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Abstract

Although modern society is critically reliant on power grids, even modern power grids are subject

to unavoidable outages. The situation in developing countries is even worse, with frequent load shedding

lasting several hours a day due to a large power supply- demand gap. The standard solution for residences

is, therefore, to backup grid power with local generation from a diesel generator (genset).

When carbon emission matters, a hybrid battery-genset is preferable to a genset only system.

Designing such a hybrid system is entangled with the tradeoff between cost and carbon emission.

Towards the analysis of such a hybrid system, we first compute the minimum required battery size for

eliminating the use of genset. Such a battery must guarantee a target loss of power probability for an

unreliable grid. We then compute the minimum required battery for a given genset and a target allowable

carbon footprint.

Drawing on recent results, we model both problems as buffer sizing problems that can be addressed

using stochastic network calculus. Specifically, a numerical study shows that, for a neighbourhood of

100 homes, we are able to estimate the carbon footprint reduction, compared to an exact numerical

analysis, within a factor of 1.7.

Index Terms

Smart grids, Batteries, Diesel engines, Performance analysis, Power system reliability, Power de-

mand.

This work was done at the David R. Cheriton School of Computer Science, University of Waterloo.

November 27, 2013 DRAFT



2

I. INTRODUCTION

The power grid underlies most modern societies: power failures can affect critical institutions

such as hospitals, water treatment facilities, aircraft control towers, and Internet data centres.

Despite this great reliance on electrical power, as the aftermath of super-storm Sandy vividly

demonstrated, even modern power grids are subject to unavoidable outages due to storms, light-

ning strikes, and equipment failures. The situation in developing countries is worse, with daily

load shedding lasting two-to-four hours due to demand spikes and unreliable generation [26].

In the face of this inherent unreliability, a common solution is for critical facilities, and even

some individual homes, to augment grid power with local generation, typically from a diesel

generator (genset). This, however, increases the carbon footprint of the load [23]. One of the best

solutions to this problem is using a hybrid system that combines gensets with storage batteries

(along with two-way inverters to convert between AC and DC power). We study the use of such

a hybrid system to allow a set of homes in a single residential neighbourhood to avoid power

outages. Because storage battery is expensive, the design of a hybrid system requires a trade-off

between carbon emission and cost. In particular, to completely eliminate the carbon footprint,

we should choose the minimum battery size that can guarantee a target loss of power probability

in the total absence of a genset.

The design of such a hybrid system for unreliable grids is a technically complex problem.

In this work, for the first time, we analytically approach this problem. We first consider the

case where reducing residential neighbourhood carbon emission to zero is desirable and we size

a battery in the absence of a genset. Thereafter, we consider the case where both constraints

exist and we compute the minimum battery size for a given maximum allowable genset carbon

emission. We note that these two problems are technically different as they have different

constraints; loss of power probability is the constraint in the absence of genset and total carbon

footprint is the constraint in the presence of genset (the presence of genset ensures demand is

always met).

The complexity of the problem comes from choosing an appropriate model for the stochastic

nature of household loads [16]. Indeed, it has been shown to be isomorphic to the complex (but

well-known) problem of choosing a buffer large enough to smooth the data being generated by

a variable-bit-rate traffic source [2], [30]. Therefore, drawing on recent results, we approach the
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solutions to our problem using the powerful techniques of stochastic network calculus.

We have numerically evaluated the accuracy of our algorithms using real traces of electrical

loads collected over 12 months from 4500 homes in Ireland1 [9]. Analysis shows that we are

able to estimate the carbon footprint reduction, compared to an exact numerical analysis, within

a factor of 1.7. Moreover, given a target requirement of a power outage being upper bounded

by one day in ten years (a standard risk target in power engineering), our approach computes a

battery size that is only about 10% more than the minimum battery required had the future load

been exactly known.

The key contributions of our work are:

1) We use a stochastic network calculus approach to characterize the stochastic electrical load

and find the genset carbon emission as a function of the battery size, thus allowing us to

compute the battery size needed to limit carbon emissions of a residential neighbourhood.

2) Given a load characterization, we analytically compute the smallest battery size necessary to

eliminate the use of genset and meet a target loss of power probability for a load connected

to a highly unreliable power grid.

3) We use measured electricity consumption data from 4500 Irish homes to compare our

carbon emission and battery size bounds to those computed (a) empirically, (b) from bounds

obtained using teletraffic theory, and (c) using a multi-state fluid Markov model. We find

that our bounds are quite close to the empirical optimal and far better than the two other

approaches.

The rest of the paper is laid out as follows. Section II starts with a motivation for the problem

along with the prior work. Section III presents the background needed from teletraffic networks

and stochastic network calculus, and discusses the prior known bounds. The model used to

analyze battery sizing problem along with our assumptions is explained in Section IV. The bounds

on minimum battery size, both in presence and absence of genset, are computed in Section V.

These bounds are heavily dependent on the accuracy of statistical sample path envelope on

effective demand. Hence, in Section VI, we explain how to obtain a tight envelope for any

given load dataset. We show the tightness of our bounds numerically on the Irish dataset in

Section VII by comparing them to the bounds obtained had the future load been exactly known

1Although loads in Ireland are not the same as loads in developing countries, our methodology can be applied to traces
collected from any country.
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Fig. 1: Trajectories of battery level during power outage periods for B = 1MWh and C = 105W .

and the bounds from prior work. Finally, Section VIII concludes the paper with the limitations

and future work.

II. MOTIVATION AND RELATED WORK

The difficulty of choosing a battery size sufficient to meet a stochastic load when confronted

with stochastic power outages is illustrated in Figure 1. In this figure, the X-axis shows the

duration of a power outage, that is, a time during which the grid does not supply power, and

the Y-axis shows the state of charge of a battery of size 1 MWh that charges itself when the

grid is available and discharges during an outage. Each line (trajectory) in the figure represents

a particular power outage incident; the Y-intercept of the line is the initial state of charge when

the outage started and the line ends when the power outage ends. Each trajectory was computed

using real measured loads from the Irish dataset (details in Section VII).

We define loss of power when the battery level drops to 0, a situation that we would very

much like to avoid. In absence of a genset, this would imply that the demand cannot be met by

the system, and in presence of a genset, loss of power would imply that the genset is emitting

carbon to meet the demand. In this numerical evaluation, the loss of power state happens only

once. Note that had the battery size been smaller, say 400 KWh, we would have had a much

larger number of loss of power events.

It is clear that the probability of a loss of power depends on many factors, including the

battery size, its charging rate, a characterization of the load during a loss of power event, the

distribution of the inter-outage intervals, and the distribution of outage durations. Moreover, what
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we seek to compute is the tail probability of the state-of-charge distribution of the battery. This

is an inherently complex problem. However, it has been recently shown that this storage sizing

problem is very similar to the buffer-sizing problem in a telecommunications network. We are

inspired by new theoretical results in [30], [3], which adopt a queuing-theoretic buffer-sizing

analysis to size batteries, to use a similar approach based on stochastic network calculus, to

study the problem of battery sizing to limit genset carbon emission for unreliable grids.

Specifically, we consider two scenarios. In the first scenario, we study a system that completely

avoids genset by only using storage battery. Here, our goal is to find the minimum required battery

size that meets a given target loss of power probability, such as one day loss of power in every

ten years. In the second scenario, we study the battery-genset hybrid system where the demand

can be always met as the genset steps in when the battery is fully discharged. However, we still

seek to size the battery so that the carbon emission from the diesel generator must not exceed

a target threshold.

Prior work in this area relies primarily on empirical numerical analysis rather than analytical

modeling [4], [14], [27]. Carbon emission due to a battery-genset hybrid system has been studied

mainly through the notion of genset efficiency, which is the diesel consumption per unit energy

production [4], [25]. We note that some of the prior analytical works (e.g. [3]) assume load

stationarity. In contrast, our approach does not need to explicitly assume stationarity.

A probabilistic loss of power formulation is presented in [30] for an intermittent power resource

(e.g., wind or solar power) serving a stochastic demand with the aid of batteries. The framework

in [30] considers a battery only system, and genset existence or the trade-off between storage size

and genset carbon emission is not part of that framework. Moreover, even for the battery only

system, that framework cannot be directly used for an unreliable system due to a major system

model difference; In an unreliable gird scenario, if the grid is available then it is assumed to

be large enough to serve both the instantaneous demand and charge the battery at its maximum

charging rate C. This is not the case for renewable energies as it can be available in a time slot

yet not large enough to meet the demand and charge the battery. In other words, in an unreliable

gird scenario, the intermittent source can be considered as an infinite source with vacation time,

whereas renewable energies are limited stochastic sources.
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III. BACKGROUND AND PRELIMINARIES

The problem of battery sizing in power distribution systems can be mapped to the problem

of buffer sizing in the teletraffic network. This analogy has been used in some recent papers

for battery sizing, borrowing state-of-the-art analytical results on probabilistic buffer sizing from

teletraffic theory [2], [30], [32]. We briefly discuss the essence of this analogy in this section.

A. Deterministic loss of power vs. deterministic loss of packet

Suppose that an arrival process A enters a buffer (queue) of size B, which can serve traffic

at rate C, and let A′ be the corresponding departure process. We assume discrete time model,

where the events can only happen at discrete time instants, i.e., t = 0, 1, . . .. We denote the total

arrival from process A in time interval [0, t] by A(t) and we use A(s, t) to mean A(t)− A(s).

The backlog b(t) at any time t is defined to be the buffer content at that time and is given by

the following recursive equation:

b(t) = min(B, [b(t− 1) + A(t− 1, t)− C]+) , (1)

where [x]+ = max(0, x) for any value of x. Eq. (1) is equivalent to the following non-recursive

expression [13]:

b(t) = min
0≤u≤t

(
max
u≤s≤t

(
A(s, t)− C.(t− s),

A(u, t)− C.(t− u) +B
))

. (2)

The loss of packet due to buffer overflow at any time t is

l(t) = [A(t− 1, t)− C + b(t− 1)−B]+ . (3)

Eqs. (2-3) can be combined to extract the following loss characterization [13]:

l(t) = min
0≤u≤t−1

(
max

u≤s≤t−1

(
[A(s, t)− C.(t− s)− k(t)]+,

[A(u, t)− C.(t− u) + k(u)− k(t)]+
))

, (4)

November 27, 2013 DRAFT



7

B

b(t)

A(t− 1, t) C
Buffer

B

b(t)

C D(t− 1, t)
Battery

Fig. 2: Loss of packet due to buffer overflow vs. loss of power when a demand finds the battery
empty.

where

k(t) =

 B t > 0

0 t = 0
(5)

There is an analogous problem in the power system as follows. A constant power source with

rate C is feeding a battery with size B, and the battery is used to serve an intermittent demand

D (see Figure 2). The deficit battery charge bd is defined as the amount of energy needed to

fully charge the battery and is given by

bd(t) = min(B, [bd(t− 1) +D(t− 1, t)− C]+) , (6)

where D(t − 1, t) is the demand at time slot t. A comparison between Eq. (1) and Eq. (6)

suggests that the deficit battery charge is mapped to the backlog status, if the demand D is

mapped to the arrival traffic A, the power supply is mapped to the capacity (service rate) of the

link, and the battery size is mapped to the buffer size.

The loss of power event is defined as the event that a demand finds the battery empty or,

equivalently, finds the deficit charge of the battery full. The loss of power at time t is given by

[bd(t − 1) − C + D(t − 1, t) − B]+, which is comparable to Eq. (3). Thus, the non-recursive

equations for the backlog and loss of packet in a finite buffer system in Eqs. (2) and (4) can,

respectively, be used to compute the deficit state of the charge and the loss of power in energy

systems [2], [31].

B. Probabilistic loss formulations

A probabilistic loss analysis requires an accurate characterization of the statistical properties

of the arrival (demand) and the link capacity (power source). The probabilistic loss formulation
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has been studied extensively in the asymptotic regime when the number of independent arrivals

is large (many sources asymptotic regime) [15]. Since there are not many independent sources of

energy or demand sharing the same battery in a distribution system, the many sources asymptotic

results cannot be used in this context. However, there are alternative approaches:

1) Kesidis bound: A traffic arrival process A is called a peak-rate constraint leaky-bucket

arrival if it satisfies

∀s, t : A(s, t) ≤ min(π(t− s), σ + ρ(t− s)) (7)

for some π, σ and ρ such that ρ ≤ π. If a peak-rate constrained leaky-bucket arrival process

which is also stationary is fed to a link with total capacity C, where ρ ≤ C ≤ π, then the

stationary backlog status b satisfies the following [20]:

Pr{b > B} ≤
σ − π−ρ

π−CB
C
ρ
σ −B

. (8)

This formulation is used in [3] to compute transformer/storage sizing in the distribution networks.

2) Using Network Calculus for a measurement trace: Network Calculus allows probabilistic

performance analysis including loss probability for a large class of arrivals. This theory uses

upper bounds on the traffic arrivals and lower bounds on the available service on any time scales

to compute performance bounds. Interested readers can refer to [5], [10], [18] for a complete

tutorial on Network Calculus.

There are several probabilistic upper bounds on the arrivals proposed in the literature (see

[24] for a review of existing bounds). Here we use a concept called the statistical sample path

envelope [8]. A non-decreasing function G is a statistical sample path envelope for an arrival

process A with bounding function ε if it satisfies the following at any time t ≥ 0 and for any

σ ≥ 0

Pr

{
max
s≤t
{A(s, t)− G(t− s)} > σ

}
≤ ε(σ) , (9)

where ε(σ) is non-increasing in σ.

Due to the complexity of Eq. (4), the following upper bound on Eq. (4) is used in [13] to
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extend the traffic loss formulations to the probabilistic settings:

l(t) ≤ max
0≤s≤t

([A(s, t)− C.(t− s)−B]+) . (10)

This probabilistic upper bound formulation in [13] is used to obtain an upper bound on the loss

of power probability in [30], employing the underlying mapping between the loss of power and

the loss of traffic:

Theorem 1 (Loss of power probability [30]). Suppose that G is the statistical sample path

envelope for a demand process D in the sense of Eq. (9) with bounding functions εg. Then, the

loss of power probability satisfies the following:

Pr{l(t) > 0} ≤ εg

(
B − max

0≤τ≤t
(G(τ)− Cτ)

))
. (11)

If a measurement trace of a process A is given, the statistical sample path envelope G

can be computed by (a) constructing a set Y , consisting of the sample values for the event

maxs≤t{A(s, t)−G(t−s)} for each trajectory and at any time t, and (b) using the complementary

cumulative distribution function (CCDF) of the sample set Y as a bounding function for Eq. (9)

[11].

3) Using Network Calculus for Markovian arrivals: Sometimes an arrival model is given

instead of a measurement set. One of the most general and widely-used models is the multi-

state Markovian (MSM) fluid flow process, which is a Markov chain with finite states, with

states representing the rate at which traffic is generated at a certain time. Theorem 1 can be used

to obtain a loss probability for MSM processes since there is a statistical sample path envelope

for this type of processes, which can be computed as follows:

An M -state fluid flow Markov chain with transition matrix Q and traffic rate at state i being

ri satisfies [19]

∀t : E
[
eβA(t)

]
≤ eρ(β)t , (12)

where ρ(β) is the largest eigenvalue of the matrix 1
β
Q + R and R = diag(ri). Combining

Chernoff bound and Eq. (12) yields the following at any time t and s (≤ t) and any σ (≥ 0)

Pr{A(s, t) > ρ(t− s) + σ} ≤ e−βσ (13)
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which shows that a multi-state Markovian process is a special case of the large class of expo-

nentially bounded burstiness traffic sources (EBB) [33]. For such a traffic, G from the following

is a statistical sample path envelope in the sense of Eq. (9) with bounding function ε for any

γ > 0 [12]

G(t) = (ρ(β) + γ)t; ε(σ) =
e−βσ

1− e−βγ
(14)

One can insert the statistical sample path envelope for a multi-state Markovian model from

Eq. (14) to Theorem 1 to obtain a loss of power probability for such a demand.

IV. SYSTEM MODEL

The system model considered in this paper is illustrated in Figure 3. The grid and the battery

are used to serve ‘most’ of the demand. The grid is available irregularly. If the grid is available,

then it is used to serve the demand and charge the battery. When the grid is not available (power

outage), the charge of the battery is used to serve the demand. In the presence of a genset (not

shown in Figure 3), the genset starts running only when the battery is empty during an outage.

Denote by d(t) the energy demand at time slot t, and by D(t) the cumulative energy demand

in time interval [0, t]2. To simplify notation, we define D(s, t) = D(t) − D(s). The charging

rate of the battery is represented by C and the battery size by B. We assume a discrete time

model, where t = 0, 1, . . .. Let x(t) be a binary random variable representing the availability of

the utility grid at time slot t, i.e.,

x(t) =

0 If grid is unavailable (power outage) at slot t

1 If grid is available at time slot t
(15)

We define xc(t) = 1−x(t) as the complement of x(t). If the grid is available at time slot t (i.e.,

x(t) = 1), the energy demand is served by the grid and the battery will be charged by as much

as C energy unit in that time slot. On the other hand, if the grid is not available (i.e., x(t) = 0),

the energy demand must be served by the energy stored in the battery.

2The energy demand varies widely over the course of a year showing marked seasonality. Our analysis is agnostic to
the time interval over which the demand is modeled. In practice, however, similar to the concept of busy-hour sizing in a
telecommunication network, we advocate the sizing of a battery keeping in mind the underlying non-stationarity of the demand
process [3].
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Name Description
Power Electricity from the grid is unavailable
outage
Loss of An outage period with battery being empty
power
B Storage battery capacity
C Battery charging rate
ε∗ Target loss of power probability
x(t) Grid availability at time t
xc(t) Grid unavailability at time t
d(t) Power load at time t
de(t) Effective power load to battery at time t
b(t) Battery charge level at time t
bd(t) Battery deficit charge at time t
l(t) Amount of loss of power at time t
G Statistical sample path envelope
εg Bounding function for sample path envelope

TABLE I: Notation

We follow two objective functions for battery sizing in this paper. First, in the absence of

genset, we size the battery B such that given some statistical properties of the energy demand

process, the probability of loss of power is kept below a target threshold ε∗. Second, in the

presence of genset, we size the battery such that the total carbon footprint is kept below a

certain threshold.

We have the following assumptions in our formulations

1) Battery charging rate is upper bounded by C but there is no constraint on the discharge

rate. 3

2) Genset is large enough to meet the maximum aggregate loads.

The above assumptions typically hold in practice since battery charge rate depends on the

technology of the battery, and for technologies such as lead-acid battery, the discharge rate is

multiple times higher than the charging rate [6]. Moreover, the marginal cost of increasing genset

size is negligible compared to the marginal cost of a battery [28], [29].

3Note that a constant battery charge-discharge energy loss factor can be incorporated in C as it would just reduce the original
battery charging rate by this factor.
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Fig. 3: Storage battery model before and after transformation

V. BATTERY SIZING FORMULATION

The unreliable grid described in our problem statement can be converted to a reliable compound

power source i.e., one that is augmented by batteries. In this section we compute the required

battery size such that a target loss of power probability can be guaranteed in the absence of a

genset and a target carbon emission threshold can be met in the presence of a genset. The size

of the battery is a function of the stochastic nature of demand and grid unavailability.

A. Loss of power formulation

As discussed in Section II, due to major differences in system models we cannot apply the

loss of power formulation in [30] to our problem. However, the following trick converts our

system model to their system model, allowing us to use their loss of power formulation.

Consider the input and output processes to the battery separately for the cases where the grid

is available (x(t) = 1) and unavailable (x(t) = 0). If x(t) = 1, the arrival energy process to

the battery at any time instant t is a constant, C, and the departure energy process is zero. If

x(t) = 0, the arrival energy process is zero and the departure energy process is d(t). The battery

state-of-charge does not change if we assume that the real arrivals and departures to the battery

are both shifted by the same constant at any time. Therefore, we can assume C and d(t) + C,

respectively, as the arrival and departure processes when x(t) = 0 (instead of 0 and d(t)) and
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have the same battery state of charge (see Figure 3). Combining the two cases x(t) = 0 and

x(t) = 1 with the above substitution, we can assume that the battery is always charged with the

rate C and discharged by the effective demand de defined as:

de(t) = [d(t) + C](1− x(t)) = [d(t) + C]xc(t) (16)

which is the portion of the demand that the battery must serve. Using the above transformation

and Eq. (6), we have:

bd(t) = min(B, [bd(t− 1) + de(t)− C]+) . (17)

With the above mapping, the loss formulation in the previously mentioned finite buffer system

is given by l(t) = [bd(t − 1) + de(t) − C − B]+. Hence, we can use Eq. (4) to describe the

following loss process as follows:

l(t) = min
0≤u≤t−1

(
max

u≤s≤t−1
([De(s, t)− C.(t− s)− k(t)]+,

[De(u, t)− C.(t− u) + k(u)− k(t))]+

)
, (18)

where De is the cumulative version of the effective demand (Eq. (16)) and k is as expressed in

Eq. (5).

B. Battery sizing for eliminating genset

The exact loss description from Eq. (18) is difficult to use in practice. Instead, we use the

following upper bound (from [17]) to derive an upper bound on the loss probability:

l(t) ≤ min ([de(t)− C]+,

max
0≤s≤t−1

([De(s, t)− C(t− s)−B]+)

)
(19)

= min (d(t)xc(t),

max
0≤s≤t−1

([De(s, t)− C(t− s)−B]+)

)
, (20)
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where in Eq. (19) two specific values for u in the minimization of Eq. (18) are chosen: u = t−1

and u = 0. Eq. (20) uses the definition of de(t) and that d(t) > 0. The above inequality can

be used to compute a probabilistic upper bound on the loss probability for our problem. See

Appendix for a proof of the following lemma.

Lemma 1 (Amendment to Theorem 1 [30]). Suppose that an unreliable grid uses a battery of

size B with charging rate C to serve a demand. Suppose also that xc(t) represents the grid

unavailability at time slot t (xc(t) = 1 if the grid is unavailable and xc(t) = 0, otherwise) and

G is a statistical sample envelope for process De with bounding functions εg in the sense of

Eq. (9). Then, the loss of power probability satisfies the following

Pr{l(t) > 0} ≤ min

(
Pr{xc(t) > 0},

εg

(
B −max

τ≥0
(G(τ)− Cτ)

))
. (21)

We can use Lemma 1 to compute the minimum battery size satisfying a target loss of power

probability ε∗ by bounding Pr{l(t) > 0} with ε∗. We observe that the first term, Pr{xc(t) > 0},

in the minimum expression of Eq. (21) is independent of the battery size. We can therefore set

battery size to be zero whenever the first term forms the minima. Intuitively this means that

there is no need of a battery if the probability of power outage is less than ε∗.

From Lemma 1, If G is a statistical sample path envelope on the effective demand in the sense

of Eq. (9) with bounding function εg, then using Eq. (21), we get

min

(
Pr{xc(t) > 0}, εg

(
B −max

τ≥0
(G(τ)− Cτ)

))
≤ ε∗

=⇒ B ≥
(
max
τ≥0

(G(τ)− Cτ) + εg
−1 (ε∗)

)
I(Pr{xc(t)=1}>ε∗) (22)

where Iexpr is the indicator function, which is 1 if expr is true and is 0, otherwise.

C. Battery sizing for limiting genset carbon footprint

For the battery-genset hybrid system, at any instant that the grid is unavailable, the demand can

be either served by the battery or by the genset. It is desirable to reduce carbon emission from

the genset by using the battery to store ‘greener’ energy produced by the grid and consuming it
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when an outage occurs. The optimum scheduling algorithm between the battery and the genset

must minimize the carbon emission from the genset while keeping the loss of power below an

acceptable threshold. Scheduling is trivial if the genset size is larger than the maximum (worst-

case) demand load (i.e., maxt d(t)). This is because the demand can be always met by using

the genset and carbon emission is minimized by always scheduling energy from the battery

whenever it is not empty. The scheduling, however, is non-trivial if the genset size is smaller

than the maximum demand load. This is illustrated by the following example.

Suppose the aggregate load is fixed to 100kW for 5 successive hours when power from the grid

is unavailable. Assume the battery is fully charged to its capacity of 100kWh at the beginning of

the first hour and genset serves demand up to the rate of 80kW. If the battery is used merely to

meet the load in the first hour, there will be a loss of power in the remaining 4 hours as genset

cannot meet load > 80kW and the battery is already exhausted. On the other hand, if genset is

being used to its capacity for all the 5 hours with battery supporting the remaining 20kW every

hour, there will be no loss of power! Consequently, as this example shows, if genset size is less

than the maximum load (maxt d(t)) exhausting the battery before using the genset is not the

optimal strategy since that may lead to a larger loss of power.

For simplicity, therefore, we can assume that the genset capacity is large enough to meet the

maximum aggregate load (Assumption 2 in Section IV). This is reasonable because the marginal

cost of increasing genset capacity is small compared to the storage battery.

The objective in battery sizing in the presence of genset is to keep the carbon emission below

a certain threshold. The carbon emission is proportional to the cumulative demand that cannot

be served by the battery when the grid is unavailable, i.e.,

carbon emission ∼
∑
t

l(t) . (23)

Using the analogy between queueing theory and the distribution power system, this quantity

corresponds to the total loss in a finite-buffer queue. In spite of extensive efforts, the problem

is still open for non-Poisson arrivals. The complexity of the problem arises from the fact that

the total loss is a function of the number and length of the busy periods, which occurs in a total

time interval. Liu and Cruz [22] show that a probabilistic upper bound on the total loss must

account for the numbers and lengths of the busy periods leads to cumbersome formulations,
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which cannot be used in practice. Here we compute an upper bound on the expected value of

the total loss (carbon emission) in a time interval of size T using Eq. (20) as follows:

E

[
T∑
t=1

l(t)

]
=

T∑
t=1

E[l(t)]

≤
T∑
t=1

E

[
min

(
d(t)xc(t),

max
0≤s<t

([De(s, t)− C(t− s)−B]+)

)]
(24)

≤
T∑
t=1

min

(
E [d(t)xc(t)] ,

E
[
d(t)xc(t)Imax([De(s,t)−C(t−s)−B]+)>0

])
(25)

≤
T∑
t=1

min (E [d(t)xc(t)] ,

E
[
d(t)Imax([De(s,t)−C(t−s)−B]+)>0

])
(26)

≈ min
( T∑
t=1

E [d(t)xc(t)] ,

Pr{max ([De(s, t)− C(t− s)−B]+) > 0}.
T∑
t=1

E[d(t)]
)
, (27)

where we use Eq. (20) to obtain Eq. (24). The first term in Eq. (25) is trivial as it is the first

term in the minima of the previous line. The second term in Eq. (25) only accounts for the

sign of the second term in the minima of Eq. (24) and sets the whole expression to zero if

that term is zero, otherwise it returns the first term in Eq. (24). Next line uses the fact that

0 ≤ xc(t) ≤ 1. We assume that the two processes in the second term in Eq. (26) are independent

to derive Eq. (27). This assumption holds for statistically independent increments processes,

which is widely assumed in the literature (e.g., Kelly [19]). In addition, we numerically find in

Section VII-B that the inaccuracy due to this approximation step is small. Numerically, we also

find that the upper bound used to derive Eq. (25) from Eq. (24) is quite tight. More precisely,

we observe that Eq. (20) evaluates to its first term if the second term is positive.
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Suppose G is a statistical sample path envelope on De with bounding function εg. From

Eq. (27), the following is an upper bound on the expected total fuel consumption.

min
( T∑
t=1

E [d(t)xc(t)] ,

εg

(
B −max

τ≥0
(G(τ)− Cτ)

)
.

T∑
t=1

E[d(t)]
)

(28)

This formulation can be used for battery sizing when the objective is not to exceed a certain

average fuel consumption.

VI. CONSTRUCTING AN ENVELOPE FOR THE EFFECTIVE DEMAND

To evaluate our derivations, we use half hourly electricity consumption data from more than

4500 Irish homes produced as part of CER Smart Metering Project [9]. We assume that all

homes belong to the same region. The effective demand from Eq. (16) is derived from randomly

selected 100 homes in this dataset. Since we could not find an available trace for grid availability,

we use a simple model to represent that process. We discuss that in the following section.

A. Modeling grid availability process

We model the grid availability process by an ON-OFF Markov model, where the grid is

available in the ‘ON’ state and is unavailable in the ‘OFF’ state. The transition rates between

ON → OFF and OFF → ON are, respectively, λ and µ. With these parameters, on average,

the grid spends λ
λ+µ

and µ
λ+µ

fraction of time, respectively, in the OFF and ON states. The

stability condition in our problem enforces the long-term average rate of the demand during an

average-length OFF state to be less than the average charging that the battery receives from the

grid during an average-length ON state. That is, if L represents the long-term average rate of

the demand (i.e., L =
∑T
t=1 d(t)

T
) and ρ′ = λ

µ
, then

λ

λ+ µ
L ≤ µ

λ+ µ
C =⇒ ρ′L ≤ C . (29)

In our numerical studies we consider one of two cases: (1) We assume that we have a

measurement trace of the effective demand (2) We assume that we have a multi-state Markov

model for the demand.
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Recall that the effective demand is the product of the demand (for which we have a mea-

surement trace) added to the battery charging rate and the grid unavailability process. For the

former case, where we need a measurement trace for the effective demand, we construct sample

trajectories using the ON-OFF grid availability process. We construct a separate grid availability

trajectory for each trajectory of the demand. To have a large enough dataset, we simulate 100

different sample paths of effective demand of a housing complex of 100 homes.

For the second case, where we assume a multi-state Markovian (MSM) process for the effective

demand, we use the approach from [1]. As effective demand is zero whenever the grid is available

(xc(t) = 0), we first classify only the demands at all time slots with power outages into M

Markovian states using the k-means clustering algorithm (we choose M = 5). Then, we add a

new state representing availability of the grid. The emission rate of this state is 0 and we are

at this state whenever the grid is available. We add C to the old values of the emission rates

of the other states. The transition rate, qij , from state i to state j for such an M + 1 multi-state

Markov chain can be calculated from the dataset using

qij =
Number of transitions from state i to state j

Total time spent in state i

B. Choosing parameters for G and εg

We use a leaky-bucket envelope G(t) = σ+ρt with design parameters ρ, σ (≥ 0) as a statistical

sample path envelope for the effective demand in the sense of Eq. (9) with bounding function εg.

The design parameters in this modeling are the values of σ and ρ and the choice of distribution

for εg. Empirically, we try different values of the leaky bucket parameters to find the minimum

upper bound on the optimal battery size using Eq. (22), i.e.

B ≥ min
ρ≤C;σ

(
σ + εg

−1 (ε∗)
)
I(Pr{xc(t)=1}>ε∗) (30)

For the bounding function εg, we recall that this is the CCDF on the event max0≤s≤t([D
e(s, t)−

G(t − s)]+). We observe that there is a large fraction of the elements evaluated as zero in that

event. This happens with probability p0 and consists of the cases where the arrival process De

does not exceed the leaky bucket envelope. Let δ0(x) be the delta function, which is 1 when

x = 0, and is 0, otherwise. We can now write εg using the delta function as:

εg(x) = p0δ0(x) + (1− p0)εδ(x)
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or, ∀x > 0 : εg(x) = (1− p0)εδ(x) (31)

where εδ is a CCDF function with εδ(0) = 1 4. Eq. (30) can now be rewritten as:

B ≥ min
ρ≤C;σ

(
σ + εδ

−1
(

ε∗

1− p0

))
I(Pr{xc(t)=1}>ε∗) (32)

We first tried fitting an exponential distribution to the function εδ, but the distribution failed to

pass the Kolmogorov-Smirnov (KS) fitting test (we always use the default MATLAB parameters,

i.e. hypothesis rejected at 0.05 significance level). Therefore, we use either of the following more

complicated distributions:

1) Weilbull distribution: For parameters a and b (> 0), Weibull distribution is given by

εδ(x) = abxb−1e−ax
b

We use the default MATLAB function wblfit to find the parameters a, b, and find that the

distribution passes the KS fitting test.

2) Hyper-exponential distribution: Although Weibull distribution is a good fit for the tail

bound distribution, because of its heavy-tailed property, it is less preferable than hyper-

exponential distribution. We therefore try fitting a two-phase hyper-exponential distribution

with three parameters, p, β1, β2, i.e.

εδ(x) = pe−β1x + (1− p)e−β2x

To fit hyper-exponential distribution to dataset X , we use the standard approach (pg. 143

[21]) of empirically trying different values of parameter p and finding the corresponding

values of parameters β1 and β2 by matching the first and the second order moments, i.e.

E[X] =
p

β1
+

1− p
β2

; E[X2] =
2p

β1
2 +

2(1− p)
β2

2 (33)

We perform KS fitting test to check the validity of the obtained parameters.

The approach used to model De in this section can also be employed to model the demand

thus facilitating a generic performance analysis for intermittent demand energies.

4For convenience, we overload the term bounding function to also refer to εδ
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VII. NUMERICAL EXAMPLES

In the following section, we compare our battery sizing approach with the optimal benchmark

for the same dataset as in Section VI. We use the Markov-modulated ON-OFF process as

described in Section VI-A to generate grid unavailability trace. Unless otherwise stated, we set

the parameters to µ = 1 hr−1 and λ = 1
11
hr−1, which correspond to an average of two power

outages in a day with average duration of a power outage being one hour, which is common

for developing countries such as India. Moreover, unless otherwise stated, the target violation

probability in examples is assumed to be one day loss of power in ten years, i.e. ε∗ = 2.7∗ 10−4

and battery charging rate C = 100kW.

A. Battery sizing for eliminating genset

In this section we evaluate our analytical results on the required battery size to eliminate the

use of genset. The accuracy of our analysis depends on the accuracy of loss of power formulation

from Section V-B and our effective demand modeling from Section VI. We use the following

curves in our evaluations:

• Dataset quantile: This is the battery sizing obtained by using the effective demand mea-

surement trace as the input to the exact recursive loss of power description in Eq. (3). The

battery size obtained by this method is the least value that satisfies the target loss of power

probability for exactly known future demand.

• Our bound: Here, we use the parameter fitting techniques as explained in Section VI-B. We

use leaky-bucket as the statistical sample path envelope on De and fit a hyper-exponential

(or Weibull) distribution on εδ. Using Lemma 1 for loss of power formulation, we find the

least battery size that satisfies the target loss of power probability (as given in Eq. (22)).

• Ideal De model: Here, we apply the effective demand measurement trace to Eq. (35) for loss

of power formulation and find the least battery size that satisfies the target loss of power

probability. By avoiding to use Lemma 1 in this approach, we remove the inaccuracy

imposed by De modeling (i.e. from Eq. (35) to Eq. (36)). This allows us to distinguish

between the inaccuracy that is induced by De modeling and that from Lemma 1.

• Kesidis bound: Here, we first compute a deterministic peak-rate constrained leaky-bucket

description for the effective demand process in the sense of Eq. (7). We then use the Kesidis
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Fig. 4: Accuracy of loss of power formulation: Dataset quantile and Ideal De model battery sizes as a function
of target violation probability in three seasons

battery overflow probability from Eq. (8) for loss of power formulation and find the least

battery size that satisfies the target loss of power probability.

• MSM bound: We obtain the statistical sample path envelope for the arrival process De by

first modeling it as a multi-state Markovian process (Section VI-A). Then we insert the

statistical sample path envelope for Markovian processes from Section III-B3 in the loss of

power formulation in Lemma 1 to obtain bounds on the battery size.

To study the accuracy of our analysis and possible sources of inaccuracy we must consider

two major issues (1) how accurately we could model the effective demand using envelopes, (2)

how accurately our formulation can compute the loss of power or carbon emission values given

that there is no inaccuracy in modeling the effective demand. We study each issue in detail as

they are also important for our second problem of battery sizing while ensuring that the genset

carbon footprint is below a threshold.

1) Accuracy of loss of power formulation: As we only consider two points in the minimization

from Eq. (18) to Eq. (19), we examine the accuracy of the loss of power formulation. This

evaluation is necessary as this upper bound has never been evaluated before, even for the looser

bound used in [30].

The accuracy of our loss of power formulation can be examined by the comparison of ‘dataset

quantile’ that uses the dataset trace and exact recursive loss equation with ‘Ideal De model’ (to

remove the inaccuracy of demand modelling), which also uses the dataset trace but applies the

dataset to our upper bound loss formulation in Eq. (35). Figure 4 illustrates this comparison
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as a function of the target loss of power probability ε∗. To model accurately the fluctuations

of the demand we consider battery sizing for different weather seasons by classifying the

demand dataset into three seasons: Winter (December-March), Summer (April-July), and Autumn

(August-November). We compute the battery size for each season separately. Note that a battery

size that satisfies the loss of power requirements throughout the year would be the maximum of

the battery sizes among all seasons.

We first observe from Figure 4 that for one day in ten years target loss of power probability

(i.e., 2.7 ∗ 10−4), ‘Ideal De model’ is within 10% of ‘dataset quantile’ implying that our loss of

power formulation is reasonably tight. We also notice that different seasons can have significantly

different battery size requirements (up to 35%) probably due to power-hungry heating appliances

used in cold weather.

Our loss of power formulation in Eq. (21) consists of the minimum of two terms. The first

term Pr{xc(t)} > 0 states that the loss of power formulation at any time instant cannot be larger

than the power outage probability. This is a trivial bound, which becomes the dominant term

in the minimization when the battery size is not large (to see the effect of this term one can

consider the extreme case of battery-less scenario). The second term in Eq. (21) is quite accurate

in identifying loss of power events, i.e. Pr{l(t) > 0} as can be seen in Figure 4 .

Finally, we note that while hyper-exponential distribution is sufficient to characterize seasonal

demand as it passes KS-test, it seems to be an invalid distribution to describe the annual demand.

This is due to seasonal changes of home-load, such as average demand, especially due to heating

and cooling elements, which exhibit non-exponential, possibly heavy-tailed behaviour.

2) Accuracy of De modeling: We evaluate the performance of the fitting technique in modeling

De by comparing the battery sizes obtained by this model and those from ‘dataset quantile’ and

‘Ideal De model’. In fact, the difference between the battery sizing by envelope fitting with

that of ‘Ideal De model’ indicates the accuracy of fitting since the ‘Ideal De model’ shows the

battery sizing scheme when the De modeling inaccuracy is eliminated. We study both Weibull

and hyper-exponential as tail bounds in the examples in this section. We also conduct a thorough

sensitivity analysis of the above methods.

Figure 5 compares the battery size computed using the methods as a function of the violation

probability. The similar slopes observed from this figure for different methods implies that

the ratio of the battery sizes from each pair of methods is almost fixed even as the violation
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probability is varying.

Figure 6 illustrates the battery sizing as a function of battery charging rate C with a target

violation probability ε∗ = 2.7 ∗ 10−4. As the battery charging rate increases, all curves converge

to the battery size required by an ideal battery, which can be charged instantaneously. The battery

required for this ideal case must be large enough to serve the demand during the time when the

grid is unavailable.

Finally, Figure 7 shows the battery sizing from different methods as a function of ρ′ = λ
µ

and

for ε∗ = 2.7∗10−4. We set the average power outage duration to be one hour, i.e. µ = 1 hr−1, and

only vary λ. Due to limited space, we don’t show error bars for ‘Ideal De model’ and ‘Weibull

distribution’. We observe that even for very high power outage periods, like ρ′ = 0.33 (25%

power outage), the bounds are within 15% of the ‘Dataset quantile’. This sensitivity analysis

indicates that our De modeling and loss of power formulations are quite tight.

3) Comparison with Kesidis and MSM: In this section, we evaluate the loss of power for-

mulation from Lemma 1 with those obtained from other existing techniques: ‘Kesidis bound’,

and multi-state Markov chain ‘MSM’. We use ‘Dataset quantile’, and ‘our bound’ using hyper-

exponential distribution as benchmarks. Figure 8 compares the battery sizes computed by the

above methods as a function of the violation probability. We find that our approach outperforms

the competing approaches. It can also be observed that the Kesidis bound is almost insensitive

to the violation probability for the range of study. In addition, the Kesidis bound is comparably
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loose since it is based on the assumption that the effective demand is regulated, which requires a

deterministic peak-rate constrained leaky-bucket envelope on the effective demand. The tightness

of Kesidis bound is highly affected by the tightness of deterministic envelope in describing the

regulated traffic. The more bursty the traffic, the looser the bound becomes. Moreover, the MSM

bound is also not as tight as the envelope fitting and this is due to the inaccuracy induced by

employing the union bound to compute a statistical sample path envelope for the exponentially

bounded burstiness processes (including MSM processes) as also observed in [7].

B. Battery sizing for limiting genset carbon footprint

In this section, we use all approaches to find the minimum the battery size that keeps the carbon

footprint of a given genset below a certain threshold. Based on the results from Section VII-A2,

we know that our effective demand modeling using envelopes is very accurate. Hence we do

not repeat evaluating the accuracy of De modeling. The plots of this section show the following

curves:

• Dataset quantile: Similar to the ‘Dataset quantile’ in the absence of genset, we apply the

dataset trace to Eq. (3) and compute the exact carbon emission for our dataset.

• Our bound: This is the upper bound on carbon emission from Eq. (28) using envelope

fitting as explained in Section VI-B to model De with hyper-exponential distribution on εδ.

• Ideal De model: We remove the inaccuracy induced by independence assumption in Eq. (27)
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by applying the dataset trace directly to Eq. (26) to compute upper bounds on carbon

emission.

We compute the carbon emission as a function of the battery size for charging rate of C =

100kW in Figure 9. For any given carbon emission threshold, one can use this plot to compute

the required battery size. The plot is divided into three regions I, II, and III. Region I corresponds

to the case where Eq. (27) is evaluated to
∑T

t=1E[d(t)x
c(t)], which is the battery-less scenario.

If the carbon emission target threshold is as large as any value in this region we can remove the

battery. Region II corresponds to the case when C > B. If the target carbon emission threshold

falls into this region, one might choose the battery size to be equal to the energy generated in

one time slot with the charging rate, i.e., B = C. Finally, Region III corresponds to the case of

C < B for which the curves in that region must be used to size the battery.

From Figure 10 we can see that our bound becomes more accurate for larger charging rates.

Even for a relatively small charging rate like 100kW, we find that our bound is within a factor

of 1.7 from the ‘dataset quantile’. We can observe from Figures 9-10 that the carbon emission

using Eq. (28) are slightly below the ‘Ideal De model’. This is because of the independence

assumption made for ‘our bound’ in Eq. (27).

An upper bound on expected total carbon footprint can be also obtained by using Kesidis or

multi-state Markov chain to bound Pr{max ([De(s, t)− C(t− s)−B]+) > 0} in Eq. (27). Such

an approach, however, is extremely inaccurate (more than a factor of 10) as carbon footprint
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is directly proportional to any slackness in the loss of power probability. This is different to

battery sizing that intuitively depends on the logarithm of slackness in loss of power probability

(consider hyper-exponential bounding function in Eq. (32)). Hence we omit presenting those

figures.

VIII. CONCLUSIONS

Motivated by the need of reducing carbon footprint of diesel generator operation to mitigate

power outages, we present an analytical technique based on the stochastic network calculus for

a housing complex to choose a battery size to trade-off carbon. We solve the problem in two

parts. First, we study the problem of eliminating the use of genset and find the smallest battery

size needed to ensure a given target loss of power probability. Numerical evaluations show that

the sizing using our methodology is within 10% of the minimum battery size required had the

future load been exactly known. In contrast, the battery size computed using classical methods

is far larger than necessary.

Secondly, we study the trade-off between the size of battery and genset carbon emission. For

a given battery size, our computation of the carbon emission is within a small factor (1.7) of

the value obtained through numerical evaluation. This allows us to find the battery size needed

to limit the carbon footprint of a diesel generator. Given that prior work in the area of teletraffic

analysis has had limited success in computing upper bounds on the total loss of buffer for non-

Poisson arrivals, we believe that our work is of general interest, even in the area of teletraffic

analysis.

Our results are necessarily limited by the lack of demand and outage data from developing

countries. We model the demand from a neighbourhood of homes in a developed country by

the demand of 100 randomly selected Irish homes and we assume that outages are modeled by

a two-state Markov model. These limit the strength of our numerical results. Nevertheless, our

general approach can be used to study real datasets when they are available.

We are also interested in eliminating the need to assume statistically independent increments

when studying the total loss of power. Finally, an interesting related problem is to work with

more complex models of backup generation to analytically study how a battery can improve its

efficiency.
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APPENDIX

PROOF OF LEMMA 1

The loss probability at any time t satisfies the following

Pr{l(t) > 0}

≤ Pr

{
min

(
d(t)xc(t),

max
u≤s≤t−1

(
[De(s, t)− C(t− s)−B]+

))
> 0

}
(34)

≤ min

(
Pr {d(t)xc(t) > 0} ,

Pr

{
max

0≤s≤t−1
(De(s, t)− C(t− s)−B) > 0

})
(35)

≤ min

(
Pr{xc(t) > 0}, εg

(
B −max

τ≥0
(G(τ)− Cτ)

))
(36)

where we use Eq. (20) to derive Eq. (34). Eq. (35) is an upper bound on Eq. (34) using the fact

that P (X ∩Y ) ≤ min(P (X), P (Y )) for any events X and Y . Eq. (36) uses the assumption that

G is a statistical sample path envelope for the process De.
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