
Live API Documentation

Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes
School of Computer Science

University of Waterloo
Waterloo, ON, Canada

s23subra,lminozem,rtholmes@uwaterloo.ca

ABSTRACT
Application Programming Interfaces (APIs) provide power-
ful abstraction mechanisms that enable complex functional-
ity to be used by client programs. However, this abstraction
does not come for free: understanding how to use an API can
be difficult. While API documentation can help, it is often
insufficient on its own. Online sites like Stack Overflow and
Github Gists have grown to fill the gap between traditional
API documentation and more example-based resources. Un-
fortunately, these two important classes of documentation
are independent.
In this paper we describe an iterative, deductive method

of linking source code examples to API documentation. We
also present an implementation of this method, called Baker,
that is highly precise (0.97) and supports both Java and
JavaScript. Baker can be used to enhance traditional API
documentation with up-to-date source code examples; it can
also be used to incorporate links to the API documentation
into the code snippets that use the API.

1. INTRODUCTION
Using third-party libraries can greatly reduce the effort

required to develop a new system. Unfortunately, under-
standing how to use these libraries correctly can be diffi-
cult. While the application programming interface (API)
documentation can be a valuable means of understanding
the library, it can be insufficient on its own. One of the
main issues is that the documentation is often out of date.
Recent work has confirmed the popular belief that writing
documentation and keeping it up to date is very difficult [8,
9]; consequently, developers ignore the documentation that
does exist and declare that “code is king” [16].
As a result of this situation, developers often turn to online

resources such as Stack Overflow. Parnin et al. have pre-
viously studied online resources and have found that APIs
are well covered by them [14]. In fact, they found that 87%
of Android classes were referenced in Stack Overflow an-
swers. Unfortunately, there are rarely links between online
resources and official API documentation: the official doc-
umentation does not link to the examples that could help
developers, and the examples rarely link to the documenta-
tion.
Previous work has tried to identify source code references

within non-code resources (e.g., [2, 13, 9, 15]). Detecting
these references is a first step toward linking them to the rel-

University of Waterloo Technical Report CS-2013-17

evant API documentation. Unfortunately, these approaches
have several limitations. Some systems explicitly ignored
external references, meaning that the target system for an
analyzed document must be specified [9]. Others only re-
turned partially qualified names, which are insufficient for
documentation linking [15]. None of the previous approaches
worked for dynamically-typed languages.

Our paper extends previous work in this area by using a
constraint-based technique to uniquely identify fine-grained
type references, method calls, and field references in source
code snippets with high precision. We demonstrate the gen-
erality of the approach by providing implementations for
both typed (Java) and dynamic (JavaScript) languages. We
also evaluate the ability of the approach to correctly link
code to documentation.

More specifically, the contributions of this paper are as
follows:

• A constraint-based, iterative approach for determin-
ing the fully qualified names of code elements in code
snippets. This approach works with both statically
and dynamically typed languages.

• A prototype tool that implements this approach and
uses the results to automatically create bi-directional
links between documentation and source code exam-
ples by marking up HTML using a web browser exten-
sion.

Section 2 presents a scenario that motivates our approach
and demonstrates the kinds of links it can identify. The ap-
proach and our implementation of it are explained in detail
in Sections 3 and 4. Section 5 then presents our evaluation of
Baker. The documentation linking prototype is described in
Section 6, followed by discussion. Related work is described
in Section 8; Section 9 concludes the paper.

2. SCENARIO
Consider the Java code snippet shown in Figure 1. This

snippet (pertaining to a library called GWT) was posted to
Stack Overflow to assist a developer who did not understand
how to manipulate the state of History objects. The figure
contains a number of bolded elements. These are the types
and methods that our tool, Baker, can uniquely link to the
API; i.e., the elements for which it can determine a fully-
qualified name. With this information we can automatically
augment the HTML version of the official API documenta-
tion for History by dynamically injecting the code example
into the web page. We can also inject the links to the official

API into the Stack Overflow post; these two additions to the
documentation would make it easier for developers to learn
how to use this class.

1 public FirstPanel() {
2 History.addHistoryListener(this);
3 String token = History.getToken();
4 if (token.length() == 0) {
5 History.newItem(INIT_STATE);
6 } else {
7 History.fireCurrentHistoryState();
8 }
9 .. rest of code

10 }

Figure 1: Java code snippet representing a Java API
usage. Baker can associate each of the bolded terms
with a fully qualified name; this information can be
used to include the code example in the API docu-
mentation.

Next, consider the JavaScript snippet in Figure 2, where
a developer is trying to develop a web app that can take
a photo and inject it into an element in an HTML docu-
ment. This example interacts with the JavaScript DOM
(getElementById), takes a photo using the Cordova project
(getPicture), and uses JQuery to detect when the the
photo should be taken ($ and on). For each of these method
references Baker can can identify the API that it is from.

1 $("#addphoto").on(’click’,
2 function() { useGetPicture();}
3);
4 function useGetPicture() {
5 var cameraOptions = { ... };
6 navigator.camera.getPicture(onCameraSuccess,
7 onCameraError, cameraOptions);
8 }
9 function onCameraSuccess(imageData) {

10 var image = document.getElementById("..");
11 image.src = "data:image/jpeg" + imageData;
12 }
13 function onCameraError(message) {
14 alert("Failed: " + message);
15 }

Figure 2: JavaScript code snippet containing Cor-
dova, JQuery and JavaScript DOM API usage. Each
of the bolded elements can be linked back to the rel-
evant API documentation.

The code snippets in Figures 1 and 2 were both submit-
ted as the correct solution to problems developers posted
on Stack Overflow. Since Stack Overflow posts are ranked,
and accepted answers are known to have solved a real prob-
lem, it is a good source of high quality code snippets that
demonstrate the correct usage of many APIs. Increasing
the integration between these examples and the official API
documentation will make documentation maintenance eas-
ier and increase the visibility and accessibility of the official
API documentation within source code examples.

3. APPROACH
Identifying API elements in code snippets requires the

ability to parse these snippets. This is more difficult than

parsing full files because code snippets can be ambiguious.
Dagenais and Robillard highlighted four kinds of ambiguity
that can hamper the identification of elements [9]; two of
these were specific to the plain-text analysis they were per-
forming, while the other two were more generally relevant.
These two were declaration ambiguity and external reference
ambiguity.

Declaration Ambiguity. Snippets are, by definition, in-
complete fragments of code. That is, snippets might not be
embedded in methods or classes, they may reference fields
whose declaration is not included, and their identifiers are
largely unqualified. In source code examples this is often
exacerbated by authors ending lines with ‘. . . ’ or using
code comments to describe parts of the functionality that
are elided.

External Reference Ambiguity. Source code examples
frequently refer to external identifiers; for example, Java
snippets frequently reference types from the JDK. While
a previous study [9] dealt with external references by elid-
ing everything that was not from a pre-specified library, we
designed Baker to handle these kinds of ambiguities. We
do this by using an oracle: a large database containing in-
formation about the code elements in popular APIs. When
Baker encounters an ambiguous code element, such as the
History class in Figure 1, it uses the oracle to identify the
possible types of the code element. In this case, there are
58 History classes in the oracle, but by using information
from other parts of the code snippet, we can identify which
of the 58 is the correct one. Section 4 will present more
information about how the oracle is constructed, what it
contains, and how much of a problem ambiguity really is.

3.1 Deductive linking
Baker handles declaration ambiguity and external refer-

ence ambiguity through a process we call deductive linking.
At a high level, it generates an incomplete abstract syntax
tree (AST) for the code snippet being analyzed, then uses
information from the oracle to deduce facts about the AST.
We perform this deduction step iteratively since each phase
can reveal new facts that can be used in subsequent phases.

More specifically, in each phase, Baker performs a depth-
first traversal of the AST and examines all nodes involved in
declarations, invocations, and assignments. When an AST
node of interest is encountered, Baker builds a list that rep-
resents the potential matches for that element from the or-
acle. As the traversal takes place, we track the scope of all
data being used to ensure that nodes are only combined if
allowed by the scoping rules of the language.

Once the entire AST has been traversed, the process starts
again; information uncovered in the previous iteration can
now be used to further restrict the lists of candidate ele-
ments. In theory, this iteration continues until either all
elements are associated with a single fully qualified name
(FQN), or an iterations fails to improve the results for any
element. In practice we find that few iterations are typically
needed; in fact we have a hard-coded limit that prevents
our approach from iterating more than four times through
a given AST.

While the goal of the approach is to identify the sole fully-
qualified element that a given identifier can represent, some-
times there is not enough information to choose from a set of
candidates. In this case, Baker returns a match with cardi-
nality (c) greater than 1. When this happens, we can either

return all candidate elements or simply report that a unique
match cannot be found. Sometimes a specific FQN cannot
be identified for an element, but examining the set of candi-
dates reveals that they are all related – for example, if one
of the elements is a supertype for all other elements in the
set. In this case, we report the supertype as the match and
elide the concrete subtypes from the results.
While the core functionality of Baker is the same for both

Java and JavaScript, some language-specific functionality is
needed. Baker is thus implemented as two different link-
ing engines. One engine computes links between Java snip-
pets and API documentation while the other computes links
between JavaScript snippets and API documentation. Jav-
aBaker leverages the static structural relationships present
in Java code to deduce the correct links for code elements.
Though JavaScript code lacks static type information, JS-
Baker takes advantage of the fact that JavaScript library
developers are wary of naming conflicts; they therefore usu-
ally use an object literal as an implied namespace and make
functions and variables properties of the object literal. This
allows us to link JavaScript objects and functions back to
the specific API they reference.

3.1.1 JavaBaker Example
To create ASTs from Java snippets we built a parser on a

headless version of Eclipse. Since the Eclipse parser is robust
to badly formed input, it was able to manage many of the
problems associated with source code snippets. However,
before any snippet could be parsed, we had to determine if
the snippet was surrounded by valid class and method dec-
larations. If it was not, we added dummy class and method
wrappers to allow parsing. We also built a web service for
the parser that enables us to use HTTP POST to send snip-
pets of code to JavaBaker and get a JSON response with
the results.
To describe the JavaBaker engine more concretely, we will

revisit the Java code fragment from Figure 1 and describe
how it would be analyzed. Since the fragment in this case
does not contain a class declaration, it is wrapped in a syn-
thetic class before the parsing process begins.

1a. History.addHistoryListener(this) on line 2 is
the first expression we encounter that requires anal-
ysis. From the oracle we retrieve all elements called
History, corresponding to the left-hand side of this
expression. These 58 candidate types are recorded for
History, along with the scope of the method call.

1b. Next, Baker considers addHistoryListener(this). Since
this method is being invoked on History, we exam-
ine its 58 candidate types to see which ones contain
a method called addHistoryListener(...) that
take a single object parameter. This results in 4 can-
didate methods. Since Baker is still evaluating the
expression, the left-hand side (History) is updated
to reflect the number of candidates (reduced from 58
to 4).

1c. For the assignment on line 3, Baker considers the right-
hand side first. Here, Baker assumes that the name
History refers to the same History class as the ref-
erence on line 2 and subsequently starts using its 4
candidates; this is because in Java conflicting names
in the same class must be fully qualified. Evaluating

the getToken() method, History is further reduced
to 2 candidates; getToken() also has cardinality 2.
Since we have not uniquely identified getToken() we
cannot yet use its return type to determine the type
of token.

1d. The same procedure continues for lines 4 through 10.
On lines 5 and 7 the scope being assigned to the His-
tory nodes is updated to reflect the inner block being
analyzed. After the whole snippet has been analyzed,
Baker iterates again.

2a. Once Baker returns to line 2 History can be iden-
tified as com.google.gwt.user.client.History
because the method call constraints from lines 3, 5,
and 7 leave only one possible candidate. All other
History references are updated to the same FQN, as
are the method calls being made on it.

2b. The return type of the now-resolved getToken() can
be used to confirm that token is of type java.lang.String.

2c. Since all elements have been fully qualified, Baker does
not need to do another pass.

Baker uses a number of relationships to help identify ele-
ments when those relationships are available. They include
import statements (rarely present in example code), cast ex-
pressions, field declarations, return statements, super invo-
cations, extends/implements relationships, and parame-
ter types.

3.1.2 JSBaker Example
JavaScript snippets are parsed by the ESPRIMA2 parser.

ESPRIMA is very tolerant of malformed input because it
is frequently found in JavaScript code. Before the analysis
takes place, the code snippet is wrapped in a function dec-
laration if one is not already present. As with JavaBaker,
we implemented JSBaker as a web service so code snippets
could easily be parsed from a variety of applications.

We revisit the code snippet in Figure 2 to describe the
deductive linking process in detail.

1a. Line 1 contains two function expressions, $ and on.
Checking the oracle, we find only one instance of $
from jQuery. Because we can uniquely identify $, we
use this fact while examining any other methods in
the call chain. In this case, there is only one jQuery
method called on so it matches correctly on the first
try (even though there are three on methods in the or-
acle). This library preference is only used for chained
calls.

1b. The next function expression encountered is a call to
useGetPicture(). The oracle does not contain a
result for this identifier.

1c. When it encounters the local function definition for use-
GetPicture(), Baker records that this function is lo-
cally defined, rather than being an external function.

1d. On line 5, the scope of cameraOptions is recorded to
ensure that any constraints applied to it do not ‘leak’

2http://esprima.org/

outside its scope. When Baker reaches the function ex-
pression getPicture, the oracle is queried for meth-
ods with the same name taking at least three variables;
this returns only one possible match. This match is
called navigator.camera.getPicture in the ora-
cle so the full expression ends up matching.

1e. The next function expression is on line 10; getElement-
ById matches 3 functions. Next, Baker checks to see if
any of these are defined as document.getElement-
ById; this results in a single match.

1f. Some JavaScript libraries are augmented with return
type information. In this case, the oracle knows that
document.getElementById returns an Element;
as such, image is annotated with 68 possible types.
On line 11, the reference to the property image.src
further reduces the number of possible types to three.
It is important to note that even if the returned ob-
ject did not have a src property, this would be valid
JavaScript code (a new property would be added to
the object). Baker assumes that library code will not
be dynamically augmented in this way.

1g. The function call to alertmatches two elements, win-
dow.alert and notification.alert. Since win-
dow is the default namespace for JavaScript executed
in the browser, we link alert to window.alert.

2a. In the second iteration we link the call to useGetPic-
ture in line 1 to the function declaration on line 4.

2b. Next, we update the link between onCameraSuccess
and onCameraError on lines 5 and 7 to match the
function declarations on line 9 and 13.

2c. No new information has been learned about the exact
type of image on lines 11 and 12; as such, this element
is left with a cardinality of 3. That said, if the devel-
oper were interested in this element they could be given
the option to choose between HTMLInputElement,
HTMLImageElement, and HTMLScriptElement. Giv-
en the data:image/jpg string on line 11, the devel-
oper could likely make the right choice.

4. ORACLE GENERATION
As the two detailed examples in the previous section showed,

Baker’s oracle is key to its success. In this section, we ex-
plain why the use of an oracle is necessary, then describe
how we created our Java and JavaScript oracles.

4.1 Why Use an Oracle?
For some traceability tasks, an oracle is not necessary.

For example, Rigby and Robillard developed a tool that can
extract the code elements contained in various documents
with high precision without an oracle [15]. However, with-
out an oracle, it is generally impossible to identify the fully
qualified names of the code elements in a snippet. These
fully qualified names are essential to documentation linking
tasks; thus, an oracle is required. As we will see in the re-
mainder of this section, this is not a difficult requirement to
satify: the initial oracle can be generated fairly quickly and
subsequent updates can be done dynamically.

4.2 Oracle Generation
We built oracles for both Java and JavaScript. The ora-

cles are implemented as web services, allowing them to be
updated dynamically by any user or program. New devel-
opment resources can be POSTed to the service and are au-
tomatically analyzed and incorporated into the oracle. Sim-
ilarly, any program or linker can query the service to deter-
mine what elements are present that meet a certain set of
constraints.

4.2.1 Java Oracle
The Java oracle is a database containing class, method

and field signatures. We chose a graph database, Neo4j,
for this purpose; the graph data structure makes it easier
to represent the hierarchies between code elements that an
object-oriented language like Java offers. Since Java is stati-
cally typed, we include full type information in the database
(e.g., the return types of methods are known).

The Java oracle can be dynamically updated by adding
an appropriate JAR. The JAR file is analyzed using a mod-
ified version of a tool called Dependency Finder3. This tool
identifies the class, method and field signatures from the
.class files contained in the JAR. These are then added to
the existing graph.

Baker’s initial Java oracle includes method and field signa-
tures from the over 1.5 million classes in the Maven reposi-
tory4. In total, it contains 14 million method signatures and
3 million field signatures.

4.2.2 JavaScript Oracle
The JavaScript oracle is built by statically analyzing the

source files of the libraries to be included. We use ES-
PRIMA5 to parse the source code of each library. Since
JavaScript libraries are frequently minified and obfuscated,
we used the ‘source’ version of each library, i.e., the ver-
sion before these transformations were applied. The ES-
PRIMA parser returns a JSON representation of the AST.
From this, we identify all of the ‘FunctionExpression’ and
‘FunctionDeclaration’ nodes. We traverse the path to each
of these function nodes to identify the namespace hierarchy
that would need to be used to access these functions. Since
object assignments in JavaScript are pass-by-reference, an
additional traversal of the AST is performed to map non-
trivial and indirect Function Expression assignments.

As an example, consider the snippet of code from Back-
bone.js in Figure 3. A first pass is done to fetch all Func-
tionExpression variables, in this case, extend. An addi-
tional traversal of the AST is performed to identify transitive
aliases like History.extend and View.extend, which inherit all
properties of the extend object. In this second pass, all pos-
sible aliases are traced back and are subsequently entered
into the oracle.

JavaScript libraries often make calls to external libraries
in their source code. Function objects are passed as param-
eters to these external libraries to be modified and assigned
to other objects. We follow these assignments one level deep,
but since JavaScript does not have type information for ob-
jects returned from functions, our ability to reason about

3The original version can be found at http://depfind.
sf.net; our version can be found at https://
bitbucket.org/rtholmes/depfind_uw
4http://mvnrepository.com/
5http://esprima.org/

Types Methods Fields Total Average

Fully Qualified Names 1,646,650 14,206,944 3,149,206 19,002,800 /
Partially Qualified Names / 9,455,644 2,571,384 12,027,028 /
Unqualified Names 1,121,887 1,600,053 1,115,099 3,837,039 /

% Ambiguous Partially Qualified Names / 33% 37% / 37%
% Ambiguous Unqualified Names 32% 89% 65% / 80%

Table 1: Number of unique fully qualified names, partially qualified names, and unqualified names in the
Java oracle for each kind of indexed element. 89% of method names are ambiguous if not fully qualified while
33% of partially qualified method names are still ambiguous.

these assignments degrades after two assignments. For this
reason, we stop after two passes.

1 _.extend(History.prototype, Events, {
2
3 getHash: function(window) {
4 ...
5 },
6 });
7 var extend = function(protoProps, staticProps) {
8 ...
9 };

10 View.extend = History.extend = extend;

Figure 3: A snippet from the source code of Back-
bone.js

Generating the JavaScript oracle was somewhat harder
than generating the Java oracle, since the dynamic nature
of JavaScript makes it difficult to identify all method decla-
rations by static analysis of source code. To overcome this,
we take advantage of JSDoc6 annotations (and other simi-
lar documentation tools) in the library source code whenever
they are available.
Another challenge is that JavaScript is not annotated with

visiblity (e.g., public and private). This makes it diffi-
cult to differentiate between the public API and those inter-
nal methods that are not meant for public access. Including
the internal methods in the oracle may make Baker slightly
less accurate. Source code snippets are unlikely to use the
internal methods, so these elements will rarely be matched,
but their existence in the oracle may increase ambiguity,
making it harder to match public API elements with the
same name.
In this study, we populated the oracle with source code

from seven different libraries, including the core JavaScript
API. These libraries contain over 1,600 API object prop-
erties including functions, properties and event handlers.
These libraries were chosen by gauging the popularity of the
libraries’ Github repositories and related activity on Stack-
Overflow.

4.3 Naming ambiguities
Fully qualified names are heavily used in computer pro-

grams to reduce the likelihood that program identifiers (e.g.,
type names, method names, and field names) will conflict be-
tween different programs and libraries. For example, while
Log is a common unqualified type name (occurring 284 times

6https://github.com/jsdoc3/jsdoc

in the Java oracle), developers use fully qualified names to
identify the Log they are interested in (such as org.apa-
che.tomcat.util.log.Log vs. org.eclipse.jetty.-
util.log.Log).

Method and field identifiers can be partially qualified if
their identifier contains the type in which they are declared.
For example, while the unqualified method name getId()
occurs 27,434 times in the oracle, org.neo4j.graphdb.-
Node.getId() and jsx3.xml.Node.getId() can be used
to differentiate between two different getId() declarations.
Class names cannot be partially qualified without consider-
ing either package identifiers or namespaces.

Naming ambiguity is common; Dagenais and Robillard
previously found that 89% of method names are ambigu-
ous and the average method name conflicts with 13 other
methods [9]. We extended their result to 1.6 million types
and extended the analysis to include types, methods, and
fields. We also investigated the differences between fully
qualified names, partially qualified names, and unqualified
names. The results are detailed in Table 1.

We found the same result as Dagenais and Robillard:
89% of unqualified method names collided. We also found
that one-third of unqualified types and one-third of partially
qualified methods collide. These results confirm our earlier
statement that unqualified names are insufficient to link a
code element to the correct document. Some methods, like
getId(), have thousands of unique fully-qualified declara-
tions in the oracle that all conflict when unqualified.

5. EVALUATION
In evaluating Baker, we wanted to answer two research

questions: first, can Baker accurately identify API elements
in code snippets; and second, does Baker work on a variety
of systems, or is it limited to just a few libraries?

5.1 Linker Accuracy
To answer our first question, we manually examined a

number of the matches produced by Baker to see if the tool
could correctly identify API elements. We did this for both
Java and JavaScript code snippets.

We first populated Baker with a number of source code ex-
amples. We obtained our snippets from the Stack Overflow
data repository provided for the 2013 MSR Challenge [3].
We augmented these by pulling from a few repositories on
GitHub that were aimed at collecting source code examples.
Baker analyzed 1,000 JavaScript source code snippets and
4,000 Java source code snippets.

In this context, precision is much more important than
recall. Since the web contains tens of thousands of snippets,

we would rather suffer a false negative result (a failure to
infer a link that should have been identified), than a false
positive (incorrectly linking one element to another). To this
end, we also only analyzed Baker’s recommendations that
had a cardinality of 1; that is, we only examined the results
that the tool was sure were correct. While the other results
could be useful for the developer, we would not display them
to the developer by default.

System TP FP FNc=1 FNc>1

Android 40 1 8 1
GWT 43 0 7 0
Hibernate 37 0 13 0
Joda Time 44 3 3 0
XStream 40 0 10 0

Total 207 4 42 8

Table 2: Baker’s overall Java precision (0.98) and
recall (0.83). Only exact matches (cardinality = 1)
were considered.

We chose the systems to analyze for our precision evalu-
ation by identifying the union of the systems evaluated in
the RecoDoc [9] and ACE [15] papers and in Parnin’s Stack
Overflow study [5]. The five libraries used in these stud-
ies are listed in Table 2. We then randomly selected code
snippets from our repository that Baker had analyzed and
had been annotated with a tag indicating it should contain
a question of relevance to the project under study. When-
ever Baker claimed that it had identified an API element
from one of the five libraries in Table 2, we manually ex-
amined the snippet to determine if the result returned by
Baker a) correctly matched the API intended by the devel-
oper (true positive [TP]) or b) incorrectly matched the API
(false positive [FP]). We also examined the snippet to see if
there were tokens not associated with any links at all but
that we would have expected to see a result (false negative
[FN]). We stopped once we had examined 50 code elements
for each system in this way. The overall Java precision is
0.98 with a recall of 0.83. If we had included any result
with a cardinality > 1 (that is, where the correct element
was found but could not be uniquely identified), the recall
increases to 0.96.
For JavaScript we applied the same procedure for analyz-

ing the snippets and assessing true positives, false positives,
and true negatives. Since none of the previous papers inves-
tigated JavaScript, we just chose four Stack Overflow tags
for which there were a large number of associated questions.
The JavaScript precision was 0.97 while the recall was 0.96.
We believe the difference in the recall between the Java and
JavaScript analyses was that the Java oracle had millions
of entities in it, while the JavaScript oracle had only thou-
sands. That said, we believe the Java oracle demonstrates
that even with a huge breadth of API elements to choose
from the approach still delivers reasonably high recall.

5.2 Example Diversity
In addition to assessing Baker’s ability to identify links

between source code examples and the API they represent,
we looked further into the links identified by the tool to see
the breadth of the systems it was able to generate links for.

System TP FP FNc=1 FNc>1

JSCore/DOM 48 2 0 0
JQuery 47 2 1 0
Phonegap 46 2 2 0
Webworks 45 0 5 2

Total 186 6 8 2

Table 3: Baker’s overall JavaScript precision (0.97)
and recall (0.96). Only exact matches (cardinality =
1) were considered.

JavaBaker parsed 4,000 source code snippets. It identified
over 30,000 links to 4,500 unique API elements. Table 4 de-
scribes the elements that were identified in more detail. To
get an idea of the projects that were referenced, we looked at
the packages that were linked to. We then aggregated these
and considered only those that had the same two initial to-
kens (e.g., all org.eclipse references would count as 1).
This resulted in 188 unique second-tier packages for which
we have examples. If we considered third-tier packages (the
same first three tokens), 347 different packages were refer-
enced.

System # types # methods

Android 272/64 175/104
Apache 178/79 108/97
Eclipse 104/41 53/45
GWT 149/47 122/69
Hibernate 389/133 378/199
JDK 14,252/632 7,483/1,981
Other 5,956/487 1,339/747

Total 21,300/1,483 9,658/3,242

Table 4: Number of matched elements from 4,000
Java code snippets extracted from Stack Overflow
and Github. The types and method cells are split
(total # matches / unique # elements).

JSBaker parsed 1000 source code snippets and identified
almost 10,000 references to over 500 unique elements. A
brief overview of the systems identified are shown in Fig-
ure 5. Looking into the elements in the other category we
see a variety of popular JavaScript frameworks like Angular,
Ember, Underscore, Require, Backbone, and so on. Since
JavaScript programs tend to ‘mash up’ many libraries, we
find that even if the exact library being asked about is not
in the oracle, elements from other libraries are often found
interspersed with these references.

5.3 Threats to Validity
The accuracy of our evaluation is subject to our ability

to correctly identify each API usage in the code snippets
we investigated. While the inherent ambiguity present in
source code snippets sometimes obscured what the devel-
oper intended, since snippets generally exist to answer spe-
cific questions within a particular context, we were usually
able to identify the intended element. When we were not,
or when Baker was incorrect, we conservatively flagged the

System # properties

JSCore/DOM 6,467/107
JQuery 1,793/96
Phonegap 126/27
Webworks 244/52
Other 1,297/300

Total 9,927/582

Table 5: Number of matched elements from 1,000
JavaScript code snippets extracted from Stack Over-
flow and Github. The object and properties cells are
split (total # matches / unique # elements).

recommendation as a false positive.
To reduce over fitting and increase generalizability, the

Java systems we selected for the precision analysis were
chosen by taking the union of systems evaluated for Rec-
codoc [9], ACE [15], and Parnin’s StackOverflow study [5].
Baker was executed in its default configuration for all stud-
ies. The only exception was that JavaScript snippets were
only submitted to JSBaker while the Java snippets were sent
to JavaBaker.

6. DOCUMENT LINKING PROTOTYPE
Once Baker has identified types in the snippets, this infor-

mation can be used to create bi-directional links between the
snippets and the official API documentation. As previously
discussed, keeping documentation current is challenging and
expensive. We do not believe any task that requires a soft-
ware provider to take on additional technical debt and work
items would work in practice. We therefore decided to link
directly between the web page displaying the source code
example (and its surrounding context) and the web page for
the official API documentation.
While this requires us to maintain an explicit mapping

between structural types and API documentation locations,
this turns out to be easy to manage in practice. This is
due to the fact that the vast majority of API documenta-
tion is automatically generated and is very well formed. For
example, to augment the Android API documentation with
examples, we just need to map the package to a web loca-
tion, e.g., android.* → http://developer.android.
com/reference/packages.html. From there, the brow-
ser extension we have built can automatically determine the
correct target page that should be annotated (in either di-
rection) with either the source code example or API docu-
mentation link.
Figure 4 shows how our browser extension extends a Stack

Overflow post. The extension detects that the user has nav-
igated to a Stack Overflow post that has been parsed and
references an external API. From Baker it knows what API
elements are used; by consulting the map, the browser ex-
tension is able to create a simple HTML frame and inject it
into the page. If the user hovers over it, they are presented
with a view that lists the API elements the example demon-
strates. The user then has the ability to click on the API
elements, which will take them to that API element in the
Android documentation.
In the opposite direction, Figure 5 shows how the offi-

cial Android documentation can be augmented with Stack

Overflow examples. Once again, the browser extension de-
tects from the mapping file that the user is visiting a page
for which it has API usage examples. It then checks the
page to see if Baker has examples for any of the API ele-
ments on the page; if it does, it injects a small icon into the
API indicating that the developer can hover over the icon
to get a list of relevant examples.

An important feature of the browser extension approach
to augmenting documentation is that whenever Baker an-
alyzes a new source code snippet, it is automatically and
immediately available to be included in any API documen-
tation page a developer who is using the extension might
visit. This immediacy means that as long as questions are
being asked and answered about an API, the documentation
will be updated. It remains to be seen if this could convince
API owners to answer questions about their APIs in Stack
Overflow knowing that their answers will be tied directly
back to their own documentation.

7. DISCUSSION
A number of opportunities exist for extending the utility

of the Baker data. For example, the API elements on a page
could be dynamically reordered based on how many differ-
ent examples have been found for them. While API elements
that have more examples associated with them could be in-
terpreted as being more difficult, they could also indicate the
key elements a developer should consider. PopCon [11] ex-
plores a similar concept, but leverages a large static analysis
repository rather than code examples.

While developers frequently create APIs, it is not straight-
forward for them to receive feedback on the APIs’ ease of
use. Baker could allow developers to discover the common
questions people have about their APIs. This feedback could
be used to guide future API updates or simple documenta-
tion fixes.

In the future, we aim to document and fully open the web
services that power Baker. This would allow anyone to add
new code to the Java and JavaScript oracles, update map-
ping files, submit snippets to be parsed, and query Baker.
In addition, we will be releasing the browser extension so
people can try the tool and provide feedback.

8. RELATED WORK
As described in Section 1, previous work has shown that

writing and maintaining documentation is difficult [8, 9].
Consequently, researchers have explored ways to make this
task easier. One way of doing this is to automatically add
links to the documentation that direct developers to other
relevant artifacts. For example, XFinder maps tutorial steps
to the classes involved in the tutorial [7].

Linking API documentation to examples of correct use is
a special case of this idea. Bacchelli et al. [1] used regular
expressions to match text terms to method names. This
technique can produce some matches, but cannot resolve
the ambiguity that results from having many methods with
the same name in the API. Chen [4], De Lucia et al. [10] and
Hsin-Yi et al. [12] used information retrieval techniques to do
coarse granularity linking (e.g., linking an entire document
to a source class). These techniques are useful, but cannot
do the fine-grained linking necessary to identify correct uses
of, for instance, a method in an API.

The two systems most similar to ours are RecoDoc [9] and

BAKER

Figure 4: Extending the Stack Overflow post with links to the official API documentation.

Stack OverFlow Lookup

Figure 5: Extending the official API documentation with Baker. Links to the Stack Overflow posts that
reference the API are dynamically injected into the page.

ACE [15]. RecoDoc uses partial program analysis (PPA [6])
to infer links between documentation and an API. Like Re-
coDoc, we use PPA and an oracle as part of our link finding
approach. Unlike RecoDoc, Baker uses a much bigger oracle
and does not need to be told which API corpus to use; a
single oracle is used for all queries. Moreover, Baker can be
used with dynamically typed languages.
ACE is a linking system that tries to relax two of Re-

coDoc’s key assumptions: that there must be an oracle, and
that each mention of a code element in the documentation
has equal relevance to a problem. Like ACE, Baker ranks
the output based on expected relevance. However, ACE uses
an island grammar instead of PPA and cannot do documen-
tation linking because the results are not fully qualified.

9. CONCLUSION
Maintaining API documentation is a challenging, time-

consuming task; consequently, the documentation is frequent-
ly out of date. This paper presented a method and tool
for automatically generating links between API documenta-
tion and source code examples. We demonstrated that our
tool, Baker, has high precision (0.97) and is able to suc-
cessfully link code snippets to thousands of different Java
classes and methods along with hundreds of JavaScript func-
tions. Baker’s results can be automatically integrated into
web pages for both the source code examples and the official
API documentation. This will increase the timeliness of the
API documentation while providing valuable reference links
for source code examples.

10. REFERENCES
[1] M. L. Alberto Bacchelli and R. Robbes. Linking

e-mails and source code artifacts. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 375–384, 2010.

[2] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia,
and E. Merlo. Recovering traceability links between
code and documentation. IEEE Transactions of
Software Engineering, 28(10):970–983, 2002.

[3] A. Bacchelli. Mining challenge 2013: Stack overflow.
In The 10th Working Conference on Mining Software
Repositories, page to appear, 2013.

[4] X. Chen. Extraction and visualization of traceability
relationships between documents and source code. In
Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE
’10, pages 505–510, New York, NY, USA, 2010. ACM.

[5] L. G. Chris Parnin, Christoph Treude and M.-A. D.
Storey. Crowd documentation: Exploring the coverage
and the dynamics of API discussions on Stack
Overflow. Technical Report GIT-CS-12-05, Georgia
Tech, 2012.

[6] B. Dagenais and L. Hendren. Enabling static analysis
for partial java programs. In Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA),
pages 313–328, 2008.

[7] B. Dagenais and H. Ossher. Automatically locating
framework extension examples. In Proceedings of the
International Symposium on Foundations of Software
Engineering (FSE), pages 203–213, 2008.

[8] B. Dagenais and M. P.Robillard. Creating and
evolving developer documentation: Understanding the
decisions of open source contributors. In Proceedings
of the International Symposium on Foundations of
Software Engineering (FSE), pages 127–136, 2010.

[9] B. Dagenais and M. P. Robillard. Recovering
traceability links between an API and its learning
resources. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
47–57, 2012.

[10] A. De Lucia, R. Oliveto, and G. Tortora. Adams
re-trace: traceability link recovery via latent semantic
indexing. In Proceedings of the 30th international
conference on Software engineering, ICSE ’08, pages
839–842, New York, NY, USA, 2008. ACM.

[11] R. Holmes and R. J. Walker. A newbie’s guide to
Eclipse APIs. In Proceedings of the Working
Conference on Mining Software Repositories (MSR),
pages 149–152, 2008.

[12] H. Jiang, T. Nguyen, I.-X. Chen, H. Jaygarl, and
C. Chang. Incremental latent semantic indexing for
automatic traceability link evolution management. In
Automated Software Engineering, 2008. ASE 2008.
23rd IEEE/ACM International Conference on, pages
59–68, 2008.

[13] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 125–135, 2003.

[14] C. Parnin and C. Treude. Measuring API
documentation on the web. In Proceedings of the
International Workshop on Web 2.0 for Software
Engineering (Web2SE), pages 25–30, 2011.

[15] P. C. Rigby and M. P. Robillard. Discovering essential
code elements in informal documentation. In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 832–841, 2013.

[16] J. Singer. Practices of software maintenance. In
Proceedings of the International Conference on
Software Maintenance (ICSM), page 139, 1998.

