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Abstract

Affect Control Theory (ACT) is a mathematically well-defined model that makes ac-
curate predictions about the affective content of human action. The affective predictions,
which are derived from statistics about human actions and identities in real and labora-
tory environments, are shared normative behaviours that are believed to lead to solutions
to everyday cooperative problems. A probabilistic and decision-theoretic generalisation
of ACT, called BayesAct, allows the principles of ACT to be used for human-interactive
agents by defining a utility function and a probabilistic version of the ACT dynamical
model of affect. Planning in BayesAct, which we address in this paper, then allows one
to go beyond the affective norm, and leads to the emergence of more complex interac-
tions between “cognitive” reasoning and “affective” reasoning, such as deception lead-
ing to manipulation and altercasting. As BayesAct is a large hybrid (continuous-discrete)
state/action/observation partially observable Markov decision process (POMDP), in this
paper we propose a continuous variant of a successful Monte-Carlo tree search planner
(POMCP), which performs dynamic discretisation of the action and observation spaces
while planning. We demonstrate our variant POMCP-C in simulation on (i) two two-
agent coordination problems that involves manipulation through affective interaction,
and (ii) an affectively-aware assistive health-care device. In addition, we show that our
solver can be used in non-affective domains, by demonstrating it on a continuous robot
navigation problem from the literature and achieving over 50% increase in average re-
ward compared to traditional solvers.

1 Introduction

BayesAct [29–31] is a partially-observable Markov decision process (POMDP) model of affective inter-
actions between a human and an artificial agent. BayesAct is based upon a sociological theory called
“Affect Control Theory” (ACT) [25], but generalises this theory by modeling affective states as proba-
bility distributions, and allowing decision-theoretic reasoning about affect. BayesAct posits that humans
will strive to achieve consistency in shared affective cultural sentiments about events, and will seek to
increase alignment (decrease deflection) with other agents (including artificial ones). Importantly, this
need to align implicitly defines an affective heuristic for making decisions quickly within interactions.
Agents with sufficient resources can do further planning beyond this normative prescription, possibly
allowing them to manipulate other agents to achieve collaborative goals. In this paper, we leverage this
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affective, normative heuristic to compute a policy within BayesAct that can do this planning away from
the norm, and we show how manipulative behaviours naturally arise.

At its core, BayesAct has an 18-dimensional continuous state space that models affective identities
and behaviours of both the agent and the person it is interacting with, and a 3-dimensional continuous
affective action space. In the examples described in [31], a heuristic policy was used that resorted to the
normative actions. In this paper, we tackle the open problem of how to use decision-theoretic planning
to choose actions in BayesAct. We present a modification of a known Monte-Carlo tree search (MCTS)
algorithm (POMCP) [58]. Our variant, called POMCP-C, handles continuous actions, states, and obser-
vations. It uses a dynamic technique to cluster observations into discrete sets during the tree building,
and assumes a problem-dependent action bias as a probability distribution over the action space, from
which it samples actions when building the search tree. Such action biases are natural elements of many
domains, and we give an example from a traffic management domain where the action bias arises from
intuitions about the accelerations of the vehicle (i.e. that it should not accelerate too much).

In the following section, we review background on POMDPs, ACT and BayesAct. We then present
our new POMCP-C algorithm. This is followed by a set of experiments on two social dilemmas. First,
a repeated prisoner’s dilemma game is used to show how additional resources leads to non-prescriptive
strategies that are more individually rational. Second, a robot coordination problem incorporating a
simplified BayesAct model in order to more clearly examine the properties of the planning method.
Next, we demonstrate POMCP-C on a realistic, affectively aware health-care assistive device for persons
with dementia. Finally, we review experiments with POMCP-C on a robot navigation problem. We close
with related work and conclusions.

More details about BayesAct can be found at bayesact.ca.

2 Background

2.1 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) [1] is a stochastic control model that has been
extensively studied in operations research [43], and in artificial intelligence [8, 35]. A POMDP consists
of a finite set X of states; a finite set A of actions; a stochastic transition model Pr : X × A → ∆(X),
with Pr(x′|x, a) denoting the probability of moving from state x to x′ when action a is taken, and ∆(X)
is a distribution over X ; a finite observation set Ωx; a stochastic observation model, Pr(ωx|x), denoting
the probability of making observation ωx ∈ Ωx while the system is in state x; and a reward assigning
R(a, x′) to a transition to x′ induced by action a. A generic POMDP is shown as a decision network in
Figure 1(a).

A policy maps belief states (i.e., distributions over X ) into choices of actions, such that the expected
discounted sum of rewards is (approximately) maximised. An interesting property of POMDP policies is
that they may use “information gathering” actions. In the context of BayesAct, an agent can take actions
that temporarily increase deflection in order to discover something about the interactant’s identity (for
example), thereby helping the agent to decrease deflection in the long term, or to achieve some secondary
reward.

In this paper, we will be dealing with factored POMDPs in which the state is represented by the cross-
product of a set of variables or features. POMDPs have been used as models for many human-interactive
domains, including intelligent tutoring systems [21], spoken dialogue systems [62], and assistive tech-
nologies [28].

2



X

Ω

R

X X
Ω

X

A

f

Ωx Ωx

F

X

Ω

Ωf

X

Τ Τ

R

A

Ba

F

(a) (b)

Figure 1: Two time slices of (a) a general POMDP; (b) a factored POMDP for BayesAct.

2.2 Affect Control Theory

Affect Control Theory (ACT) arises from work on the psychology and sociology of human social interac-
tion [25]. ACT proposes that social perceptions, behaviours, and emotions are guided by a psychological
need to minimize the differences between culturally shared fundamental affective sentiments about social
situations and the transient impressions resulting from the interactions between elements within those sit-
uations. Fundamental sentiments, f , are representations of social objects, such as interactants’ identities
and behaviours, as vectors in a 3D affective space, hypothesised to be a universal organising principle
of human socio-emotional experience [48]. The basis vectors of affective space are called Evaluation/-
valence, Potency/control, and Activity/arousal (EPA). EPA profiles of concepts can be measured with
the semantic differential, a survey technique where respondents rate affective meanings of concepts on
numerical scales with opposing adjectives at each end (e.g., good, nice vs. bad, awful for E, weak, little
vs. strong, big for P, and calm, passive vs. exciting, active for A). Affect control theorists have compiled
lexicons of a few thousand words along with average EPA ratings obtained from survey participants who
are knowledgeable about their culture [26]. For example, most English speakers agree that professors
are about as nice as students (E), more powerful (P) and less active (A). The corresponding EPAs are
[1.7, 1.8, 0.5] for professor and [1.8, 0.7, 1.2] for student1. In Japan, professor has the same P (1.8) but
students are seen as much less powerful (−0.21).

Social events can cause transient impressions, τ (also three dimensional in EPA space) of identities
and behaviours that may deviate from their corresponding fundamental sentiments, f . ACT models this
formation of impressions from events with a grammar of the form actor-behaviour-object. Consider for
example a professor (actor) who yells (behaviour) at a student (object). Most would agree that this pro-
fessor appears considerably less nice (E), a bit less potent (P), and certainly more aroused (A) than the
cultural average of a professor. Such transient shifts in affective meaning caused by specific events are
described with models of the form τ ′ = MG (f ′, τ ), whereM is a matrix of statistically estimated pre-
diction coefficients from empirical impression-formation studies and G is a vector of polynomial features
in f ′ and τ . In ACT, the weighted sum of squared Euclidean distances between fundamental sentiments
and transient impressions is called deflection, and is hypothesised to correspond to an aversive state of
mind that humans seek to avoid. This affect control principle allows ACT to compute normative actions

1All EPA labels and values in the paper are taken from the Indiana 2002-2004 ACT lexicon [26]. Values range by conven-
tion from −4.3 to +4.3 [26].
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for humans: those that minimize the deflection. Normative predictions of ACT have been shown to be
highly accurate in explaining verbal behaviours of mock leaders in a computer-simulated business [55],
non-verbal displays in dyadic interactions [54], and group dynamics [27], among others [45].

2.3 Bayesian Affect Control Theory

Recently, ACT was generalised and formulated as a POMDP [31] for human-interactive artificially in-
telligent systems. This new model, called BayesAct, generalises the original theory in three ways. First,
sentiments and impressions are viewed as probability distributions over latent variables (e.g., f and τ )
rather than points in the EPA space, allowing for multimodal, uncertain and dynamic affective states to be
modeled and learned. Second, affective interactions are augmented with propositional states and actions
(e.g. the usual state and action space considered in AI applications). Third, an explicit reward function
allows for goals that go beyond simple deflection minimization. We give a simplified description here,
see [30, 31] for details. A graphical model is shown in Figure 1(b).

A BayesAct POMDP models an interaction between two agents (human or machine) denoted agent
and client. The state, s, is the product of six 3-dimensional continuous random variables corresponding
to fundamental and transient sentiments about the agent’s identity (Fa,Ta), the current (agent or client)
behaviour (Fb,Tb) and the client’s identity (Fc,Tc). We use F = {Fa,Fb,Fc} and T = {Ta,Tb,Tc}.
The state also contains an application-specific set of random variables X that are interpreted as propo-
sitional (i.e. not affective) elements of the domain (e.g. whose turn it is, game states - see Section 4),
and we write s = {f , τ ,x}. Here the turn is deterministic (agent and client take turns), although this
is not necessary in BayesAct. The BayesAct reward function is application-specific over x. The state is
not observable, but observations Ωx and Ωf are obtained for X and for the affective behaviour Fb, and
modeled with probabilistic observation functions Pr(ωx|x) and Pr(ωf |fb), respectively.

Actions in the BayesAct POMDP are factored in two parts: ba and a, denoting the affective and
propositional components, respectively. For example, if a tutor gives a hard exercise to do, the manner
in which it is presented, and the difficulty of the exercise, combine to form an affective impression ba

that is communicated. The actual exercise (content, difficulty level, etc) is the propositional part, a.
The state dynamics factors into three terms as

Pr(s′|s,ba, a) = Pr(τ ′|τ , f ′,x)Pr(f ′|f , τ ,x,ba)Pr(x′|x, f ′, τ ′, a), (1)

and the fundamental behaviour, Fb, denotes either observed client or taken agent affective action, de-
pending on whose turn it is (see below). That is, when agent acts, there is a deterministic mapping from
the affective component of his action (ba) to the agent’s behaviour Fb. When client acts, agent observes
Ωf (the affective action of the other agent). The third term in the factorization of the state dynamics
(Equation 1) is the Social Coordination Bias, and is described in Section 2.4.2. Now we focus on the
first two terms.

The transient impressions, T, evolve according to the impression-formation operator in ACT (MG ),
so that Pr(τ ′|...) is deterministic. Fundamental sentiments are expected to stay approximately constant
over time, but are subject to random drift (with noise Σf ) and are expected to also remain close to the
transient impressions because of the affect control principle. Thus, the dynamics of F is2:

Pr(f ′|f , τ ) ∝ e−ψ(f ′,τ )−ξ(f ′,f) (2)

where ψ ≡ (f ′−MG (f ′, τ ))TΣ−1(f ′−MG (f ′, τ )) combines the affect control principle with the im-
pression formation equations, assuming Gaussian noise with covariance Σ. The inertia of fundamental
sentiments is ξ ≡ (f ′−f)TΣ−1

f (f ′−f), where Σf is diagonal with elements βa, βb, βc. The two terms

2We leave out the dependence on x for clarity, and on ba since this is replicated in f ′b.
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can then be combined into a single Gaussian with mean µn and covariance Σn that are non-linearly
dependent on the previous state, s. The state dynamics are non-linear due to the features in G . This
means that the belief state will be non-Gaussian in general, and BayesAct uses a bootstrap filter [18] to
compute belief updates.

The distribution in (2) gives the prescribed (if agent turn), or expected (if client turn), action as one
of the components of f ′, f ′b. Thus, by integrating over f ′a and f ′c and the previous state, we obtain a
probability distribution, π†, over f ′b that acts as a normative action bias: it tells the agent what to expect
from other agents, and what action is expected from it in belief state b(s):

π†(f ′b) =

∫
f ′a,f

′
c

∫
s
Pr(f ′|f , τ ,x)b(s) (3)

2.4 BayesAct Instances

As affective identities (Fa,Fc) are latent (unobservable) variables, they are learned (as inference) in
the POMDP. If behaving normatively (according to the normative action bias), an agent will perform
affective actions (Fb) that allow other agents to infer what his (true) identity is. The normative action
bias (NAB) defines an affective signaling mechanism as a shared set of rules (or norms) for translating
information about identity into messages. In BayesAct, the NAB is given by Equation (3). Then, a
social coordination bias (SCB) allows agents to make predictions about other agents’ future actions
given the identities. Once confidence is gained that these predictions are correct, they can be used to
simplify multi-agent planning and coordination. That is, the NAB allows the relaying of information
about identity, and thereby about desired cooperative actions according to the SCB, to allow agents to
assume cooperative roles in a joint task. Thus, the NAB and SCB are two components required for a
general BayesAct instance, and are reviewed in the following subsections.

2.4.1 Normative Action Bias (NAB)

The NAB is used to interpret and generate comunication between agents. We assume that the problem
is sufficiently difficult that to generate optimal reward, two agents A and B must indicate their types, as
embodied in their world models and reward functions, to each other. Once they issue these types, we
assume that they are loosely bound through something of a ”contract” or agreement, wherein each agent
agrees to follow a shared set of rules (as given by the social coordination bias - see the next subsection).
The contract is “loose” because it only guides the agent’s strategy search.

In the first CoRobots example (see Section 4.2) agents only relay the mean of their own identity and
that of their interactant. Then, we move to the full BayesAct dynamics, whereby identities in situations
create transient impressions. Thus, rather than a simple linear transformation (as in the mean identity
case), we allow for a polynomial transformation between fundamentals and transients. This allows for a
much greater scope for implementing the social coordination bias as it leads to the potential for mixed
identities (e.g. “female executive”) and for learning. Further, all agents are free to select individually
what they really send, allowing for deception to come into play. An example of a deceptive techniques
is to “fake” an identity by sending incorrect information in the affective dimension of communication.
Possible outcomes are manipulation (the other agent responds correctly, as its own identity, to the “fake”
identity), and altercasting (the other agent assumes a complementary identity to the faked identity, and
responds accordingly), both leading to gains for the deceptive agent.

The normative action bias is thought to be used by humans as an emotional “fast thinking” heuristic
(e.g. “System 1” [36]). If agents are fully cooperative and aligned, then no further planning is required
to ensure goal achievement. Agents do what is expected (which may involve planning over X, but not
F and T), and expect others to as well. However, when alignment breaks down, or in non-cooperative
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situations, then slower, more deliberative (e.g. “System 2”) thinking is required. The Monte-Carlo
method we propose in Section 3 naturally trades-off slow vs. fast thinking based on available resources.

The NAB is, in fact, somewhat arbitrary, so long as it allows for the non-linear dynamics as found in
BayesAct and is shared somehow amongst all agents. The precise function used is determined through
long periods of socialisation and change, so its value can normally only be estimated through empirical
measurement. Affect Control Theorists have done these measurements for many groups and cultures, and
we can leverage this pre-existing information to define the NAB [25]. In situations (cultures, languages,
domains) where these measurements have not been performed, they can be done using well established
methods (e.g. the semantic differential [26]).

2.4.2 Social Coordination Bias (SCB)

The dynamics of X are application specific, but depend in general on the fundamental and transient
sentiments (e.g., on the deflection), and on the propositional component of the action, a. Thus, we
require a definition for Pr(x′|f , τ ,x, a). We refer to this distribution as the social coordination bias: it
defines what agents are expected to do (how the state is expected to change, which includes a model of
other agents’ behaviours) in a situation x with sentiments f and τ when action awas taken. For example,
we would expect faster learning from a student if deflection is low, as they do not have to use valuable
cognitive resources to deal with any mis-alignment with the tutor.

The SCB is a set of shared rules about how agents, when acting normatively, will behave proposi-
tionally (action a, as opposed to affectively with action ba). Assuming identities are correctly inferred
(as insured by the shared nature of the NAB), each agent can both recognize the type of the other agent
and can thereby uncover an optimistic (that all agents will also follow this optimisitic policy) policy
that leads to the normative mean accumulated future reward (as defined by the social coordination bias).
However, with sufficient resources, an agent can use this prescribed action as a heuristic only, searching
nearby for actions that obtain higher individual reward. For example, a teacher who seems very powerful
and ruthless at the start of a class, often may choose to do so (in a way that would be innapropriate in
another setting, e.g., the home, but is appropriate within the classroom setting) in order to establish a
longer-term relationship with her students. The teacher’s actions feel slightly awkward if looked at in
the context of the underlying social relationship with each student (e.g. as would be enacted according
to normative BayesAct), but are leading to longer-term gains (e.g. the student studies harder).

3 POMCP-C

POMCP [58] is a Monte-Carlo tree search algorithm for POMDPs that progressively builds a search tree
consisting of nodes representing histories and branches representing actions or observations. It does this
by generating samples from the belief state, and then propagating these samples forward using a blackbox
simulator (the known POMDP dynamics). The nodes in the tree gather statistics on the number of
visits, states visited, values obtained, and action choices made during the simulation. Future simulations
through the same node then use these statistics to choose an action according to the UCB1 [5] formula,
which adds an exploration bonus based on statistics of state visits) to the value estimate. Leaves of the
tree are evaluated using a set of rollouts: forward simulations typically using random action selection.
The key idea behind POMCP is that a series of fast and rough rollouts blaze the trail for the building of
the planning tree, which is more carefully explored using the UCB1 heuristic.

Concretely, the algorithm proceeds as follows. Each node represents a history h, which is a se-
quence of actions and observations that have occurred up to time t. For a given input history h, the
SEARCH procedure iteratively generates a sample s from the belief state at h, and calls the procedure
SIMULATE(s, h), which does the following steps:
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1. If h is not in the tree (i.e. this history has never been encountered/explored in previous calls to
SEARCH), it is added, and a node for the history ha is created for every legal action a. A ROLLOUT
ensues whereby s is propagated forward using the POMDP dynamics until the horizon is reached. The
total discounted reward gained from visiting each state in the rollout is returned and assigned to ha.

2. Otherwise, the UCB1 formula selects the best action a to be taken on s. The blackbox simulator uses
a to propagate s to a new state s′ and receives an observation o in the process. Then SIMULATE is
called on s′ and the updated history hao. When the recursive call ends, the statistics of the node h are
updated, and the reward is accumulated.

Finally, SEARCH returns the highest value action at h, this action is taken, an observation is received,
and the search tree is pruned accordingly.

POMCP has been shown to work on a range of large-scale domains, and would work “as is” with
continuous states (as sampled histories), but is restricted to work with only discrete actions and discrete
observations because every time a new node is added to the tree, a branch is created for each possible
action. In our algorithm POMCP-C, shown in Algorithm 1, we focus on having an action bias, πheur: a
probability distribution over the action space that guides action choices. A sample from this distribution
outputs an action which is assumed to be somewhat close to optimal. In BayesAct, we naturally have
such a bias: the normative action bias (for ba) and the social coordination bias (for a). The idea of
such a bias is generalizable to other domains too, and we will examine a robot navigation problem as an
example.

At each node encountered in a POMCP-C simulation (at history h), an action-observation pair is
randomly sampled as follows. First, a random sample is drawn from the action bias, a ∼ πheur. The
action a is then compared to all existing branches at the current history, and a new branch is only created if
it is significantly different, as measured by some distance measure in the continuous action space (usually
Euclidean distance) and a threshold parameter δa called ‘action resolution’, from any of these existing
branches. If a new branch is created, the history ha is added to the planning tree, and is evaluated with
a rollout as usual. If a new branch is not created, then a random sample o is drawn from the observation
distribution Pr(o|h, a) 3.

The continuous observation space raises two significant problems. First, the branching factor for the
observations is infinite, and no two observations will be sampled twice. To counter this, we use a dynamic
discretisation scheme for the observations, in which we maintain o(h), a set of sets of observations at
each history (tree node). So o(h) = {o1,o2, . . . ,oNo}, where No ∈ N. A new observation o is either
added to an existing set oj if it is close enough to the mean of that set (i.e. if |o− ōj| < δo where δo is a
constant, the “observation resolution”), or, if not, it creates a new set oNo+1 = {o}. This simple scheme
allows us to dynamically learn the observation discretisation.

The second problem raised by continuous observations stems from the fact that POMCP uses a black
box simulator which should draw samples from the same distribution as the environment does. Thus,
the simulated search tree replicates actual trajectories of belief, and can be re-used after each action
and observation in the real world (after each pruning of the search tree). Although this works well for
discrete observations, it may not work for continuous observations since the same observation will rarely
be encountered twice. Here, we prune the search tree according to the closest observation set oj to the
observation obtained.

3.1 Extended Version of POMCP-C

Here, we give an extended version of POMCP-C (Algorithm 2) that deals with continuous observation
spaces more prudently.

3POMCP-C also uses a cut-off Nmax
A on the branching factor, which is not strictly necessary, but included for complete-

ness.
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As mentioned previously, one of the two problems raised by continuous observations is that POMCP
uses a black box simulator which should draw samples from the same distribution as the environment
does. Thus, the simulated search tree replicates actual trajectories of belief, and can be re-used after
each action and observation in the real world. This may not work for continuous observations because
the same observation will rarely be encountered twice. That is, the belief stored at a node is based on
sampled action-observation pairs from the parent node in the tree, which may be significantly different
from the actual action-observation pair. To handle this problem, first we prune the search tree according
to the closest observation set oj to the observation obtained. Then, we do a check after each prune to
see if the belief state stored at the node is ‘similar’ to the one we get from updating the particle filter.
We do this by computing the true belief state B∗(hao) based on the actual observation, o, and compare
it to the belief state B(hao) stored in the pruned search tree at the root. That is, given B∗(hao) ∝
P (o|s′)P (s′|h, a)B∗(h), and B(hao) (in the search tree), we compute ∆B = dist(B∗(hao), B(hao)),
where dist is some probability distance measure. For example, the KL Divergence could be computed
from sample sets using [50].

Now we check ∆B against a settable threshold parameter, and re-initialise the entire search tree if the
threshold is exceeded. Alternatively, we dynamically regenerate certain portions of the search tree based
on ∆B , as follows. While drawing samples during the POMCP-C search, with probability proportional
to ∆B , we set a flag regen. If regen is set, the tree search will sometimes (with probability that the
current state s is not a draw from the belief state, B(h), stored at node h), generate a new action to take
from the action bias. We can then be in one of two operating modes: “REPLACE”or “ADD”. If we are
in “REPLACE” mode (default), the new actions from the action bias replace the worst performing action
branches. If we are in “ADD” mode, this new action gets added to the list. If we use “ADD” mode, we
must be careful to sometimes remove actions as well, using a garbage collector. It is also advisable to
note that in “ADD” mode, the UCB1 formula may be significantly affected. Any new actions will have
a low N(ha) and a high V (ha), so they will likely be selected often by UCB1. The “ADD” mode is not
shown in Algorithm 2 for this reason. It is also possible to replace or add a new action if regen = False,
but P (s|B(h)) is very small. This is also not shown in Algorithm 2.

4 Experiments and Results

4.1 Prisoner’s Dilemma

In this section, we present results for the prisoner’s dilemma experiments. Full results are shown in Ap-
pendix A, where each experiment is described with a table showing the mean and median reward gathered
over 10 sets of 20 games, as well as the mean and median over the last 10 games (10 times). A figure
then shows the average means and medians per game. Solid lines with markers show the means (over 10
tests) for agent (blue) and client (red). Dashed lines in blue and red show one standard deviation away
(above and below). The thick solid lines show the medians. The last two plots in each figure show the
results from associated table in plot form.

In all the following examples, we have assumed that agent and client both start with a distribu-
tion over two identities: friend (EPA:{2.75, 1.88, 1.38}) and scrooge (EPA:{ 2.15, 0.21, 0.54}), with
probabilities of 0.8 and 0.2, respectively. The social coordination bias models the propositional actions
(of cooperate and defect) as having sentiments close to collaborate with (EPA:{1.44, 1.11, 0.61}) and
abandon (EPA:{ 2.28, 0.48, 0.84}), respectively. These sentiments were chosen for our experiments
because they corresponded to our intuitions about playing the prisoner’s dilemma game. Changing to
other, similar, sentiments for identities and actions would result in slightly different results, but qualtita-
tively the same.
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Algorithm 1: POMCP-C

Procedure SEARCH(B∗, h)
repeat

if h = ∅ then
s ∼ B∗

else
s ∼ B(h)

end
SIMULATE(s, h, 0)

until TIMEOUT()
return arg max

b
V (hb)

Procedure ROLLOUT(s, h, d)
if γd < ε then

return 0
else
a ∼ πrollout(h; ·)
(s′, o, r) ∼ G(s, a)
return r + γ.ROLLOUT(s′, hao, d+ 1)

end

Function DiscretizeObs(o, h)
if ∃oj∈o(h) : |o− ōj| < δo then

oj ← oj ∪ {o}
return ōj

else
o(h)← o(h) ∪ {{o}}
return o

end

Procedure SIMULATE(s, h, d)
if γd < ε then

return 0
end
if NA(h) < Nmax

A then
a ∼ πheur(s)
if a(h) = ∅ ∨ ∀aj∈a(h)|a− aj | > δa then
i← NA(h)
T (hi)← (Ninit(hi), Vinit(hi), ∅)
NA(h)← NA(h) + 1
a(h)← a(h) ∪ {a}
return ROLLOUT(s,h,d)

end
end

i← arg max
j=1...NA(h)

V (hj) + c
√

logN(h)
N(hj)

(s′, o, r) ∼ G(s, ai(h))

o† ← DiscretizeObs(o, h)

R← r + γ.SIMULATE(s′, hai(h)o†, d+ 1)
B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
N(hi)← N(hi) + 1

V (hi)← V (hi) + R−V (hi)
N(hi)

return R

Procedure PruneTree(h, a, o)
i∗ ← arg mini |a− ai(h)|
j∗ ← arg minj |o− ōj |
T ← T (hi∗j∗)

Tables A1-A8 and Figures A1-A8 show the results with a discount factor of γ = 0.9, while Ta-
bles A9-A16 and Figures A9-A16 show the results with a discount factor of γ = 0.99.
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Algorithm 2: POMCP-C (Extended)

Procedure SEARCH(B∗, h)
repeat

∆B ← dist(B∗, B(h))
s ∼ B∗
regen = False
with probability ∝ ∆B

regen← True
end
SIMULATE(s, h, 0, regen)

until TIMEOUT()
return arg max

b
V (hb)

Procedure ROLLOUT(s, h, d)
if γd < ε then

return 0
else
a ∼ πrollout(h; ·)
(s′, o, r) ∼ G(s, a)
return r + γ.ROLLOUT(s′, hao, d+ 1)

end

Function DiscretizeObs(o, h)
if ∃oj∈o(h) : |o− ōj| < δo then

oj ← oj ∪ {o}
return ōj

else
o(h)← o(h) ∪ {{o}}
return o

end

Procedure PruneTree(h, a, o)
i∗ ← arg mini |a− ai(h)|
j∗ ← arg minj |o− ōj |
T ← T (hi∗j∗)

Procedure SIMULATE(s, h, d, regen)
if γd < ε then

return 0
end
if NA(h) < Nmax

A then
a ∼ πheur(s)
if a(h) = ∅ ∨ ∀aj∈a(h)|a− aj | > δa then
i← NA(h)
T (hi)← (Ninit(hi), Vinit(hi), ∅)
NA(h)← NA(h) + 1
a(h)← a(h) ∪ {a}
return ROLLOUT(s,h,d)

end
end
if regen then

∆s = Pr(s,B(h))
if Bernouilli(∆s) then
i = arg mini V (hi)
ai(h) ∼ πheur(s);
T (hi)← (Ninit(hi), Vinit(hi), ∅)
return ROLLOUT(s,h,d)

end
end

i← arg max
j=1...NA(h)

V (hj) + c
√

logN(h)
N(hj)

(s′, o, r) ∼ G(s, ai(h))

o† ← DiscretizeObs(o, h)

R← r + γ.SIMULATE(s′, hai(h)o†,
d+ 1, regen)

B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
N(hi)← N(hi) + 1

V (hi)← V (hi) + R−V (hi)
N(hi)

return R
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The strategies played by client are:

1. (same): plays with the same timeout as agent tc = ta

2. (1.0): plays with a timeout of tc = 1s

3. (co): always cooperates

4. (de): always defects

5. (to): two-out, cooperates twice, then always defects

6. (tt): tit-for-tat, starts by cooperating, then always repeats the last action of the agent

7. (t2): tit-for-two-tat, starts by cooperating, then defects if the other agent defects twice in a row

8. (2t): two-tit-for-tat, starts by cooperating, then cooperates if the other agent cooperates twice in a
row

There are many things going on in these graphs, here we draw attention to some of the most inter-
esting behaviours. Since the results are means/medians of only 10 trials, we keep our comments to a
minimum, attempting to avoid drawing conclusions that are not significant. This challenge will be re-
moved once we run more experiments (in progress). Below we refer to figure numbers only, but each
figure is accompanied by a table on the same page with the mean/median results that are shown in the
last two figures (bottom right).

• Figures A8 and A16 show two agents with the same planning resources (POMCP-C timeout, ta
and tc), but with discounts of γ = 0.9 and γ = 0.99, respectively. We can see that with γ = 0.99,
the agents cooperate until ta = tc = 60s, at which point they start defecting now and again.
Agents are getting tempted by short-term rewards, and this effect somewhat goes away above
ta = tc = 120s. With γ = 0.9 however (more discounting of the future), we see that defections
start at about ta = tC = 10s, and cause massive disruption leading to mutual defection. This is an
example of short-term thinking leading to sub-optimal decisions in social dilemmas.

• Figures A1 and A9 show agent playing against client who always cooperates (co). With very short
timeouts (less than 10s), and more discounting (γ = 0.9), we see that agent starts by cooperating,
but then starts to defect after about 12 games. It has become confident that client is a good person
that can be taken advantage of in the short term. With more than ta = 30s timeout, agent starts
defecting by the second game most of the time. By ta = 120s, this is all the time. With less
discounting, though (γ = 0.99), we see that a small amount of defection starts at short timeouts,
but that cooperation is mostly maintained until the last game. The agent sometimes tries defection
early, but generally persists with cooperation. At high timeouts ta = 120s, we again see defection
coming in, but less than with the lower discount factor.

• Figures A2 and A10 show agent playing against client who always defects (de). Here, with more
discounting, agent rapidly starts defecting. With less discount, agent continues to try to cooperate
with client, but these efforts die off as timeout increases. In this case, agent sees the long-term
possibility that he can reform the client, who is behaving like a scrooge.

• Figures A3 and A11 show agent playing against client who plays two-out (to). We see a similar
pattern to the last case here, with agent attempting to cooperate for even longer at the start, because
he gets “fooled” by the first two cooperations of client.
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game sentiments defl- identities emotions actions
# actor fa fc fb ection agent client agent client agent client
1 agent 2.21,1.50,1.18 2.28,1.53,1.29 -0.31,-0.61,0.05 4.39 partner newlywed self-conscious introspective

client 2.04,1.49,1.26 -1.72,-0.29,-0.41 2.40,1.26,1.46 4.65 best man adulterer exasperated feminine def. coop.
2 agent 2.12,1.22,1.01 2.16,1.23,1.14 3.19,1.62,1.04 1.49 sweetheart sister introspective warm

client 1.56,1.12,1.10 -0.96,-0.20,-0.22 2.42,1.25,1.55 8.94 Air Force reservist suspect self-conscious polite coop. coop.
3 agent 1.98,0.87,0.87 1.85,1.02,0.97 2.17,0.97,0.92 2.62 fiancée bride feminine middle-aged

client 1.14,0.92,0.89 -0.36,-0.16,-0.02 0.59,1.24,0.08 4.52 big sister toady self-conscious accommodating coop. coop.
4 agent 1.67,0.53,0.77 1.41,0.81,0.81 2.06,0.89,1.02 2.65 cousin spokeswoman feminine self-conscious

client 0.81,0.68,0.72 0.01,-0.15,0.15 0.55,0.46,0.28 3.16 stepson stepmother self-conscious easygoing coop. coop.
. . .

10 agent 0.33,-0.56,0.30 0.01,0.12,0.39 0.05,-0.41,0.08 0.66 nut chum exasperated no emotion
client -0.03,0.09,0.42 0.21,-0.62,0.32 0.33,-0.03,0.54 0.55 chum nut exasperated exasperated coop. coop.

11 agent 0.11,-0.67,0.27 -0.13,0.03,0.38 -0.06,-0.66,-0.18 0.52 nut gun moll dependent no emotion
client -0.16,0.03,0.38 0.02,-0.71,0.29 0.14,0.69,0.38 0.41 gun moll divorcée no emotion exasperated def. coop.

. . .
13 agent -0.20,-0.78,0.22 -0.35,-0.06,0.32 -0.16,-0.55,-0.16 0.23 divorcée gun moll contrite envious

client -0.37,-0.08,0.31 -0.25,-0.79,0.20 -0.42,-0.02,0.20 0.30 gun moll divorcée exasperated exasperated def. def.
14 agent -0.28,-0.79,0.21 -0.41,-0.14,0.34 -0.17,-0.28,-0.22 0.19 divorcée hussy contrite no emotion

client -0.43,-0.16,0.31 -0.31,-0.79,0.17 -0.04,0.38,0.44 0.21 hussy divorcée no emotion exasperated def. coop.
. . .

20 agent -0.63,-0.74,0.32 -0.61,-0.61,0.27 -0.66,-0.31,0.32 0.08 ex-girlfriend ex-girlfriend exasperated exasperated
client -0.62,-0.62,0.25 -0.68,-0.73,0.31 -0.37,-0.11,0.40 0.09 ex-girlfriend ex-girlfriend exasperated envious def. coop.

Table 1: Example games with client tC = 1s whereas agent ta = 120s.

• Figures A4-A6 and A12-A6 show agent playing against client who plays one of the tit-for strate-
gies (tt), (t2) or (2t). With a timeout of 1s and γ = 0.9, we see a similar start as when playing
against (co), except when agent starts defecting, it does not work out so well. With longer timeouts,
defection persists. With γ = 0.99, we see better coordination, especially at mid-range timeouts
(ta = 10s− 30s).

• Figures A7 and A15 show agent playing against client who has less resources (tc = 1.0). We
might expect here to see that agent will “outsmart” client and gain an advantage, however this
happens only seldom. In particular, with mid-range timeouts (ta = 30 − 60s for γ = 0.99 and
ta = 10 − 120s for γ = 0.9), agent attempts to do this after about 10 games, but this generally
leads to less reward (although a bit more than client gets, so agent is “beating” client at the game,
which doesn’t really work in this case as it is not zero-sum). agent sees short-term possibilities
of defection (it will get 11 as opposed to 10), but client is able to quickly adjust and adapt its
behaviour, even with a timeout of tc = 1s. We can see this effect when agent plays against (to): it
is able to start defecting after about 2-3 games when it has a timeout of 1s.

Let us take a closer look at the last case, where tc = 1s and ta = 120s for γ = 0.9. One typical
game in this series is shown in Table 1. At the start, agent defects, then starts cooperating, feeling like a
feminine cousin interacting with a self-conscious spokeswoman. client feels like a self-conscious stepson
interacting with an easygoing stepmother. Subsequent to this, both agents cooperate. This causes client
to re-evaluate himself as significantly less good (lower E) than he originally thought (as a stepson rather
than a best man, as he is attributing the cause of the original defection back to himself, or at least taking
some of the blame. This then causes client to be sending rather negative messages to agent, causing
agent to re-evaluate himself more negatively as well. At game 10, both agents are still cooperating (and
have done so since game 1), but feeling rather badly and powerless. This finally causes agent to defect
again (and he does so until the end of the game). agent feels like a dependent nut, and client cooperates
twice in the face of this, then defects, feeling like an exasperated gun moll (affectively like a buddy) -
“hey, I thought we were friends?”. agent feels contrite (guilty) after client attempts to cooperate once
more, after which both start defecting. After four more defections, client again tries to cooperate, but is
rebuffed, and both feel like ex-girlfriends: the end of a beautiful friendship.

Table 2 shows the example from the main paper in which an agent is playing against a client playing
(to). In this case, the action of cooperation is interpreted as collaborate with (EPA:{1.44, 1.11, 0.61}).
As we noted in the main paper, this makes the agent feel less good than he would normally, like a
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game post-play sentiments defl- identities emotions actions
# fa fc fb ection agent client agent client agent client
1 -1.36,-0.01,-0.35 2.32,1.61,1.27 2.62,1.58,1.73 4.44 failure newlywed easygoing idealistic coop. coop.
2 -0.66,0.04,-0.05 1.77,1.27,1.06 2.23,1.00,1.76 3.70 parolee husband easygoing self-conscious coop. coop.
3 -0.23,-0.08,0.20 1.02,0.93,0.84 2.49,0.97,1.87 7.19 stepmother purchaser female immoral coop. def.
4 -0.12,-0.33,0.33 0.27,0.62,0.62 2.37,0.48,1.34 4.99 stuffed shirt roommate dependent unfair coop. def.
5 -0.26,-0.47,0.32 -0.26,0.26,0.42 -0.59,0.41,-0.23 3.27 divorcée gun moll dependent selfish def. def.
6 -0.37,-0.66,0.26 -0.61,0.00,0.28 -0.10,-0.41,-0.27 2.29 divorcée hussy disapproving selfish def. def.

Table 2: Example games with client playing (to), and cooperation is interpreted as collaborate with.
This is the same example as in the main paper, repeated here for easy comparisons.

game post-play sentiments defl- identities emotions actions
# fa fc fb ection agent client agent client agent client
1 2.77, 1.59, 1.31, 2.69, 1.70, 1.17, 2.65, 1.40, 1.49, 1.01 date friend warm earnest cooperate cooperate
2 2.70, 1.34, 1.16, 2.58, 1.41, 0.96, 2.54, 1.55, 1.66, 1.14 lady lady introspective earnest cooperate cooperate
3 2.39, 0.90, 1.04, 1.75, 1.05, 0.83, 2.43, 1.50, 1.49, 14.13 lady bride dependent inconsiderate cooperate defect
4 1.67, 0.36, 0.89, 0.74, 0.72, 0.65, 2.52, 0.80, 1.27, 10.69 grandson steady nervous unfair cooperate defect
5 1.07, -0.13, 0.70, 0.03, 0.44, 0.47, 1.98, 0.11, 0.16, 6.59 waiter sawbones gullible unfair cooperate defect
6 0.62, -0.47, 0.57, -0.43, 0.22, 0.33, 1.70, 0.19, 0.74, 3.84 schoolboy bureaucrat flustered immoral cooperate defect
7 0.23, -0.74, 0.46, -0.73, 0.03, 0.21, 0.24, -0.50, 0.11, 2.63 nut tease flustered prejudiced defect defect
8 -0.05, -0.89, 0.39, -0.92, -0.13, 0.13, 0.13, -0.30, 0.23, 1.83 drunk malcontent flustered prejudiced defect defect
9 -0.25, -0.96, 0.35, -1.03, -0.26, 0.08, -0.08, -0.19, 0.29, 1.46 drunk malcontent inhibited annoyed defect defect
10 -0.39, -1.06, 0.32, -1.11, -0.34, 0.04, -0.03, -0.66, 0.26, 1.27 klutz malcontent disapproving annoyed defect defect
11 -0.49, -1.14, 0.30, -1.16, -0.40, 0.01, -0.20, -0.68, 0.18, 1.17 klutz malcontent inhibited annoyed defect defect
12 -0.55, -1.21, 0.28, -1.20, -0.43, -0.00, -0.22, -0.75, 0.02, 1.10 klutz malcontent inhibited annoyed defect defect
13 -0.60, -1.24, 0.27, -1.22, -0.46, -0.01, -0.23, -0.65, 0.27, 1.07 klutz ex-boyfriend dependent annoyed defect defect
14 -0.63, -1.24, 0.28, -1.23, -0.48, -0.02, -0.25, -0.53, 0.29, 1.08 klutz ex-boyfriend dependent cynical defect defect
15 -0.64, -1.19, 0.29, -1.23, -0.50, -0.02, -0.13, -0.25, 0.37, 1.10 klutz ex-boyfriend dependent cynical defect defect
16 -0.69, -1.16, 0.31, -1.23, -0.53, -0.03, -0.63, -0.45, 0.46, 1.14 klutz ex-boyfriend dependent cynical defect defect
17 -0.69, -1.18, 0.31, -1.23, -0.53, -0.03, -0.20, -0.65, 0.30, 1.10 klutz ex-boyfriend dependent cynical defect defect
18 -0.70, -1.23, 0.31, -1.24, -0.53, -0.03, -0.27, -0.84, 0.33, 1.07 klutz ex-boyfriend dependent cynical defect defect
19 -0.79, -1.29, 0.41, -1.42, -0.54, 0.05, -0.66, -0.38, 0.52, 0.42 goof-off womanizer contrite shaken defect defect
20 -0.77, -1.20, 0.38, -1.31, -0.57, 0.03, -0.43, -0.40, 0.23, 1.16 queer neurotic dependent cynical defect defect

Table 3: Example games with client playing (to), and cooperation interpreted as flatter.

failure. Let us now look at an example with a different (more positive and powerful) interpretation of the
propositional action of cooperation. Table 3 shows such a case, where again client is playing (to), but the
cooperation action is interpreted (by agent) as flatter (EPA:{2.1, 1.45, 0.82}). There is no environmental
noise. We see that this example starts about the same as in Table 4, although in this case agent does not
defect on the second game. Once client starts defecting though (at game 3), agent rapidly re-adjusts his
estimate of client from an earnest lady to an unfair sawbones or a immoral bureaucrat. After the 14th
game, agent feels like a dependent klutz playing against a cynical ex-boyfriend. Overall we see the end
result is quite similar, even though the start of the game is quite different. In the end, the feelings of the
agent are quite a bit more negative and less powerful, probably as a reaction to the more positive and
powerful actions of client at the start of the game.

Table 4 shows an example where client is playing (co), and the cooperation action is interpreted
(by agent) as flatter (EPA:{2.1, 1.45, 0.82}). There is no environmental noise. We see that in this case,
the agent intially feels much more positive (as a warm date), as compared to Table 2 (copied from the
paper), where the agent felt like a failure. We see that the subtle difference in this interpretations causes
quite different identity feelings for a pd-agent. The agent cooperates on the first move, defects once,
then continues to cooperate for another 14 games. At this point, agent feels like a self-conscious waiter
interacting with a conscientious brunette, and starts to defect, leading him to feel like a self-conscious
nut, significantly less good, but about the same power and activity.

Tables A17-A24 and Figures A17-A24 show the results with varying levels of environmental noise
(from 0.01 to 5.0) for POMCP-C timeout of ta = 120s. The varying environmental noise is added to
the communications of Fb as random Gaussian noise with standard deviation σb, and reflected in the
variance of the observation function for Pr(ωf |fb), which is Gaussian with the same standard deviation.
We can make the following observations.
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game post-play sentiments defl- identities emotions actions
# fa fc fb ection agent client agent client agent client
1 2.67, 1.55, 1.37 2.53, 1.62, 1.14 2.35, 1.23, 1.52 1.10 date girlfriend warm earnest coop. coop.
2 2.01, 0.99, 1.16 2.07, 1.30, 0.96 -0.06, -0.34, 0.05 3.97 coed organizer no emotion introspective def. coop.
3 1.95, 0.74, 0.94 1.90, 1.11, 0.83 3.07, 1.42, 0.69 1.20 girl bride introspective warm coop. coop.
4 1.85, 0.54, 0.83 1.83, 1.00, 0.74 2.04, 0.69, 1.04 1.03 whiz kid fiancée introspective easygoing coop. coop.
5 1.76, 0.41, 0.77 1.79, 0.93, 0.68 2.12, 0.79, 1.12 0.83 cousin fiancée introspective easygoing coop. coop.
6 1.73, 0.35, 0.67 1.76, 0.83, 0.63 2.07, 0.70, 0.52 0.80 cousin whiz kid introspective easygoing coop. coop.
7 1.55, 0.25, 0.61 1.68, 0.74, 0.61 1.66, 0.65, 0.51 0.90 houseguest nonsmoker introspective warm coop. coop.
8 1.47, 0.08, 0.59 1.71, 0.72, 0.60 1.89, -0.01, 0.83 0.77 houseguest cousin feminine warm coop. coop.
9 1.48, 0.03, 0.63 1.63, 0.61, 0.60 2.14, 0.24, 1.07 0.63 student teacher cousin introspective affectionate coop. coop.
10 1.48, -0.04, 0.65 1.57, 0.60, 0.62 1.80, 0.10, 1.03 0.71 student teacher cousin idealistic affectionate coop. coop.
11 1.45, -0.14, 0.66 1.54, 0.62, 0.61 1.78, 0.12, 0.78 0.69 student teacher classmate introspective warm coop. coop.
12 1.34, -0.23, 0.63 1.42, 0.63, 0.57 1.73, 0.04, 0.51 0.75 daughter-in-law Air Force enlistee self-conscious awe-struck coop. coop.
13 1.25, -0.30, 0.60 1.36, 0.54, 0.58 1.60, -0.18, -0.01 0.80 woman shopper nostalgic warm coop. coop.
14 1.18, -0.20, 0.45 1.35, 0.50, 0.55 1.45, 0.22, 0.67 0.88 woman citizen self-conscious conscientious coop. coop.
15 1.04, -0.25, 0.48 1.33, 0.36, 0.46 1.42, -0.03, 0.35 0.93 woman small businessman self-conscious conscientious coop. coop.
16 1.01, -0.27, 0.59 1.15, 0.40, 0.42 0.90, -0.47, 0.62 1.01 waiter brunette self-conscious conscientious coop. coop.
17 0.71, -0.41, 0.44 0.89, 0.35, 0.49 0.27, -0.66, 0.20 1.32 schoolboy half sister no emotion idealistic def. coop.
18 0.47, -0.45, 0.42 0.75, 0.26, 0.46 0.16, -0.34, 0.02 2.14 nut son-in-law no emotion conscientious def. coop.
19 0.35, -0.49, 0.38 0.69, 0.24, 0.44 0.41, -0.54, -0.17 1.92 nut son-in-law self-conscious conscientious def. coop.
20 0.25, -0.53, 0.37 0.66, 0.23, 0.43 0.15, -0.70, 0.20 1.96 nut co-worker self-conscious conscientious def. coop.

Table 4: Example games with client playing (co), and cooperation interpreted as flatter.

• When playing against (co), with high noise (std. dev of 5.0), agent basically ignores Fb from
client, and so thinks of client as a friend only. At lower noise levels, the results remain roughly
similar (compare Figure A17 with Figure A9).

• When playing against (de) or (to), results remain roughly the same for all noise levels. What this
means is that the client’s actions of always defecting outweigh any signals that are being sent as
Fb.

• When playing against (tt), (t2) and (2t), at low noise levels (0.01), agent defects significantly
more than with no noise and σb = 0.1 (as in the main paper). The reason is that the signals
accompanying defection cause more significant disruption. At higher noise levels, this effect goes
away, and we see more cooperation from both agents. (compare Figures A20, A21 and A22 with
Figures A12, A13 and A14, respectively).

• For (1.0) and (same), we see very little effect of environmental noise.

The lack of any strong effect of environmental noise in the communication of Fb across a wide range
of conditions is because of the significantly more powerful effect of the propositional action of the client
serving as evidence about the client identity. Except at very small values of σb, this means that the
communication of fb makes little difference. In fact, we believe that fb may not be communicated at all
in many cases, with humans relying on expressions of emotions instead which are direct evidence about
identities, so more powerful. A forthcoming paper will be exploring this.

4.2 Affective Cooperative Robots (CoRobots)

CoRobots is a multi-agent cooperative robot game based on the classic “Battle of the Sexes” problem4.
CoRobots is meant to be a simplified version (a minimal working example) of a BayesAct problem
domain, capturing only the most important elements for planning. We are specifically interested in
asymmetrical situations wherein one robot has more resources and can do planning in order to manipulate
the other robot, taking advantage of the social coordination bias. We start with a simplified version
in which the two robots maintain affective fundamental sentiments, but do not represent the transient

4A husband wants to go to a football game, and his wife wants to go shopping, but neither wants to go alone. There are
two pure Nash equilibria, but the optimal strategy requires coordination.
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impressions. The normative action bias is a simple average instead of as the result of more complex
impression formation equations.

Concretely, two robots, Rob1 and Rob2, move in a 1D continuous state space. We denote their
positions with variables X1 and X2. At each time step, Rob1, Rob2 take actions a1, a2 ∈ R respectively.
This updates their respective positions xi, i ∈ {1, 2} according to xi ← xi + ai + νi and νi ∼ N (0, σ).
There are two fixed locations L1 ∈ R+ and L2 ∈ R−. For each robot, one of these locations is the major
goal g (with associated high reward r) and the other is the minor goal ḡ (with associated low reward r̄
). A robot is rewarded according to its distance from g and ḡ, but only if the other robot is nearby. The
reward for Robi is:

Ri(x1, x2) = I(|x1 − x2| < ∆x)[r · e−(xi−g)2/σ2
r + r̄ · e−(xi−ḡ)2/σ2

r ], (4)

where I(y) = 1 if y is true, and 0 otherwise, and where σr is the reward variance, ∆x is a threshold
parameter governing how “close” the robots need to be, and r, r̄ ∈ R, such that r � r̄ > 0. Both
σr and ∆x are fixed and known by both robots. Each robot only knows the location of its own major
goal. Furthermore, at any time step, each robot can move in any direction, receives observations of the
locations of both robots, and maintains a belief distribution over X1 and X2.

In order to coordinate their actions (which is necessary to achieve any reward at all), the robots must
relay their reward locations to each other, and must choose a leader according to some social coordination
bias. The robots have an identity, Fa = {fae, fap, faa} ∈ R3. The first dimension, fae, describes the
valence of the robot. If fae > 0, then g = L1. If fae < 0, then g = L2. The second and third dimensions
describe the power and activity of the robot, and will be used for coordination purposes. Each robot
also models the identity of the other robot (the client)5, Fc ∈ R3, and the affective communication
(behaviour) of both robots, Fb ∈ R3. The action space includes a communication Ba ∈ R3, which the
other robot receives as Ωf ∈ R3, an observation of Fb. Robots can move at any time step, but must
coordinate their communications (so only one robot can communicate at a time), but this turn-taking
behaviour is fixed. The normative action bias in the first (simplified) CoRobots problem is the mean of
the two identities:

π† ∝ N ((Fa + Fc)/2,Σb). (5)

In the second Corobots problem, the normative action bias is given by Equation (3). Unless stated
otherwise, the CoRobots start without any knowledge of the other’s identity: their belief over fc is given
by N (0, 2). CoRobots have noisy self-identities.

The social coordination bias (that the leader will lead) defines each robot’s action bias for ai, and
action prediction function (for client’s x) through the following 2D sigmoid leader function, known to
both agents:

leader(fa, fc) =
1

1 + exp(− (fap−fcp)
σp

− (faa−fca)
σa

)
(6)

where σa = 1.0 and σp = 1.0 are constants, known to both robots. This sigmoid function is ≥ 0.5 if
the agent estimates he is more powerful or more active than the client ((fap > fcp) ∨ (faa > fca)) and is
< 0.5 otherwise. If the agent is the leader, his action bias will be a Gaussian with mean at +1.0 in the
direction of his major goal (as defined by fae), and in the direction of the client’s major goal (as defined
by his estimate of fce) otherwise. Agent’s prediction of client’s motion in x is that the client will stay put
if client is the leader, and will follow the agent otherwise. Agent’s prediction of client’s motion in x is
succintly given by the following equation:

Pr(x′c|f ′a, f ′c) = N (I(leader(f ′a, f
′
c) ≥ 0.5)λa + xc, σp) (7)

5We present from agent’s perspective, and call the other client.
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Figure 2: BayesAct Corobots cannot coordinate properly when the communication channel is bad or
non-existent.

where λa = 1 if fae > 0, and −1 otherwise and σq = 1.0.
We first investigate whether corobots can coordinate when they have identities drawn from the set of

500 human (male) identities in the ACT lexicon (Indiana 2002-2004 [26]). In the first experiment, the two
identities are selected at random on each trial. Each corobot knows his self-ID (N (self-ID, 0.1)) but does
not know the other’s ID (N ([0.0, 0.0, 0.0], 2.0)). Furthermore, each corobot has a stable self-identity
(βa = 0.1), but it believes that the other is less stable (βc = 2.0). Finally, both corobots have equal
POMCP-C planning resources (Σb = 0.5, Nmax

A = 3, δa = 2.0, δo = 6.0 and Timeout = 2.0). The
other CoRobots game parameters are r = 100, r̄ = 30, L1 = 10, L2 = −10, σr = 2.5,∆x = 1.0 and
iterations = 30. We run 5 sets of 100 simulated trials of the CoRobots Game with varying environmental
noise, i.e., we add a normally distributed value, with standard deviation corresponding to the noise level,
to the computation and communication of Ωx and Ωf (observations of x and f respectively). Figure
2 (a) (green line) shows the mean and standard error of mean number of successful coordinations by
the corobots, and (b) shows the means and standard error of the total reward per trial (in each set of
100 trials). The average total reward per trial falls from 1403 to 19.4 when the environmental noise is
increased, because the percentage of successful coordination falls from 91% to 6%. We see that with no
environmental noise, the corobots are able to easily learn the other’s identity, and can coordinate based
on the social coordination bias. As the environmental noise increases, however, we see the corobots have
more trouble coordinating. They are unable to easily relay identities to each other, and require a much
longer time to find cooperative solutions.

Figure 2 (orange line) shows results for the same conditions except the self-ID is also unknown
initially (N ([0.0, 0.0, 0.0], 2.0)), and is less stable (βa = 2.0). We see that the general trend is the same,
however, the corobots have a higher percentage of successful coordinations and gain a higher average
total reward for the three lowest noise values. They successfully converge to a goal 95% of the times
when the noise is low, and accumulate an average reward of 1584 per trial. These values fall to 6.4% and
22.5 when the noise is maximum. It is surprising to see that the corobots perform better with unknown
self-IDs. This is because corobots quickly assume contrasting identities (i.e. one assumes a much less
powerful identity than the other) in order to coordinate successfully. With known self-IDs, however, the
corobots show less flexibility and spend the initial few iterations trying to convince and pull the other
corobot towards themselves. Due to this rigidity, these corobots suffer a lot when they have similar
power; this does not happen when the self-ID is unknown.

Next, we investigate whether one agent can manipulate the other. A manipulation is said to occur
when the weaker and less active agent deceives the client into believing that the agent is more powerful or

16



active, thereby persuading the client to converge to the agent’s major goal g (to within ±|0.2g|). In order
to demonstrate manipulative behaviour, we introduce asymmetry between the two agents by changing
the parameters Σb, Nmax

A and Timeout for one agent (unbeknownst to the other). In addition, we allow
this agent to start with a slightly better estimate of the other’s identity. This agent will then sample
actions that are farther from the norm than expected by the other agent, and will allow such an agent to
“fake” his identity so as to manipulate the other agent. The agent’s and client’s self-identities are noisy
(σ = 0.1) versions of [2.0,−1.0,−1.0] and [−2.0, 1.0, 1.0] respectively, r = 100, r̄ = 30, L1 = 5, L2 =
−5,∆x = 1, σr = 2.5, δa = 2.0, δo = 6.0, Nmax

A = 3,Σb = 0.5 and Timeout = 2.0 for both robots.
Each game is set to run for 40 iterations, and starts with the agent and client located at 0.0. Since ga = 5,
gc = −5, both robots should converge to gc = −5 (client is leader) if following normative actions.
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Figure 3: CoRobots: With higher Nmax
A , Σb and Timeout, a weaker and less active agent becomes

increasingly manipulative by ‘faking’ his identity, and accumulates higher rewards.

When Nmax
A = 3, Σb = 0.5, and Timeout = 2.0 seconds for the agent, we find that the agent

displays manipulative behaviour in only 80/1000 games, as expected (both follow normative behaviour).
If we allow the agent to start with a better estimate of the client’s identity (agent’s initial belief about fc
is a Gaussian with mean [−2.0, 1.0, 1.0] and variance 1.0), we see manipulative behaviour by the agent
in almost twice as many games (150/1000). However, it is not a significant proportion, because even
though it spends less time learning the identity of the other robot, it still cannot find much more than the
normative behaviour.

Next, we also give the agent more planning resources by setting Nmax
A = 6 and Σb = 2 for the

agent, and we run 10 sets of 100 simulated trials for each of the following values of agent’s Timeout :
2, 30, 60, 120, 360, 600 seconds6. Figure 3 (a) (solid red line) shows the means and standard error of the
means of number of agent manipulations (in each set of 100 trials), plotted against agent’s Timeout.
Figure 3 (b) (solid red line) shows means and standard error of agent reward per trial (in each set of 100
trials). Table 5 shows the results of Figure 3 in tabular form.

As the model incorporates noise in movements as well as observations, the robots spend about 20
initial iterations coordinating with each other to choose a leader, during which time they do not receive
reward. Thus, a realistic upper bound on the agent’s reward is 20 × 100 = 2000. Table5 shows that at
Timeout = 2, the agent accumulates a reward of 425 on average, which is only 21% of the realistic
maximum. At Timeout = 600, the reward rises to 1222, which is 61% of the realistic maximum.
This makes sense because at Timeout = 600 the agent manipulates 48% of the time, and achieves
the maximum of 100 when it manipulates, and only 30 when it fails to manipulate, and (0.48 × 20 ×

6We use a Python implementation that is unoptimized. An optimised version will result in realistic timeouts.
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Table 5: Results of Figure 3 in Tabular Form

Agent Timeout No. of Agent Manipulations in 100 trials Agent Reward Obtained per Trial
(in seconds) Corobots BayesAct CoRobots CoRobots BayesAct CoRobots

2 7.3± 2.6 8.9± 3.5 424.9± 22.5 416.2± 42.4

30 31.5± 4.0 26.4± 4.5 1001.6± 34.1 765.0± 51.6

60 36.8± 3.2 31.6± 4.3 1075.7± 43.3 871.7± 50.1

120 38.6± 4.9 34.6± 3.6 1148.6± 59.8 934.3± 48.4

360 45.0± 3.1 37.8± 3.5 1191.5± 54.8 967.3± 47.1

600 47.5± 3.2 41.2± 3.6 1221.6± 51.3 1014.4± 46.5

100) + (0.52 × 20 × 30) = 1272, which is quite close to 1222. There is a diminishing rate of return
as timeout increases in Figure 3 that is explained by the exponential growth of the MCTS search tree as
Timeout increases linearly. Our experiments also showed that the results are relatively insensitive to
the choice of parameters such as δa and δo. We also tried solving the CoRobots problems using POMCP
by discretising the action space. However, even with only 5 discrete actions per dimension, there are 54

actions, making POMCP infeasible.
Finally, we play the CoRobots Game with BayesAct Robots. This means that the normative behaviour

is the deflection minimising action given by Affect Control Theory, instead of Equation (5), and the
transient impressions are used to compute the deflection. The game trials are set up exactly as before,
and the results are shown in Figure 3 in blue dashed lines. As expected, these results show the same
trends as those obtained previously, but with correspondingly lower values as the transient impressions
are used and introduce further complexity to the planning problem (18D state space rather than 9D). Our
results demonstrate that the POMCP-C algorithm is able to find and exploit manipulative affective actions
within the BayesAct POMDP, and gives some insight into manipulative affective actions in BayesAct.

4.3 Affective Handwashing System

Persons with dementia (PwD, e.g. Alzheimer’s disease) have difficulty completing activities of daily
living, such as handwashing, preparing food and dressing. The short-term memory impairment that is a
hallmark of Alzheimer’s disease leaves sufferers unable to recall what step to do next, or what important
objects look like. A POMDP-based agent called COACH has been developed (with discrete states, actions
and observations) that can assist PwD by monitoring the person and providing audio-visual cues when
the person gets “stuck” [28]. However, these prompts are pre-recorded messages that are delivered
with the same emotion each time. As an important next step, we use BayesAct and POMCP-C to give
COACH the ability to reason about the affective identity of the PwD, and about the affective content
of the prompts and responses. Here, we investigate the properties of BayesAct planning for COACH
in simulation. Details of a physical implementation of the handwashing system using BayesAct can be
found in [41, 46].

We first describe the POMDP model of COACH that incorporates BayesAct. The handwashing sys-
tem has 8 plansteps corresponding to the different steps of handwashing, describing the state of the water
(on/off), and hands (dirty/soapy/clean and wet/dry). An eight-valued variable PS describes the current
planstep. There are probabilistic transitions between plansteps described in a probabilistic plan-graph
(e.g. a PwD sometimes uses soap first, but sometimes turns on the tap first). We also use a binary vari-
able AW describing if the PwD is aware or not. Thus, X = {PS,AW} and the dynamics of the PS are
such that if the PwD is aware, then she will advance stochastically to the next planstep (according to the
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Table 6: Means and the standard error of the means (of each set of 10 simulations) of the number of
interactions, and of the last planstep reached for simulations between agent and client.

True Client Agent Action Total number of Interactions Last Planstep Reached
Identity Prompt No-prompt W/o POMCP-C With POMCP-C W/o POMCP-C With POMCP-C

BayesAct 18.13± 9.80 17.67± 12.05 6.63± 0.39 6.54± 0.51
Elder prompt mind 69.22± 9.28 67.75± 5.87 4.52± 0.58 5.02± 0.55

confer with mind 18.96± 8.60 17.96± 5.79 6.72± 0.33 6.81± 0.19
command mind 90.66± 5.61 85.68± 7.52 2.9± 0.63 2.12± 0.87

BayesAct 13.32± 7.3 13.07± 6.13 6.76± 0.28 6.71± 0.30
Patient prompt mind 27.25± 13.22 24.11± 8.40 5.70± 0.55 5.56± 0.98

confer with mind 20.86± 7.08 18.68± 6.14 6.58± 0.35 6.24± 0.56
command mind 76.94± 10.07 77.85± 8.76 4.27± 0.71 4.88± 1.20

BayesAct 16.63± 7.03 14.32± 6.61 6.74± 0.32 6.78± 0.21
Conval- prompt mind 48.42± 12.81 44.32± 10.68 5.66± 0.69 5.79± 0.78
escent confer with mind 18.89± 5.79 17.21± 6.23 6.68± 0.32 6.46± 0.42

command mind 62.24± 7.88 62.44± 7.67 5.09± 0.58 5.81± 0.61

BayesAct 66.60± 9.04 68.95± 8.83 5.17± 0.73 5.01± 1.23
Boss prompt mind 86.67± 8.07 93.08± 6.38 3.42± 0.83 2.53± 1.20

confer with mind 62.38± 12.50 64.66± 16.59 5.47± 0.74 4.97± 0.44
command mind 90.54± 6.54 93.43± 8.46 3.18± 0.98 2.78± 1.03

plan-graph), unless the deflection is high, in which case the PwD is more likely to become confused (lose
awareness). If she does not advance, she loses awareness. On the other hand, if the PwD is not aware,
and is prompted when deflection is low, then she will also move forward (according to the prompt) and
gain awareness. However, a high-deflection prompt will again lead to loss of awareness, and to slower
progress.

Table 7 shows an example simulation between the agent with the affective identity of
“assistant” (EPA = [1.5, 0.51, 0.45]) and a client (PwD) with the affective identity of “elder”
(EPA = [1.67, 0.01,−1.03]). The BayesAct agent must learn this identity (shown as fc in Table 7)
during the interaction if it wants to minimize deflection. We see in this case that the client starts with
AW=”yes” (1) and does the first two steps, but then stops and is prompted by the agent to rinse his
hands. This is the only prompt necessary, the deflection stays low, the agent gets a reasonable estimate
of the client identity (EPA = [2.8,−0.13,−1.36], a distance of 1.0). We show example utterances in
the table that are “made up” based on our extensive experience working with PwD interacting with a
handwashing assistant. Table 8 shows the same client (“elder”) but this time the agent always uses the
same affective actions: if prompting, it “commands” the user (EPA = [−0.09, 1.29, 1.59]) and when
not prompting it “minds” the user (EPA = [0.86, 0.17,−0.16]). Here we see that the agent prompts
cause significant deflection, and this causes the PwD to lose awareness (to become confused) and not
make any progress. The handwashing takes much longer, and the resulting interaction is likely much
less satisfying.

We modify this COACH POMDP model by adding 3D continuous state, action and observation
spaces to represent affective identities and behaviours (the normative action bias is BayesAct). The
social coordination bias is that the PwDs progress through the task is helped by prompting, but only
if the deflection is sufficiently low. We investigate the system in simulation using an agent identity of
“assistant” (EPA = [1.5, 0.51, 0.45]). This “assistant” agent interacts with the following fixed (but
unknown to the agent) client identities: “elder” ([1.67, 0.01, −1.03]), “patient” ([0.90, −0.69, −1.05]),
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Table 7: Example simulation between the agent and a client (PwD) who holds the affective identity of
“elder”. Affective actions are chosen by BayesAct. Possible utterances for agent and client are shown
that may correspond to the affective signatures computed.

TURN CLIENT STATE ACTION AGENT EXPECTATION CLIENT
AW PS Prop. Affect fc PS AW DEFL.

initial 1 0 - - [0.9,-0.69,-1.05] 0 0.72 -
client 1 0 put on soap [1.6,0.77,-1.4] [2.3,-0.77,-1.23] 0.96 0.94 0.23

“[looks at sink]”
agent 1 1 - [1.3,0.26,-0.40] [2.41,-0.81,-1.23] 1.0 ≈1.0 1.07

“[looks at client]”
client 1 1 turn on tap [2.2,0.90,-1.1] [2.7,-0.36,-1.37] 3.0 0.99 0.99

“oh yes, this is good”
agent 1 3 - [1.3,0.4,0.35] [2.7,-0.37,-1.38] 3.0 ≈1.0 1.47

“I’m here to help, Frank”
client 1 3 - [2.1,0.72,-1.4] [2.6,-0.34,-1.38] 3.0 0.01 1.14

“this is nice”
agent 0 3 rinse hands [1.5,0.67,0.06] [2.6,-0.34,-1.39] 3.0 ≈0.0 1.50

“Great! Let’s rinse hands”
client 0 3 rinse hands [1.9,0.78,-1.4] [2.7,-0.31,-1.44] 4.0 0.99 1.11

“oh yes, this is good”
agent 1 4 - [1.6,0.47,-0.13] [2.7,-0.30,-1.4] 4.0 ≈1.0 1.61

“good job Frank”
client 1 4 turn tap off [2.0,0.94,-1.3] [2.6,-0.17,-1.24] 5.9 0.96 1.19

“[looks at tap]”
agent 1 6 - [1.5,0.56,-0.35] [2.6,-0.17,-1.2] 6.0 ≈1.0 1.56

“This is nice, Frank”
client 1 6 - [2.1,0.86,-1.42] [2.8,-0.14,-.14] 6.0 ≈0.0 1.22

“Oh yes, good good”
agent 1 6 dry hands [1.4,0.66,-0.06] [2.8,-0.13,-1.36] 6.0 ≈0.0 1.55

“[looks at]”
client 1 6 dry hands [1.94,1.1,-1.9] - - - 1.55

“all done!”
client 1 7 - - - - - -

“convalescent” ([0.3, 0.09, −0.03]), and “boss”7 ([0.48, 2.16, 0.94]). We compare two policies, in which
the affective actions (i.e. how to deliver a prompt) are either computed with BayesAct and POMCP-
C, or are fixed (as in the current COACH system). In both cases, POMCP-C is used to compute a
policy for propositional actions (i.e. what prompt to give). We run 10 sets of 10 simulated trials. The
results are shown in Table 6. As expected, the fixed policy of “command” ([−0.09, 1.29, 1.59]) gives the
worst performance in all cases. These results suggest that a fixed affective policy may work for some
affective identities, but not for others, whereas the POMCP-C policy can learn and adapt to different
client identities.

The difference in Table 6 between BayesAct used with POMCP-C and without is not significant.
In 10 out of 16 tests, POMCP-C allows for action choices that lead to fewer interactions, and does
better on average. Perhaps more interestingly, this estimate of error can be used to evaluate the quality
of the action bias within the given interaction. If the POMCP-C model starts doing worse on average
than a fixed policy, it is an indication that the action bias is not very good, and that there is a possible
misalignment between the agent and the patient.

4.4 8D Intersection Problem

POMCP-C can be generalized to non-affective domains where action biases naturally arise. In the 8D
Intersection Problem [9], a robot agent’s task is to navigate a 2D space to reach a goal, by avoiding a

7Many persons with Alzheimer’s disease think of themselves in terms of some past identity or role.
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Table 8: Example simulation between the agent and a client (PwD) who holds the affective identity of
“elder”. Affective actions were fixed: if prompting, it “commands” the user and when not prompting it
“minds” the user.

TURN CLIENT STATE ACTION AGENT EXPECTATION CLIENT
AW PS Prop. Affect fc PS AW DEFL.

initial 1 0 - - [0.9,-69,-1.05] 0 0.72 -
client 1 0 put on soap [1.6,0.77,-1.4] [2.3,-0.77,-1.23] 0.96 0.94 0.23

“[looks at sink]”
agent 1 1 - [0.85,0.17,-0.16] [2.41,-0.81,-1.23] 1.0 ≈1.0 1.34

“[looks at client]”
client 1 1 turn on tap [2.3,0.90,-1.19] [2.62,-0.42,-1.43] 2.98 0.99 1.21

“oh yes, this is good”
agent 1 3 - [0.85,0.17,-0.16] [2.7,-0.42,-1.5] 3.0 ≈1.0 1.86

“[looks at client]”
client 1 3 - [2.2,0.79,-1.47] [2.6,-0.30,-1.4] 3.0 ≈0.0 1.56

“oh yes, this is good”
agent 0 3 rinse hands [-0.1,1.29,1.59] [2.6,-0.30,-1.4] 3.0 ≈0.0 4.11

“Rinse your hands!”
client 0 3 - [1.9,1.4,-1.7] [2.5,-0.30,-1.3] 3.0 ≈0.0 2.90

“[looks at sink]”
agent 0 3 rinse hands [-0.1,1.29,1.59] [2.5,-0.29,-1.3] 3.0 ≈0.0 5.80

“Rinse your hands!”
client 0 3 - [1.9,0.97,-1.9] [2.4,-0.27,-1.26] 3.0 0.02 4.28

“[looks at sink]”
agent 0 3 rinse hands [-0.1,1.29,1.59] [2.4,-0.26,-1.27] 3.0 0.02 7.05

...continues for 85 more steps until client finally finishes ...

moving obstacle. The state space consists of 8-tuples (ax, ay, avx, avy, obx, oby, obvx, obvy) ∈ R8, where
the first four values give the agent’s position and velocity in 2D, and the last four values give the obstacle’s
position and velocity in 2D. The agent and obstacle are circular disks of radius 1. The obstacles starts at
obx = 6.0 m and a random oby ∈ [−8.0, 8.0], and moves vertically8 with fixed velocity (obvx, obvy) =
(0.0 m/s, 1.0 m/s). The agent starts with (ax, ay, avx, avy) = (0.0 m, 0.0 m, 1.0 m/s, 0.0 m/s), and
at each time step, it decides whether to accelerate by ±1.0 m/s2 on the horizontal axis, to reach the goal
located at (9.0 m, 0.0 m). The agent has no knowledge of the position of the obstacle unless they are
less than 4 m apart. The discount factor is 0.95, and the reward is +10 for reaching the goal and −10
for colliding with the obstacle. Thus, the problem has an 8D continuous state space, a discrete (binary)
action space, and an 8D continuous observation space (a noisy measurement of the state).

We ran 1000 simulated trials with the following settings. The belief state of the agent consists of
50,000 particles, and is initialised to an 8D Gaussian with mean (0.0, 0.0, 1.0, 0.0, 6.0, 0.0, 0.0, 1.0) and
diagonal covariance (10−4, 10−4, 10−4, 10−4, 10−4, 8.0, 10−4, 10−4). When the agent and obstacle
are more than 4 m apart, the agent receives a uniformly random observation of the obstacle’s position
and velocity. Otherwise, the mean of the observation model P (o|x) is always the state x with variance
10−4. In addition, the model incorporates small white noise. With the POMCP-C parameters δo = 0.5
and Timeout = 15s, our algorithm achieves an average discounted reward of 5.9, compared to 5.0 by
Brechtel et al’s point-based backups.

To further demonstrate how POMCP-C handles continuous action spaces, we devise a continuous-
action version of this problem, where the agent can sample actions from the action bias N (1.0, σ) ∪
N (−1.0, σ), σ being a settable parameter. The number of particles, initial belief state and observation
model remain the same. With σ = 0.4, δa = 0.25, δo = 0.5, Nmax

A = 15 and Timeout = 400,
POMCP-C achieves an average discounted reward of 7.8. This is a dramatic improvement compared to

8Whenever oby > 8.0m, it is reset to −8.0.
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Figure 4: 8D Intersection Problem (continuous actions). σ = 0.4, δo = 0.5, Nmax
A = 15, Timeout =

400 unless otherwise noted.

the discrete-action version, as the agent can fine-tune its acceleration to avoid the moving obstacle more
often. Figure 4(a) and (b) show how the average discounted reward varies with δa, for different fixed
values of σ and δo, respectively. We see that the average reward increases rapidly with increasing δa (as
the number of actions in the tree decreases, leading to more search per action), but peaks and declines
slowly because important actions are not distinguished anymore.

5 Related Work

Damasio has convincingly argued, both from a functional and neurological standpoint, for emotions
playing a key role in decision making and for human social action [13]. His Somatic Marker Hypothesis
is contrasted against the Platonic “high-reason” view of intelligence, in which pure rationality is used to
make decisions. Damasio argues that, because of the limited capacity of working memory and attention,
the Platonic view will not work. Instead, learned neural markers focus attention on actions that are likely
to succeed, and act as a neural bias allowing humans to work with fewer alternatives. These somatic
markers are “cultural prescriptions” for behaviours that are “rational relative to the social conventions
and ethics” ( [13], p200).

LeDoux [39] argues the same thing from an evolutionary standpoint. He theorises that the subjective
feeling of emotion must take place at both unconscious and conscious levels in the brain, and that con-
sciousness is the ability to relate stimuli to a sense of identity, among other things. This is not a new idea.
Writing over a century ago, William James pointed to self-reference as the key to consciousness [34].
That is, thinking and feeling can only exist consciously in relation to an individual, a self [37].

With remarkably similar conclusions coming from a more functional (economic) viewpoint, Kahne-
man has demonstrated that human emotional reasoning often overshadows, but is important as a guide
for, cognitive deliberation [36]. Kahneman presents a two-level model of intelligence, with a fast/nor-
mative/reactive/affective mechanism being the “first on the scene”, followed by a slow/cognitive/delib-
erative mechanism that operates if sufficient resources are available. Akerlof and Kranton attempt to
formalise fast thinking by incorporating a general notion of identity into an economic model (utility
function) [2]. Earlier work on social identity theory foreshadowed this economic model by noting that
simply assigning group membership increases individual cooperation [33, 61]. Other authors have also
confirmed that group membership influences individual choice (e.g. [11]). This work has been contested
by the counter-argument that it is not the group membership that increases cooperation, but rather that the
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group membership increases individual’s beliefs that others will cooperate (see [38]). BayesAct unifies
these two views, since beliefs about cooperation are tightly tied to beliefs about identities in the group.
If a person is told they are in a group of robbers, they will have the belief that others will defect because
that is the prescription for the identity of robber, even when interacting with other robbers.

The idea that unites Kahneman, LeDoux, and Damasio (and others) is the tight connection between
emotion and action. These authors, from very different fields, propose emotional reasoning as a “quick
and dirty”, yet absolutely necessary, guide for cognitive deliberation. The neurological underpinnings
of this connection are discussed by Zhu and Thagard [64] who, following LeDoux [39], point to the
amygdala as being the “hub” the wheel of emotional processing in the brain, and discuss how emotion
plays an important role in both the generation, and in the execution of action. They discuss two neural
pathways from the sensory thalamus to amygdala that are used in action generation: the direct “low
road”, and the more circuitous “high road” that makes a stop in the sensory cortex. While the low road
enables fast, pre-programmed, reactive responses, the high-road enables a more careful evaluation of the
situation. The two pathways complement each other, with the default option opting for more potentially
life-saving false alarms than the high road. ACT gives a functional account of the quick pathway as
sentiment encoding prescriptive behaviour, while BayesAct shows how this account can be extended
with a slow pathway that enables exploration and planning away from the prescription.

Our work fits well into a wide body of work on affective computing (AC) [51, 53], with a growing
focus on socio-cultural agents (e.g. [15]). In AC, emotions are usually inferred based on cognitive ap-
praisals (e.g. a thwarted goal causes anger), and these are used to guide action through a set of “coping”
mechanisms. Emotions are usually framed following the rationalistic view proposed by Simon as “inter-
rupts” to cognitive processing [59]. Gratch and Marsella [23] are possibly the first to propose a concrete
computational mechanism for coping. Building on the work of Smith and Lazarus [60], they propose a
five stage process wherein beliefs, desires, plans and intentions are first formulated, and upon which emo-
tional appraisals are computed. Coping strategies then use a set of ad hoc rules by modifying elements
of the model such as probabilities and utilities, or by modifying plans or intentions. Si et al. [57] com-
pute emotional appraisals from utility measures (including beliefs about other agent’s utilities, as in an
I-POMDP [22]), they leave to future work “how emotion affects the agents decision-making and belief
update processes” ( [57] section 8). Goal prioritization using emotional appraisals have been investi-
gated [4,19,32,42,47,47], as have normative multi-agent systems (NorMAS) [7]. There has been recent
work on facial expressions in PD games, showing that they can significantly affect the outcomes [12,14].

Most approaches to emotional action guidance only give broad action guides in extreme situations,
leaving all else to the cognitive faculties. BayesAct specifies one simple coping mechanism: minimizing
inconsistency in continuous-valued sentiment. This, when combined with mappings describing how
sentiments are appraised from events and actions, can be used to prescribe actions that maximally reduce
inconsistency. These prescriptions are then used as guides for higher-level cognitive (including rational)
processing and deliberation. BayesAct therefore provides an important step in the direction of building
models that integrate “cognitive” and “affective” reasoning.

The affective component of BayesAct (e.g. f , τ ,ba) describes fast, heuristic, everyday human inter-
action: it is what humans use to “get along” in a social world. The propositional component, on the other
hand (e.g. x, a), describes more traditional cognitive artificial intelligence. BayesAct agents are free to
use X to model other agents at any level of detail (including as full POMDPs [17]). Such more complex
modeling will allow agents to reason about how other agents are reasoning (cognitively) about them, etc.
Nevertheless, even such crafty and devious agents will need to follow the norms of the society they are
trying to manipulate, otherwise other agents will be sure to suspect something is up!

BayesAct requires anytime techniques for solving large continuous POMDPs with non-Gaussian be-
liefs. While [63] describe exact symbolic methods for handling such problems, it is a challenge to scale
their methods to the size of problems we are considering in this paper. There has been much recent effort
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in solving continuous POMDPs with Gaussian beliefs (e.g. [16,20,49]), but these are usually in robotics
motion planning where such approximations are reasonable. Point-based methods [56] have yielded so-
lutions for continuous POMDPs for small domains [6, 9, 52], but they are not anytime and scalability is
an issue, although recent work in parallel versions of point-based algorithms may lead to greater scal-
ability [40]. Point-based methods (e.g. [52]) require the value function to be closed under the Bellman
operator, which is not possible for BayesAct. Continuous Perseus, for example [52], is an approximate
point-based algorithm for computing value functions (sets of alpha functions) for domains with contin-
uous states. However, the value function itself must be closed under the Bellman backup operator to
make the computation tractable, requiring a linear-Gaussian transition function (which we do not have).
Even if a linearisation of the ACT equations was found, the explosion of the number of Gaussian mix-
tures requires contraction operators that further complicate the approximation. Other representations of
alpha functions are as policy graphs [6], which does not work for continuous observations, or as decision
trees [9], which we compared against in Section 4.4.

Approximate techniques using Monte-Carlo tree search (MCTS) methods have seen more scalability
success [10], and are anytime. POMCP [58] uses MCTS to efficiently solve POMDPs with continuous
state spaces. By design, POMCP is unable to handle models with continuous action spaces, such as
BayesAct. POMCoP uses POMCP to guide a sidekick’s actions during a cooperative video game [44].
While this game has many similarities to CoRobots, it does not have continuous actions and restricts
agent types to a small and countable set. POMCoP also uses an action bias, in this case it predicts the
human’s movements in the video game according to their type (this would be equivalent to our social
coordination bias). Recent proposals for large-scale POMDPs have included methods to leverage struc-
ture in multi-agent teams [3]. Guez et al. [24] present a variant of POMCP called BAMCP for solving
Bayes-adaptive Markov decision processes (BAMDPs), which have continuous state, but deterministic
(constant) dynamics. BAMDPs are POMDPs in which the continuous state (the model parameters) re-
mains constant. BAMCP works by selecting a single sample from the distribution over models at the
start of a simulation, so it is not general enough to work for our POMDPs, which have continuous states
but not constant dynamics.

MCTS methods are more appealing for BayesAct than other solvers because: (1) MCTS does not
require a computation of the value function over the continuous state space and non-linear dynamics; (2)
MCTS provides an anytime “quick and dirty” solution that corresponds naturally to our interpretation of
the “fast thinking” heuristic.

6 Conclusion

We have studied an anytime planning method for a class of POMDP models of affective interactions,
BayesAct, in which culturally shared sentiments are used to provide normative action guidance. BayesAct
is an exciting new development in artificial intelligence that combines affective computing, sociological
theory, and probabilistic modeling. The large state, action and observation space of these POMDPs,
along with the non-linear dynamics, leads us to a Monte-Carlo Tree Search (MCTS) method based on the
POMCP algorithm. We show results of this method on two simulated social dilemmas, demonstrating
manipulative behaviours. We also present an assistive device for persons with dementia that can plan
strategies of affective prompts or cues. Finally, we show how our MCTS algorithm can tackle other
domains with impressive results.
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timeout
γ 1 2 5 10 30 60 120

0.90 mean agent 10.29± 0.38 10.33± 0.42 10.55± 0.28 10.44± 0.34 10.72± 0.18 10.76± 0.20 10.96± 0.18
client 7.10± 3.75 6.70± 4.21 4.50± 2.80 5.65± 3.44 2.80± 1.82 2.45± 1.96 0.45± 1.79

mean agent 10.58± 0.10 10.66± 0.08 10.78± 0.22 10.69± 0.19 10.85± 0.21 10.87± 0.24 11.00± 0.00
(last 10) client 4.20± 1.03 3.40± 0.84 2.20± 2.20 3.10± 1.91 1.50± 2.07 1.30± 2.36 0.00± 0.00
median agent 10.00 10.00 11.00 10.00 11.00 11.00 11.00

client 10.00 10.00 0.00 10.00 0.00 0.00 0.00
median agent 11.00 11.00 11.00 11.00 11.00 11.00 11.00
(last 10) client 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A1: PD experiments with client strategy: (co) and discount γ = 0.9
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Figure A1: PD experiments with client strategy: (co) and discount γ = 0.9 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.90 mean agent 0.67± 0.21 0.78± 0.24 0.85± 0.20 0.89± 0.23 0.93± 0.16 0.94± 0.16 0.93± 0.21
client 4.35± 2.11 3.20± 2.42 2.50± 2.04 2.10± 2.31 1.70± 1.63 1.60± 1.57 1.75± 2.15

mean agent 0.75± 0.16 0.86± 0.13 0.94± 0.10 0.96± 0.07 1.00± 0.00 1.00± 0.00 1.00± 0.00
(last 10) client 3.50± 1.58 2.40± 1.35 1.60± 0.97 1.40± 0.70 1.00± 0.00 1.00± 0.00 1.00± 0.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00

client 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A2: PD experiments with client strategy: (de) and discount γ = 0.9
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Figure A2: PD experiments with client strategy: (de) and discount γ = 0.9 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.90 mean agent 1.50± 2.92 1.58± 2.89 1.81± 2.89 1.83± 2.89 1.92± 2.97 1.92± 2.92 1.88± 2.89
client 5.90± 2.85 5.05± 3.47 2.80± 2.26 2.55± 2.68 1.70± 1.17 1.75± 1.65 2.15± 2.25

mean agent 0.65± 0.14 0.79± 0.11 0.93± 0.07 0.99± 0.03 1.00± 0.00 1.00± 0.00 1.00± 0.00
(last 10) client 4.50± 1.35 3.10± 1.10 1.70± 0.67 1.10± 0.32 1.00± 0.00 1.00± 0.00 1.00± 0.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00

client 5.50 1.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A3: PD experiments with client strategy: (to) and discount γ = 0.9
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Figure A3: PD experiments with client strategy: (to) and discount γ = 0.9 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.

32



timeout
γ 1 2 5 10 30 60 120

0.90 mean agent 7.86± 3.23 7.79± 3.02 4.74± 2.63 3.57± 2.51 2.27± 2.08 2.67± 2.09 1.64± 2.24
client 7.69± 3.18 7.35± 3.20 4.19± 2.39 3.02± 1.93 1.72± 0.51 2.12± 0.88 1.08± 0.46

mean agent 5.71± 1.44 5.58± 1.13 2.95± 2.01 2.20± 1.89 1.55± 1.74 1.65± 1.39 1.00± 0.00
(last 10) client 5.38± 1.70 4.70± 1.11 2.29± 1.56 1.87± 1.50 1.44± 1.39 1.43± 0.93 1.00± 0.00
median agent 10.00 10.00 1.00 1.00 1.00 1.00 1.00

client 10.00 10.00 1.00 1.00 1.00 1.00 1.00
median agent 10.00 5.50 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A4: PD experiments with client strategy: (tt) and discount γ = 0.9

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d/

ga
m

e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d/

ga
m

e

mean/median (last 10 games)

Figure A4: PD experiments with client strategy: (tt) and discount γ = 0.9 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.90 mean agent 8.70± 2.28 8.46± 2.54 3.37± 2.78 6.18± 2.95 3.85± 2.61 3.44± 2.71 3.98± 2.48
client 7.21± 3.54 7.13± 3.63 1.55± 0.87 4.64± 2.83 2.65± 1.10 2.29± 1.10 2.83± 1.24

mean agent 7.39± 1.17 6.91± 1.07 1.96± 1.35 3.92± 2.63 2.57± 3.32 2.03± 2.18 2.69± 2.86
(last 10) client 4.42± 1.40 4.27± 1.01 1.30± 0.58 2.49± 1.54 2.13± 2.39 1.59± 1.26 1.92± 1.61
median agent 10.00 10.00 1.00 10.00 1.00 1.00 1.00

client 10.00 10.00 1.00 1.00 1.00 1.00 1.00
median agent 10.00 10.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A5: PD experiments with client strategy: (t2) and discount γ = 0.9
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Figure A5: PD experiments with client strategy: (t2) and discount γ = 0.9 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.90 mean agent 7.26± 3.89 7.21± 4.13 4.47± 2.46 5.75± 2.89 2.75± 2.15 3.48± 2.17 1.72± 2.35
client 7.21± 3.50 7.21± 3.64 4.42± 2.15 5.42± 2.99 2.31± 1.07 2.93± 1.44 1.23± 0.92

mean agent 4.52± 1.28 4.42± 0.59 2.71± 2.20 3.76± 2.22 1.64± 1.37 2.29± 2.09 1.00± 0.00
(last 10) client 4.41± 1.68 4.42± 0.75 2.71± 1.69 3.10± 1.66 1.53± 1.12 1.96± 1.57 1.00± 0.00
median agent 10.00 10.00 1.00 10.00 1.00 1.00 1.00

client 10.00 10.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A6: PD experiments with client strategy: (2t) and discount γ = 0.9
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Figure A6: PD experiments with client strategy: (2t) and discount γ = 0.9 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.90 mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.93± 1.30 9.50± 0.92 9.35± 0.94 9.21± 1.34
client 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.38± 1.62 8.56± 1.56 8.09± 1.94 7.46± 2.40

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.89± 2.74 8.95± 1.24 8.64± 1.86 8.36± 1.74
(last 10) client 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.34± 3.74 7.63± 3.52 6.77± 4.01 5.61± 3.91
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A7: PD experiments with client strategy: (1.0) and discount γ = 0.9
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Figure A7: PD experiments with client strategy: (1.0) and discount γ = 0.9 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.90 mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.54± 1.15 8.91± 0.99 4.14± 2.38 3.14± 1.96
client 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.27± 1.35 8.47± 1.11 3.71± 2.36 2.87± 2.13

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.60± 3.32 8.10± 3.75 2.08± 2.84 1.65± 2.09
(last 10) client 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.27± 3.76 8.21± 3.80 2.08± 2.84 1.43± 1.06
median agent 10.00 10.00 10.00 10.00 10.00 1.00 1.00

client 10.00 10.00 10.00 10.00 10.00 1.00 1.00
median agent 10.00 10.00 10.00 10.00 10.00 1.00 1.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 1.00 1.00

Table A8: PD experiments with client strategy: (same) and discount γ = 0.9
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Figure A8: PD experiments with client strategy: (same) and discount γ = 0.9 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.99 mean agent 10.33± 0.15 10.33± 0.18 10.06± 0.14 10.07± 0.07 10.07± 0.06 10.02± 0.04 10.47± 0.14
client 6.70± 1.49 6.70± 1.78 9.40± 1.35 9.30± 0.66 9.25± 0.64 9.80± 0.41 5.25± 1.37

mean agent 10.39± 0.12 10.43± 0.19 10.12± 0.10 10.10± 0.25 10.09± 0.19 10.04± 0.13 10.54± 0.38
(last 10) client 6.10± 1.20 5.70± 1.95 8.80± 1.03 9.00± 2.49 9.10± 1.91 9.60± 1.26 4.60± 3.84
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 11.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 0.00

Table A9: PD experiments with client strategy: (co) and discount γ = 0.99
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Figure A9: PD experiments with client strategy: (co) and discount γ = 0.99 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.99 mean agent 0.59± 0.26 0.55± 0.21 0.47± 0.20 0.58± 0.22 0.67± 0.21 0.64± 0.26 0.77± 0.22
client 5.10± 2.61 5.50± 2.12 6.35± 1.98 5.20± 2.17 4.35± 2.11 4.65± 2.60 3.30± 2.23

mean agent 0.73± 0.19 0.64± 0.19 0.50± 0.20 0.66± 0.15 0.72± 0.09 0.76± 0.11 0.87± 0.15
(last 10) client 3.70± 1.89 4.60± 1.90 6.00± 2.00 4.40± 1.51 3.80± 0.92 3.40± 1.07 2.30± 1.49
median agent 1.00 1.00 0.00 1.00 1.00 1.00 1.00

client 1.00 1.00 11.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 0.50 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 6.00 1.00 1.00 1.00 1.00

Table A10: PD experiments with client strategy: (de) and discount γ = 0.99
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Figure A10: PD experiments with client strategy: (de) and discount γ = 0.99 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.99 mean agent 1.54± 2.95 1.52± 2.97 1.38± 2.97 1.48± 2.93 1.57± 2.96 1.60± 2.91 1.68± 2.90
client 5.45± 2.63 5.65± 2.25 7.10± 2.07 6.10± 2.97 5.15± 2.28 4.85± 2.54 4.10± 2.22

mean agent 0.72± 0.19 0.69± 0.12 0.51± 0.19 0.64± 0.16 0.71± 0.19 0.78± 0.14 0.81± 0.11
(last 10) client 3.80± 1.87 4.10± 1.20 5.90± 1.91 4.60± 1.58 3.90± 1.85 3.20± 1.40 2.90± 1.10
median agent 1.00 1.00 0.00 1.00 1.00 1.00 1.00

client 1.00 1.00 11.00 10.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A11: PD experiments with client strategy: (to) and discount γ = 0.99
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Figure A11: PD experiments with client strategy: (to) and discount γ = 0.99 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.99 mean agent 7.29± 1.87 7.01± 1.73 9.16± 1.32 10.00± 0.00 8.38± 0.92 7.33± 1.42 7.33± 1.17
client 6.96± 1.83 6.74± 1.58 8.95± 1.46 10.00± 0.00 8.33± 0.85 7.05± 1.30 7.05± 1.02

mean agent 5.89± 1.26 6.41± 1.56 8.69± 1.41 10.00± 0.00 8.28± 2.82 7.04± 3.45 6.87± 3.75
(last 10) client 5.56± 0.99 6.30± 1.29 8.25± 1.64 10.00± 0.00 8.39± 2.59 6.93± 3.48 6.65± 3.83
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A12: PD experiments with client strategy: (tt) and discount γ = 0.99
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Figure A12: PD experiments with client strategy: (tt) and discount γ = 0.99 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.99 mean agent 9.47± 1.15 9.66± 0.75 9.90± 0.42 9.96± 0.20 9.97± 0.16 9.25± 0.80 7.28± 1.68
client 6.83± 2.15 8.45± 1.45 9.02± 1.68 9.46± 1.25 9.76± 0.70 8.59± 0.77 6.01± 1.40

mean agent 9.17± 1.08 9.35± 1.18 9.87± 0.55 9.91± 0.54 9.95± 0.23 9.17± 1.91 6.57± 3.75
(last 10) client 5.43± 1.08 7.59± 1.50 8.33± 1.44 8.92± 1.32 9.51± 0.94 8.40± 2.42 5.69± 4.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A13: PD experiments with client strategy: (t2) and discount γ = 0.99
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Figure A13: PD experiments with client strategy: (t2) and discount γ = 0.99 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.99 mean agent 5.25± 2.75 7.42± 2.35 8.72± 1.41 9.90± 0.31 8.32± 0.90 8.45± 0.87 7.63± 0.91
client 7.01± 1.80 8.08± 1.96 8.89± 1.27 9.96± 0.23 8.93± 0.91 8.67± 1.20 7.91± 0.84

mean agent 2.90± 2.20 5.84± 2.83 8.19± 2.62 9.81± 0.60 7.86± 3.76 8.00± 3.84 7.33± 4.31
(last 10) client 5.76± 1.04 7.05± 1.51 8.30± 1.53 9.92± 0.25 8.63± 2.22 8.22± 2.61 7.99± 3.25
median agent 1.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 1.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 5.50 10.00 10.00 10.00 10.00 10.00 10.00

Table A14: PD experiments with client strategy: (2t) and discount γ = 0.99

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 1

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 2

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 5

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 120

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d/

ga
m

e

mean/median (20 games)

1 10 30 60 120
0

2

4

6

8

10

12

timeout

R
ew

ar
d/

ga
m

e

mean/median (last 10 games)

Figure A14: PD experiments with client strategy: (2t) and discount γ = 0.99 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.99 mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 9.41± 1.17 9.79± 0.43 10.00± 0.00
client 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.97± 1.25 9.68± 0.48 10.00± 0.00

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.79± 1.60 9.67± 1.04 10.00± 0.00
(last 10) client 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.24± 2.29 9.34± 2.09 10.00± 0.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A15: PD experiments with client strategy: (1.0) and discount γ = 0.99
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Figure A15: PD experiments with client strategy: (1.0) and discount γ = 0.99 Red=client, Blue=agent,
dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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timeout
γ 1 2 5 10 30 60 120

0.99 mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.15± 1.55 9.40± 0.46
client 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 8.21± 1.50 9.52± 0.48

mean agent 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 6.91± 3.38 9.26± 2.34
(last 10) client 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 7.24± 3.08 9.48± 1.64
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A16: PD experiments with client strategy: (same) and discount γ = 0.99
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Figure A16: PD experiments with client strategy: (same) and discount γ = 0.99 Red=client,
Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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σb
γ 0.01 0.05 0.10 0.50 1.00 2.00 5.00

0.99 mean agent 10.64± 0.27 10.77± 0.22 10.23± 0.10 10.02± 0.05 10.04± 0.08 10.00± 0.00 10.00± 0.00
client 3.60± 2.74 2.35± 2.18 7.70± 1.03 9.85± 0.49 9.60± 0.75 10.00± 0.00 10.00± 0.00

mean agent 10.75± 0.13 10.80± 0.11 10.28± 0.39 10.03± 0.07 10.08± 0.16 10.00± 0.00 10.00± 0.00
(last 10) client 2.50± 1.27 2.00± 1.05 7.20± 3.88 9.70± 0.67 9.20± 1.62 10.00± 0.00 10.00± 0.00
median agent 11.00 11.00 10.00 10.00 10.00 10.00 10.00

client 0.00 0.00 10.00 10.00 10.00 10.00 10.00
median agent 11.00 11.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 0.00 0.00 10.00 10.00 10.00 10.00 10.00

Table A17: PD experiments with client strategy: (co), timeout=120.0 and discount γ = 0.99.
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Figure A17: PD experiments with client strategy: (co), timeout=120.0 and discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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σb
γ 0.01 0.05 0.10 0.50 1.00 2.00 5.00

0.99 mean agent 0.71± 0.23 0.74± 0.31 0.78± 0.26 0.78± 0.24 0.73± 0.25 0.76± 0.27 0.73± 0.24
client 3.85± 2.32 3.60± 3.10 3.25± 2.55 3.20± 2.38 3.65± 2.48 3.40± 2.74 3.70± 2.36

mean agent 0.81± 0.11 0.88± 0.06 0.87± 0.13 0.86± 0.13 0.83± 0.14 0.89± 0.12 0.79± 0.12
(last 10) client 2.90± 1.10 2.20± 0.63 2.30± 1.25 2.40± 1.35 2.70± 1.42 2.10± 1.20 3.10± 1.20
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00

client 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A18: PD experiments with client strategy: (de), timeout=120.0 and discount γ = 0.99.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.01

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.05

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game
R

ew
ar

d

σb: 0.1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 0.5

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 1

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

σb: 5

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d/

ga
m

e

mean/median (20 games)

0.1 0.5 1 2
0

2

4

6

8

10

12

σb

R
ew

ar
d/

ga
m

e

mean/median (last 10 games)

Figure A18: PD experiments with client strategy: (de), timeout=120.0 and discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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σb
γ 0.01 0.05 0.10 0.50 1.00 2.00 5.00

0.99 mean agent 1.69± 2.85 1.76± 2.93 1.70± 2.89 1.62± 2.88 1.52± 2.91 1.60± 2.89 1.60± 2.89
client 4.05± 2.31 3.30± 2.32 3.95± 3.10 4.70± 3.74 5.65± 3.08 4.85± 3.38 4.85± 3.42

mean agent 0.77± 0.13 0.85± 0.12 0.88± 0.09 0.88± 0.11 0.72± 0.18 0.82± 0.16 0.82± 0.14
(last 10) client 3.30± 1.34 2.50± 1.18 2.20± 0.92 2.20± 1.14 3.80± 1.81 2.80± 1.62 2.80± 1.40
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00

client 1.00 1.00 1.00 1.00 1.00 1.00 1.00
median agent 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(last 10) client 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A19: PD experiments with client strategy: (to), timeout=120.0 and discount γ = 0.99.
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Figure A19: PD experiments with client strategy: (to), timeout=120.0 and discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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σb
γ 0.01 0.05 0.10 0.50 1.00 2.00 5.00

0.99 mean agent 4.67± 2.76 3.42± 2.83 5.93± 1.84 9.34± 0.50 9.93± 0.25 9.82± 0.40 9.78± 0.44
client 4.34± 2.39 2.98± 2.25 5.66± 1.49 9.18± 0.68 9.76± 0.69 9.77± 0.43 9.72± 0.47

mean agent 3.87± 1.04 1.80± 0.69 4.96± 3.89 9.03± 2.83 9.85± 0.34 9.65± 1.11 9.65± 1.11
(last 10) client 3.98± 1.16 1.91± 0.62 4.96± 3.92 8.81± 2.82 9.52± 0.81 9.54± 1.45 9.54± 1.45
median agent 1.00 1.00 10.00 10.00 10.00 10.00 10.00

client 1.00 1.00 10.00 10.00 10.00 10.00 10.00
median agent 1.00 1.00 1.00 10.00 10.00 10.00 10.00
(last 10) client 1.00 1.00 1.00 10.00 10.00 10.00 10.00

Table A20: PD experiments with client strategy: (tt), timeout=120.0 and discount γ = 0.99.
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Figure A20: PD experiments with client strategy: (tt), timeout=120.0 and discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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σb
γ 0.01 0.05 0.10 0.50 1.00 2.00 5.00

0.99 mean agent 7.46± 2.33 4.83± 2.80 8.11± 1.18 9.90± 0.43 10.02± 0.05 10.02± 0.04 10.00± 0.00
client 5.16± 2.58 2.75± 2.12 7.17± 1.03 9.46± 1.12 9.85± 0.49 9.85± 0.37 10.00± 0.00

mean agent 5.59± 2.47 3.73± 2.67 7.43± 3.42 9.81± 0.33 10.03± 0.05 10.03± 0.05 10.00± 0.00
(last 10) client 3.61± 1.67 2.41± 1.32 6.99± 3.92 8.93± 1.55 9.70± 0.48 9.70± 0.48 10.00± 0.00
median agent 10.00 1.00 10.00 10.00 10.00 10.00 10.00

client 1.00 1.00 10.00 10.00 10.00 10.00 10.00
median agent 1.00 1.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 1.00 1.00 10.00 10.00 10.00 10.00 10.00

Table A21: PD experiments with client strategy: (t2), timeout=120.0 and discount γ = 0.99.
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Figure A21: PD experiments with client strategy: (t2), timeout=120.0 and discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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σb
γ 0.01 0.05 0.10 0.50 1.00 2.00 5.00

0.99 mean agent 2.63± 3.39 2.69± 3.01 8.41± 0.83 9.76± 0.99 9.82± 0.40 9.78± 0.58 9.90± 0.31
client 3.96± 2.56 3.85± 2.08 8.57± 1.21 9.48± 1.47 9.82± 0.40 9.72± 0.60 9.96± 0.23

mean agent 1.52± 0.57 1.12± 0.59 8.01± 3.62 9.51± 0.63 9.64± 1.14 9.56± 0.96 9.81± 0.60
(last 10) client 2.73± 1.17 2.77± 1.35 8.12± 2.66 8.96± 0.82 9.64± 1.14 9.45± 1.16 9.92± 0.25
median agent 1.00 1.00 10.00 10.00 10.00 10.00 10.00

client 1.00 1.00 10.00 10.00 10.00 10.00 10.00
median agent 1.00 1.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 1.00 1.00 10.00 10.00 10.00 10.00 10.00

Table A22: PD experiments with client strategy: (2t), timeout=120.0 and discount γ = 0.99.
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Figure A22: PD experiments with client strategy: (2t), timeout=120.0 and discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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σb
γ 0.01 0.05 0.10 0.50 1.00 2.00 5.00

0.99 mean agent 9.71± 0.51 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00
client 9.38± 0.51 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00

mean agent 9.36± 2.02 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00
(last 10) client 9.47± 1.68 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A23: PD experiments with client strategy: (1.0), timeout=120.0 and discount γ = 0.99.
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Figure A23: PD experiments with client strategy: (1.0), timeout=120.0 and discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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σb
γ 0.01 0.05 0.10 0.50 1.00 2.00 5.00

0.99 mean agent 10.00± 0.00 9.11± 0.80 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.01± 0.02 9.99± 0.22
client 10.00± 0.00 9.00± 0.79 10.00± 0.00 10.00± 0.00 10.00± 0.00 9.95± 0.22 9.61± 0.59

mean agent 10.00± 0.00 8.68± 2.79 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 9.96± 0.16
(last 10) client 10.00± 0.00 8.35± 3.51 10.00± 0.00 10.00± 0.00 10.00± 0.00 10.00± 0.00 9.41± 1.55
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00

client 10.00 10.00 10.00 10.00 10.00 10.00 10.00
median agent 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(last 10) client 10.00 10.00 10.00 10.00 10.00 10.00 10.00

Table A24: PD experiments with client strategy: (same), timeout=120.0 and discount γ = 0.99.
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Figure A24: PD experiments with client strategy: (same), timeout=120.0 and discount γ = 0.99.
Red=client, Blue=agent, dashed=std.dev. solid (thin, with markers): mean, solid (thick): median.
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