overloaded methods for each
function in the Ruby source code, where one performs some
additional checks before invoking the other. In the example
under consideration, only the method that does not perform
argument-checking is used.

1. Method method 1$RUBY$foo invokes org.jruby.runtime.

CallSite.call(...), which dynamically dispatches to org.

jruby.runtime.callsite.CachingCallSite.call(...),
2. CachingCallSite.call(...) invokes a method CachingCallSite.

cacheAndCall(...) in the same class,
3. Next, CachingCallSite.cacheAndCall(...) retrieves a Dy-

namicMethod from a cache and invokes a method org.

jruby.internal.runtime.methods.DynamicMethod.call(...) on
that object. This triggers a sequence of calls to meth-
ods in the JRuby runtime and Java standard libraries
that ultimately invokes a method call(...) in a class
hello$method 0$RUBY$bar that is generated at run time.

4. Finally, hello$method 0$RUBY$bar.call(...) invokes the
method hello.method 0$RUBY$bar.

When the use of invokedynamic instructions is enabled, the
bootstrap method used by JRuby returns a MutableCallSite

that is initialized with a MethodHandle pointing to the same
dynamic dispatch procedure that is used if the use of in-

vokedynamic is disabled. Therefore, the code that actually
determines which method will be called is the same in each
case. Once the specific target method of a call site has been
determined (the first time that the call site is executed), the
MethodHandle in the MutableCallSite is replaced by a handle
for the actual method, so that the dispatch procedure need
not be repeated on subsequent executions of the call site.
However, from the point of view of a static analysis, the
procedure used to determine the target of a call is equally
complicated in either case, because the first execution of the
call site uses the same dynamic dispatch procedure.

4.2 Qualitative Analysis
The code generated by the JRuby compiler poses serious

challenges to static analysis. The main obstacle is the gener-
ation of classes such as hello$method 0$RUBY$bar at run time.
A static analysis is unable to reason about the behavior of
classes that are not available at analysis time, and will miss
calls such as the one discussed above, causing methods such
as hello.method 0$RUBY$bar to be absent in the call graph.
In other words, the use of run-time code generation causes
unsoundness in the static analysis.

In addition, consider that the methods CachingCallSite.

call(...) and DynamicMethod.call(...) are invoked for every call
that was present in the original application. From these
methods, all methods such as hello.method 0$RUBY$bar and
hello.method 1$RUBY$foo corresponding to functions in the
original application are invoked. Hence, even if a static anal-
ysis were somehow able to account for run-time code gener-
ation, a straightforward mapping from edges in call graphs
generated from JVM bytecodes to source functions would
conclude that every call can invoke every function, causing
the call graph to become a complete graph. To avoid such
imprecision, a static analysis would need to employ at least
3 levels of call-string context-sensitivity, and it would need
reason about heap-allocated cached objects as well, which is
beyond the current state-of-the-art. Therefore, we conclude
that generating precise call graphs from JVM bytecodes pro-
duced by JRuby is infeasible.

In Ruby, the require construct is used to import code from
another file. Upon examination of code using this construct,
we found that this is implemented in the JRuby runtime
libraries by dynamically loading a script from a file using a
ClassLoader, and then relying on the mechanisms described
above to interpret these scripts. In general, static analysis

4



static dyn. D\S S\D static dyn. D\S S\D
BT 14,406 7,202 2,831 10,035 72,193 15,321 8,082 64,954
FK 14,337 7,154 2,816 9,999 71,882 15,181 8,040 64,741
FA 14,385 7,407 2,946 9,924 71,980 15,852 8,511 64,639
FR 14,384 7,420 2,909 9,873 71,980 15,862 8,371 64,489
KN 14,410 7,433 2,948 9,925 72,128 15,900 8,446 64,674
MB 14,324 7,762 3,246 9,808 71,909 16,790 9,242 64,361
NB 14,408 7,325 2,905 9,988 72,121 15,659 8,317 64,779
PD 14,289 6,996 2,804 10,097 71,682 14,876 8,004 64,810
RD 14,404 7,312 2,918 10,010 71,986 15,610 8,342 64,718
RC 14,360 7,232 2,881 10,009 71,980 15,413 8,204 64,771
SN 14,333 7,471 3,058 9,920 71,939 16,101 8,790 64,628

                        nodes                         edges

Table 2: Count of nodes and edges in the static and
dynamic call graphs of the JRuby CLBG programs.

static dyn. D\S S\D static dyn. D\S S\D
BT 14,326 7,349 2,954 9,931 71,817 15,662 8,470 64,625
FK 14,314 7,319 2,918 9,913 71,774 15,536 8,301 64,539
FA 14,327 7,525 3,033 9,835 71,789 16,218 8,839 64,410
FR 14,326 7,545 2,999 9,780 71,788 16,167 8,633 64,254
KN 14,327 7,557 3,047 9,817 71,812 16,266 8,843 64,389
MB 14,293 7,873 3,303 9,723 71,774 17,289 9,678 64,163
NB 14,315 7,438 3,002 9,879 71,795 16,040 8,735 64,490
PD 14,254 7,136 2,899 10,017 71,556 15,121 8,227 64,662
RD 14,288 7,414 3,026 9,900 71,622 15,843 8,673 64,452
RC 14,297 7,371 2,981 9,907 71,744 15,750 8,527 64,521
SN 14,291 7,571 3,112 9,832 71,766 16,603 9,240 64,403

                        nodes                         edges

Table 3: Count of nodes and edges in the static and
dynamic call graphs of the JRuby (with invokedy-
namic support) CLBG programs.

is incapable of precisely accounting for code interpreted at
run-time in this way, resulting in additional unsoundness.

4.3 Quantitative Analysis
The sizes of dynamic and static call graphs that we ob-

served for the JRuby benchmarks are shown in Tables 2
(for code generated without invokedynamic) and 3 (for code
generated with invokedynamic). The numbers are very sim-
ilar across all benchmarks because the large JRuby library
contains overwhelmingly more methods than the benchmark
programs themselves. For reasons described above, the static
call graphs miss large numbers of nodes and edges from the
dynamic call graphs, primarily because of methods in classes
that are generated at run time and therefore not known to
the static analysis.

The computed call graphs also exhibit significant impre-
cision: in each benchmark, over 75% of the methods in the
static call graph are absent from the dynamic call graph.
This imprecision occurs overwhelmingly in the very large
JRuby standard library. Due to its inability to model calls
precisely, our analysis finds almost all of the standard library
to be reachable, although only a relatively small fraction is

17 (ns hello . core
18 (:gen−class))
19

20 (defn bar [& args ]
21 ( println ”Hello , World!!”))
22

23 (defn foo [& args ]
24 (bar args))
25

26 (defn −main
27 ”I don’t do a whole lot ... yet . ”
28 [& args ]
29 (foo args))

Figure 3: A simple Clojure program.

actually used at run time by our subject programs.
As expected, the results for JRuby are very similar whether

the use of invokedynamic is enabled or disabled.

5. CLOJURE
Clojure9 [15] is a dialect of Lisp; key language features in-

clude higher-order functions, a powerful macro system, and
concurrency control based on Software Transactional Mem-
ory. Strong support for Java interoperability is provided, by
way of lightweight mechanisms for creating Java objects and
calling Java methods. In the experiments discussed below,
we have used Clojure version 1.5.1.

5.1 Translation to JVM bytecode
Figure 3 shows a simple Clojure program similar to the

examples for Python and Ruby: –main calls foo, foo calls bar,
and bar prints “Hello, world”.

The Clojure compiler translates each Clojure function into
a class (for convenience, we will refer to such classes as“func-
tion classes” in the discussion below). For the functions foo

and bar in our example, function classes hello.core$foo and
hello.core$bar are generated, respectively. Each such class de-
fines a method doInvoke() that contains code corresponding
to the original function in the Clojure source code, and a
method getRequiredArity() that returns its number of required
arguments. A typical function call such as the one from foo

to bar is translated as follows:
1. Method hello.core$foo.doInvoke() calls IFn.invoke(); this

call dynamically dispatches to a method RestFn.invoke()

(the interface IFn and the class RestFn are both part of
the Clojure run-time library).

2. Then, RestFn.invoke() performs some bookkeeping, in-
cluding a call to getRequiredArity() on the object repre-
senting the target function.

3. Lastly, RestFn.invoke() calls doInvoke() on the object rep-
resenting the target function, which represents the ac-
tual method body of the callee bar.

In the static initializer of class hello.core, which con-
tains the main() method for the compiled program, code
is dynamically loaded by calling RT.var(”clojure.core”,”load”).

invoke(”hello.core”). The ”hello.core” argument is ultimately
used as a classname by the Clojure runtime in a call
to the Java Reflection API. Then, in hello.core.main(),
a call ((IFn)main var.get()).applyTo() is executed to launch

9http://clojure.org
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static dyn. D\S S\D static dyn. D\S S\D
BT 1,687 3,002 2,543 1,228 10,666 5,675 4,943 9,934
FK 1,687 3,028 2,564 1,223 10,666 5,762 5,021 9,925
FA 1,687 2,994 2,532 1,225 10,666 5,640 4,915 9,941
FR 1,687 3,002 2,530 1,215 10,666 5,671 4,922 9,917
KN 1,687 3,269 2,785 1,203 10,666 6,326 5,555 9,895
MB 1,687 3,001 2,557 1,243 10,666 5,645 4,944 9,965
NB 1,687 3,071 2,567 1,183 10,666 5,815 5,007 9,858
PD 1,687 3,861 3,370 1,196 10,666 7,914 7,125 9,877
RD 1,687 3,002 2,543 1,228 10,666 5,677 4,947 9,936
RC 1,687 2,934 2,494 1,247 10,666 5,492 4,797 9,971
SN 1,687 2,947 2,500 1,240 10,666 5,511 4,807 9,962

                        nodes                         edges

Table 4: Count of nodes and edges in the static and
dynamic call graphs of the Clojure CLBG programs.

the actual program, which ultimately calls hello.core$ main.

doInvoke() using the calling mechanism illustrated above.

5.2 Qualitative Analysis
Clojure presents similar challenges for static analysis as

we have seen for Python and Ruby. The use of reflection
in compiled code will cause most static analyses to miss
some code entirely. Specifically, in our example, since class
hello.core init (where function-classes such as hello.core$foo

and hello.core$bar are instantiated) is loaded by reflection,
any static analysis that resolves method calls by keeping
track of sets of instantiated classes would omit methods such
as hello.core$foo.doInvoke() from the static call graph. Also, in
main(), the call to applyTo() should resolve to RestFn.applyTo(ISeq),
which is inherited by hello.core$foo and will ultimately call
hello.core$foo.doInvoke(). However, since all function-classes
are deemed not instantiated, no implementor of RestFn is
deemed instantiated. As a result, ((IFn)man var.get()).applyTo()

is resolved to call just a few trivial classes rather than the
actual bodies of the user-defined functions. Similarly, we
found that the translation of module imports by the Clo-
jure compiler also involves the generation of reflective code.
In conclusion, the use of reflection in code generated by the
Clojure compiler is pervasive and causes great unsoundness
for static analysis.

Even if reflection could be avoided somehow, a static anal-
ysis would still face significant challenges to achieve reason-
able precision. The translation of function calls relies on in-
directions through functions such as invoke() and doInvoke(),
and a static analysis would need several levels of call-string
context-sensitivity to track function calls precisely.

5.3 Quantitative Analysis
Table 4 shows the number of nodes and edges in static and

dynamic call graphs that we constructed for Clojure versions
of the programs from the CLBG suite. The static call graphs
for all programs have the same number of nodes and edges.
Further investigation revealed that each static call graph
consists of only a main method and parts of the Clojure run-
time libraries. The application logic is completely missing
in each case because WALA is unable to reason about the
reflective code in the libraries, as we discussed above.

static dyn. D\S S\D static dyn. D\S S\D
BT 6,316 953 145 5,508 30,697 1,665 294 29,326
FK 6,316 929 112 5,499 30,697 1,598 210 29,309
FA 6,475 983 127 5,619 31,441 1,750 293 29,984
FR 6,316 1,000 168 5,484 30,698 1,777 374 29,295
KN 6,316 1,064 201 5,453 30,698 1,879 416 29,235
MB 6,316 932 125 5,509 30,698 1,575 241 29,364
NB 6,316 1,058 185 5,443 30,698 1,889 398 29,207
PD 6,316 972 155 5,499 30,697 1,724 338 29,311
RD 6,316 928 120 5,508 30,697 1,602 233 29,328
RC 6,316 884 108 5,540 30,697 1,529 227 29,395
SN 6,316 968 139 5,487 30,697 1,702 301 29,296

                        nodes                         edges

Table 5: Count of nodes and edges in the static and
dynamic call graphs of the Groovy CLBG programs.

6. GROOVY
Groovy is a dynamically-typed object-oriented scripting

language, with close integration with Java: most valid Java
programs are also valid Groovy programs, although Groovy
programs can take advantage of additional features. Groovy
programs compile to Java bytecode to run on the JVM.

6.1 Translation to JVM bytecode
For calls between Groovy methods, every class contains

several static methods that construct an array of CallSite ob-
jects, implemented in the standard library. This array is
indexed by numbers that are assigned to each call site in
the class. Each CallSite object is initialized with the name
of the method to be called. At a call site, the generated
Groovy code retrieves the corresponding CallSite object from
the array and calls a method named call on it, passing any
parameters. The call method calls many other methods in
multiple classes within the Groovy standard library, and ul-
timately looks up an object of class GroovyObject and calls
invokeMethod on it. The invokeMethod method looks up the
name of the method to be called using a dynamic repre-
sentation of the class hierarchy. Finally, invokeMethod uses
Java reflection to invoke the desired method from the desired
class.

The Groovy compiler can optionally generate bytecode
containing invokedynamic instructions. In that case, the first
time a call site is invoked, the bootstrap method returns
a MutableCallSite. The MutableCallSite initially points to the
same general lookup code that is used when compiling with-
out invokedynamic. The first time the call site is executed and
the desired target method is looked up, the MutableCallSite

is updated with the MethodHandle of the target method, so
that subsequent calls can call the target method directly.

6.2 Qualitative Analysis
The many levels of call indirection, object creation, dy-

namic data structure lookup, and reflection are too compli-
cated for WALA to model. WALA cannot track the flow
of the method name string constants all the way to the use
of reflection to invoke the particular methods. Therefore,
WALA does not generate any call edges for any call site in
a Groovy program.
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static dyn. D\S S\D static dyn. D\S S\D
BT 615 727 251 139 1,444 1,216 412 640
FK 615 701 227 141 1,444 1,149 348 643
FA 620 750 272 142 1,452 1,272 473 653
FR 615 780 306 141 1,445 1,329 528 644
KN 615 829 336 122 1,445 1,402 572 615
MB 615 750 276 141 1,445 1,238 444 651
NB 615 817 328 126 1,445 1,406 578 617
PD 615 751 276 140 1,444 1,283 482 643
RD 615 719 242 138 1,444 1,182 394 656
RC 615 672 202 145 1,444 1,105 322 661
SN 615 733 256 138 1,444 1,246 444 642

                        nodes                         edges

Table 6: Count of nodes and edges in the static and
dynamic call graphs of the Groovy (with invokedy-
namic support) CLBG programs.

6.3 Quantitative Analysis
This sizes of dynamic and static call graphs for the Groovy

benchmarks are shown in Tables 5 (for code generated with-
out invokedynamic) and 6 (for code with invokedynamic).

For each Groovy program, only the main method appears
in the static call graph, because our static analysis is unable
to generate any call edges for any call sites in the Groovy
code. This explains why the static call graphs have the same
size. The static call graphs do contain many methods of the
Groovy standard library that are transitively called from
boilerplate code in the generated main class.

Quantitatively, the unsoundness is minor. This is because
the Groovy library is much larger than the application pro-
grams (for which the call graphs are completely unsound),
and the library is written in a normal Java style that WALA
can analyze soundly (reflection is used sparingly).

Without invokedynamic, the static graphs are much larger
than the dynamic graphs because the static analysis assumes
that most of the Groovy library could be called, but the
benchmark programs use only a small fraction. On the other
hand, for the code with invokedynamic, the static call graphs
are smaller than the dynamic ones. The static analyzer con-
siders most of the library unreachable for two reasons. First,
it misses calls due to invokedynamic instructions. Second,
generated classes that implement calls using invokedynamic

require much less boilerplate initialization code. The spu-
rious control flow from initialization code into the library
that is inferred for the non-invokedynamic classes is not in-
ferred for the generated classes that use invokedynamic. The
library code missing from the static call graph is also re-
flected in a small increase in unsoundness in the invokedy-

namic call graphs compared to the non-invokedynamic ones.

7. SCALA
Scala [25] is a statically-typed, object-oriented, functional

programming language. Scala supports functional program-
ming idioms such as pattern matching, lazy evaluation, and
closures. In addition to classes and objects, Scala supports
traits, which encapsulate a group of method and field defi-
nitions so that they can be mixed into classes. Scala is fully
interoperable with Java: Scala code can import and use Java

31 object hello {
32 def main(args: Array[ String ]) = {
33 (new T with A).bar
34 O.bar
35 (new C).bar
36 }
37 }
38 trait A
39 trait T {
40 def foo = bar
41 def bar = println (”T.bar”)
42 }
43 class C {
44 def foo = bar
45 def bar = println (”C.bar”)
46 }
47 object O {
48 def foo = bar
49 def bar = println (”O.bar”)
50 }

Figure 4: A simple Scala program.

classes, and vice versa. The Scala compiler compiles to Java
bytecode. Our experiments used Scala version 2.10.2.

7.1 Translation to JVM bytecode
In this section, we illustrate how scalac translates different

kinds of method calls. Figure 4 shows a Scala program that
defines traits A and T, class C, and objects hello and O. The
main method calls method bar in objects with three different
types: the trait composition (A with T) on line 33, the object
O on line 34, and the class C on line 35.

A Scala class is translated into one JVM class file that
contains the bytecode translation of all its methods. A Scala
object is translated into two JVM class files. For the object
O in Figure 4, two classes named O$ and O are generated.
O$ contains the methods, foo and bar from the original Scala
object O. It also defines a static field MODULE$ to enforce the
singleton pattern. The other class, O, defines static methods
that act as hooks to the methods defined in O$.

A Scala trait, such as T in our example, is translated into
two JVM class files: T and T$class. Interface T contains
declarations for the methods, foo and bar, of the Scala trait T.
T$class is an abstract class that defines static methods that
contain the bytecode translation of the concrete methods,
foo and bar, of the Scala trait T.

Finally, a Scala trait composition, such as (A with T) in the
example, is translated into an anonymous class, hello$$anon$1,
that implements all its traits.

Consider the calls to bar on lines 33–35 in Figure 4. The
first call on line 33 corresponds to two method calls in the
generated bytecode. The second call on line 34 corresponds
to exactly one method call in the generated bytecode. Simi-
larly, the third call on line 35 corresponds to one method call
in the generated bytecode. Interestingly, the call from foo

to bar on line 40 is translated into an invokeinterface bytecode
instruction in the generated class T$class. This is because
the target of that call depends on the type of the trait com-
position that is used as the receiver of the call.

7.2 Qualitative Analysis
The JVM bytecode generated by the Scala compiler for
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static dyn. D\S S\D static dyn. D\S S\D
BT 788 521 0 267 1,256 648 1 609
FK 1,315 805 0 510 2,436 1,108 1 1,329
FA 1,011 603 0 408 1,852 808 1 1,045
FR 1,342 776 2 568 2,602 1,060 3 1,545
KN 2,604 1,558 0 1,046 5,779 2,424 3 3,358
MB 993 583 0 410 1,804 772 1 1,033
NB 966 645 0 321 1,756 876 1 881
PD 1,243 696 0 547 2,634 1,009 1 1,626
RD 983 596 0 387 1,627 772 1 856
RC 849 538 0 311 1,411 673 1 739
SN 1,064 622 0 442 1,904 810 1 1,095

                        nodes                         edges

Table 7: Count of nodes and edges in the static and
dynamic call graphs of the Scala CLBG programs.

the example in Figure 4 reflects the source code more di-
rectly than its counterparts for the dynamically-typed lan-
guages discussed in the previous three sections. This allows
a static analysis to generate call graphs for Scala-generated
bytecodes that are more sound. For the example of Figure 4,
no significant challenges for static analysis are evident.

Nevertheless, as reported by Ali et al. [2], analyzing the
JVM bytecodes generated by the Scala compiler can result
in call graphs that are much less precise than those that can
be constructed from the original Scala source code. This
loss of precision occurs because significant type information
is lost in the process of translating certain Scala features
(e.g., closures) to JVM bytecode.

The Scala compiler translates closures into anonymous
function classes ($anonfun), where each class extends one of
the scala.FunctionN<T> where N is the arity and T is the re-
turn type of the closure. Each $anonfun class overrides the
apply method inherited from its superclass and instantiates
the type parameter T with a different type. However, at the
bytecode level, all type parameters are erased. Therefore,
a bytecode-based static analysis algorithm will create edges
to all the apply methods of subclasses of scala.FunctionN<T>

from each of the call sites to scala.FunctionN.apply(), thus ren-
dering the produced static call graphs extremely imprecise.
Ali et al. [2] present a family of algorithms for constructing
call graphs of Scala programs from source code that avoids
this loss of precision.

For certain Scala features (e.g., mutable fields in anony-
mous classes), the Scala compiler generates JVM bytecodes
containing reflective method calls, which challenges sound
static analysis. A sound static analysis would have to make
conservative approximations that cause the static call graph
to become extremely large and imprecise.

7.3 Quantitative Analysis
For each of the benchmark programs in Table 7, except

fastaredux, the methods and edges in the dynamic call
graph are subsets of those in the corresponding static call
graphs, so they are sound for this execution. However, in
fastaredux, there are 2 methods and 2 call edges that are
missing in the static call graph compared to the dynamic call
graphs. Further investigation revealed that this unsound-
ness arises from the use of reflection in the bytecodes gen-

51 let bar x y =
52 print string ”before calling print hello in bar\n

”;
53 print string x;
54 print string y;
55 print string ”after calling print hello in bar\n”

;;
56

57 let foo x y =
58 print string ”before calling bar in foo\n”;
59 x y;
60 print string ”after calling bar in foo\n”;;
61

62 foo (bar ”Hello , World\n”) ”Hello Again\n”;;

Figure 5: A simple OCaml program.

erated by the Scala compiler for converting collections into
arrays, similar to what the Java method java.util.ArrayList.

toArray(T[]) does. When we examined the precision of the
static call graph, we found that on average, about 16% of
the edges that are in the static call graphs but not in the
dynamic call graphs involve calls to/from apply() methods.

8. OCAML
OCaml is a general purpose programming language sup-

porting functional, imperative and object-oriented styles10.
Types are strong and static, and inferred by the compiler—
that frees programmers from stating them.

OCaml-Java11 is a compiler that directly compiles OCaml
source code to Java bytecode and provides mechanisms for
interoperability with Java. We used OCaml-Java version
2.0-alpha2, based on OCaml version 4.01.0, for the experi-
ments in this paper. This version of OCaml-Java requires at
least the Java 7 virtual machine to run compiled programs.
The OCaml-Java compiler directly generates the .jar file for
an OCaml program. The OCaml-Java standard library is
included in the .jar file. The .jar file contains three folders—
ocaml, org, and pack. The ocaml and org folders contain the
standard library, which is the same for every OCaml pro-
gram. The pack folder contains class files generated from
the OCaml input program and a class called ocamljavaMain.
This is the main class identified in the manifest of the .jar

file, and serves as the driver of the whole OCaml program.

8.1 Translation to JVM bytecode
We will use the example program of Figure 5 to illustrate

how OCaml-Java translates OCaml source code to JVM
class files. Figure 5 shows an OCaml program that declares
functions foo and bar. This program illustrates currying, in
the partial call to bar with one argument “Hello, World”.
This closure is passed to bar along with the argument “Hello
Again”. Function foo prints messages and calls its argument
x (which is bound to bar) with y (bound to “Hello Again”) as
a parameter. Function bar prints its arguments.

The translation of this example program is mostly straight-
forward, compared to some other systems in this study.
The OCaml compiler translates syntactic functions to corre-
sponding bytecode methods, and direct function calls, such
as the call to foo, as invokestatic bytecodes. Currying gets

10http://ocaml.org/learn/description.html
11http://ocamljava.x9c.fr/preview/
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static dyn. D\S S\D static dyn. D\S S\D
BT 5,963 193 0 5,770 74,952 1,494 60 73,518
FK 5,973 193 0 5,780 74,779 1,516 65 73,328
FA 5,966 187 0 5,779 75,259 1,193 15 74,081
FR 5,973 194 0 5,779 75,310 1,472 62 73,900
KN 5,981 193 0 5,788 77,845 1,824 76 76,097
MB 5,958 192 0 5,766 74,728 1,446 58 73,340
NB 6,977 195 0 6,782 88,488 1,498 58 87,048
PD 5,986 186 0 5,800 76,126 1,444 41 74,723
RD 5,962 203 0 5,759 74,952 2,106 88 72,934
RC 5,960 183 0 5,777 75,029 1,194 15 73,850
SN 5,963 197 0 5,766 74,924 1,484 58 73,498

                        nodes                         edges

Table 8: Count of nodes and edges in the static and
dynamic call graphs of the OCaml CLBG programs.

translated as constructing a closure object using org.ocamljava.

runtime.values.Value.createClosure, and first-class functions gen-
erally are represented by java.lang.invoke. MethodHandle ob-
jects. The actual code to implement the currying gets gen-
erated as an extra function object. These bytecode con-
stants represent specific methods directly, and obviate com-
plex uses of string-based reflection. The call to the function
x in foo gets translated as an invokevirtual on the closure ob-
ject. The method on the closure calls the closed function,
in this case bar, using the MethodHandle method invokeExact,
avoiding reflection using strings.

In a bit more detail, the partial call to bar is translated
by calling createClosure, then calling setClosure on it with a
MethodHandle representing bar, and then recording the clo-
sure parameter “Hello, World” with set2 on the closure. The
key is that the first-class functions are named explicitly with
MethodHandle objects, which greatly eases their analysis.

8.2 Qualitative Analysis
Functional languages like OCaml have first-class functions,

currying and closures; as such, one might expect OCaml to
have the same problem as the scripting languages, i.e. perva-
sive reflection leading to unsoundness and imprecision. How-
ever, the OCamljava implementation exploits the Method-

Handle mechanism to great effect, making heavy use of con-
stant method handles embedded in the bytecode. Thus,
first-class functions manifest as explicit method constants;
WALA models these constants and invocations on them.
Hence, functions such as bar appear in the call graph.

This does not, in itself, make analysis precise, since func-
tions passed as arguments may cause imprecision in context-
insensitive analysis, just as dynamic dispatch on parame-
ters can in object-oriented languages. However, this is the
same well-studied problem of context sensitivity which has
inspired so many techniques for object-oriented languages.

8.3 Quantitative Analysis
Table 8 presents the call graph construction results on the

OCaml versions of the benchmarks. The impact of using
MethodHandles in a way that is amenable to static analysis is
apparent from the absence of unsoundness in the methods
in all of the static call graphs. There is some unsoundness in
the edges—always less than 5%—due mostly to idioms in the

OCaml runtime involving the use of java.lang.reflect.Proxy for
method calls. WALA does not understand this reflective id-
iom, so edges are missing from the static graph. These miss-
ing edges sometimes cause further missing edges as needed
code is deemed unreachable by the static analysis. Also,
proxies result in runtime-generated code appearing on the
stack, so the dynamic call graphs contain edges that do not
correspond to any source code and hence will be missing
from the static graph.

Precision is low across all programs, with the vast bulk of
both nodes and edges in the static call graph not being in
the dynamic one. There are three major causes of this:

1. Imprecision in what runtime primitives are used to ac-
cess values; values are sometimes stored in a boxed
form (org.ocamljava.runtime.Value) and indirections used
to access and convert them make our context-insensitive
analysis imprecise.

2. MethodHandle objects are passed to runtime primitives
to handle calls, and context-insensitive analysis of these
primitives causes significant imprecision.

3. These issues cause more of the standard library to be
reachable, which adds further imprecision as edges and
nodes from those functions get added.

We observe that the soundness of our analysis of OCaml
programs raises hope that pervasive and careful use of fea-
tures such as method handles will ease analysis of a broad
class of languages. Also, the imprecision in our OCaml anal-
ysis could be addressed to a great extent by techniques
already used for similar concerns in prior analyses, e.g.,
CPA [1].

9. THREATS TO VALIDITY
A critical reader might argue that the programs studied

in this paper are small, that they do not cover the full range
of each language’s features, and that they are perhaps not
representative of real-world programs.

We do not consider the above considerations to be serious
reasons for concern because the primary conclusions of our
study (i.e., whether soundness or imprecision occurs for each
language under consideration) are evident from the manual
analysis of small example programs, and supported by our
quantitative experiments with the CLBG programs. Ana-
lyzing larger programs that make use of additional language
features would yield the same conclusions because such pro-
grams would make use of language features such as function
calls that already give rise to unsoundness or imprecision.
Furthermore, the use of an existing benchmark suite such
as CLBG, with variants of the same programs for each lan-
guage, enables us to study the different programming lan-
guages in a way that is uniform and consistent.

In general, computing precise static call graphs is unde-
cidable, and in this paper, we have used dynamic call graphs
to estimate the precision of static call graphs. However, a
dynamic call graph provides an under-approximation of a
precise static call graph, and the reader may wonder if code
coverage is reasonable. To address this concern, we mea-
sured basic block coverage. On average, across all the lan-
guages under consideration, the program input used to run
the CLBG benchmark suite provides a basic block coverage
of 87%, which is quite high. We are unable to present the
coverage results in detail due to space limitations.
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10. RELATED WORK

Dynamic Studies.
Most of the studies of non-Java languages that compile

to JVM bytecode have evaluated the dynamic behavior of
the bytecode, particularly from the point of view of a vir-
tual machine that executes it. In contrast, our study eval-
uated the generated bytecode from the point of view of a
static analyzer. Li et al. [20] have studied the JVM byte-
code generated by JRuby, Jython, Scala, and Clojure, for
the Computer Language Benchmarks Game (CLBG) pro-
grams. They focused on dynamic behavior: they measured
the diversity of bytecode instruction sequences executed, the
sizes of methods, the depths of the runtime stack, the hot-
ness distribution of methods and basic blocks, the sizes and
lifetimes of objects, and the amount of boxing of primitive
types. Sarimbekov et al. [30] also studied JRuby, Jython,
and Clojure (but not Scala), on the CLBG programs. They
measured runtime behavior: polymorphic calls, immutabil-
ity of fields, objects, and classes, lifetimes of objects, amount
of memory zeroing, and the number of evaluations of iden-
tity hash codes. Sewe et al. [34] introduced a benchmark
suite of Scala programs similar to the DaCapo suite [5] of
Java programs. They compared the dynamic behavior of
these programs to that of the DaCapo Java programs.

Multilingual Virtual Machines.
The Microsoft Common Language Runtime (CLR) was

designed from the outset to support multiple source lan-
guages, including C#, C++, and Visual Basic, and has since
been used as the target of many others. Gordon et al. [13]
presented a type system for the CLR Intermediate Language
(CIL). Bebenita et al. [4] used CIL as the bytecode language
for a tracing JIT specifically designed for dynamic scripting
languages like JavaScript.

Beyond the approach of compiling multiple source lan-
guages to a common bytecode intermediate language, recent
work has adapted the virtual machine more deeply to sup-
port new languages. Castanos et al. [7] modified an existing
JIT compiler to exploit dynamic characteristics of Python,
yielding performance improvements. Würthinger et al. [38]
built a virtual machine that allows custom source front-ends
for a variety of languages. These front-ends interpret, pro-
file, and optionally transform the source programs. The sys-
tem later partially evaluates these interpreters to generate
machine code. The resulting system performs better than
compiling to Java bytecode first because the front-end in-
terpreters that are partially evaluated can perform profile-
directed optimizations that are specific to a given source
language. Savrun-Yeniceri et al. [31] present techniques for
using forms of threaded code generation to improve JVM-
hosted interpreters. Their goal is efficiency; the problem
they address is that simple interpreters make heavy use of in-
direct jumps, which harms branch prediction, and threaded
code minimizes that. In our case, static analysis of such sim-
pler control flow would likely be easier, for the same reasons
that branch prediction benefits.

JSR 292 introduced invokedynamic bytecode, which enables
Java bytecode to call dynamically specified methods. This
can greatly simplify the method invocation sequences that
we have identified in bytecode generated from dynamic lan-
guages. However, because the target methods are specified

dynamically, invokedynamic also makes it more difficult for
static analysis tools to construct call graphs.

Other Languages.
The translation of various programming languages to byte-

code-based platforms has received considerable attention in
the literature. Clerc et al. [8] explain and motivate how
OCaml is translated to Java bytecode. Several papers and
theses discuss how Scala is compiled to Java bytecode [32,
9, 11, 10]. In addition to the language implementations that
we reported on in Sections 3–8, many other languages have
been compiled to bytecode, e.g., Scheme [33, 6], Star [22],
Pizza [26, 24]. Yermolovich et al. [41] even translate machine
language code to Java bytecode.

The use of dynamic features has been studied for lan-
guages that are not normally compiled to Java bytecode.
Richards et al. [29, 28] studied the use of dynamic features
in JavaScript, especially the eval construct. Hills et al. [16]
studied the use of various features in PHP programs, includ-
ing dynamic features such as eval.

Xu and Rountev evaluated a regression test selection anal-
ysis for AspectJ [39]. They found the analysis to be ex-
tremely imprecise when based on call graphs constructed
from the Java bytecode generated by compiling AspectJ pro-
grams. To improve precision, they introduced the interac-
tion graph, a structure similar to a call graph, but which ex-
plicitly models AspectJ features, and evaluated an analysis
for constructing such graphs from AspectJ source code [40].

11. CONCLUSIONS
We have investigated whether a JVM bytecode-based static

call graph construction works well for bytecode produced
from other languages. We conducted experiments to ex-
plore the soundness and precision of such static call graphs
produced for Python, Ruby, Clojure, Groovy, Scala, and
OCaml. In a set of qualitative experiments, we manually
examined the translation of small example programs to ob-
serve potential challenges to call graph construction. In a
set of quantitative experiments, we compare static and dy-
namic call graphs for 11 programs from the CLBG suite to
assess unsoundness and imprecision in practice.

Our results show that, for the dynamically-typed lan-
guages, Python, Ruby, Clojure, and Groovy, call graph con-
struction is dramatically unsound; heavy use of reflection,
run-time code generation, and invokedynamic instructions pose
significant challenges to static analysis. Furthermore, these
call graphs are also highly imprecise due to how function
calls are translated into JVM bytecode. For the statically-
typed languages, Scala and OCaml, the situation is more
promising. For these languages, all unsoundness comes from
rare, complex uses of reflection and proxies, which does not
seem to arise frequently in practice. In the case of Scala,
the translation of programming idioms related to first-class
features causes significant loss of precision, and for OCaml
loss of precision arises due to control flow similar to what
has been observed in Java.

While the experiments reported on in this paper are con-
cerned with call graph construction, we consider our conclu-
sions to be broadly applicable to bytecode-based interproce-
dural static analyses, because call graphs are a prerequisite
for most static analyses. We conclude that language imple-
mentors should consider carefully if they want to rely on
dynamic mechanisms such as reflection and invokedynamic.
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While these mechanisms may ease the task of compilation,
they render static analysis effectively useless, thus impeding
the development of IDE-based tools (e.g., for refactoring)
that are especially useful for dynamically typed languages.
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M. Pezzè and M. Harman, editors, ISSTA, pages
325–335. ACM, 2013.

[17] IBM. T.J. Watson Libraries for Analysis WALA.
http://wala.sourceforge.net/, April 2013.

[18] J. Juneau. Polyglot Programmer: Jython 101 – A
Refreshing Look at a Mature Alternative. Oracle Java
Magazine, 2013. Available from
http://www.oraclejavamagazine-digital.com.

[19] O. Lhoták. Comparing call graphs. In M. Das and
D. Grossman, editors, PASTE, pages 37–42. ACM,
2007.

[20] W. H. Li, D. R. White, and J. Singer. JVM-hosted
languages: they talk the talk, but do they walk the
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