
Advanced pWeb Features

Md. Faizul Bari, Shihabur Rahman Chowdhury, Alexander Pokluda,

Reaz Ahmed, and Raouf Boutaba

David R. Cheriton School of Computer Science

University of Waterloo

[mfbari | sr2chowdhury | apokluda | r5ahmed | rboutaba]@uwaterloo.ca

University of Waterloo Technical Report: CS-2013-13∗

∗This report is a modified version of an internal technical report produced for Orange Labs, the

project’s sponsor. The original technical report was submitted to Orange Labs in June 2012.

Abstract

This technical report describes five crucial components of pWeb. First, we give a

review of the pWeb system architecture in Part I; second, we explain the architecture

and design components of our file system in Part II; third, we describe how peers

host and access dynamic content using light-weight HTTP servers and client-side

scripts in Part III; forth, we present XML data management and access capabilities

in Part IV; and finally, we conclude by providing a demo of our client software

implementation in Part V.

Contents

Part I: System Architecture 7

1 System Architecture 8

1.1 Advertisement Process . 10

1.2 Peer Join and Group Maintenance Process 11

1.3 Query Process . 13

Part II: File System 14

1 Introduction 15

2 Requirements for the File System 15

3 An Overview of Existing P2P File Systems 16

3.1 CFS . 17

3.2 Freenet . 17

3.3 OceanStore . 18

3.4 IVY . 18

3.5 BitTorrent . 18

3.6 Discussion . 18

4 File System for pWeb 19

4.1 Overview . 19

4.2 Naming and Directory Structure . 19

4.3 Object Structure . 21

4.4 File System Details . 22

4.4.1 Disk Layout . 22

4.4.2 File System APIs . 23

5 Summary 24

3

Part III: Server-side Scripting Enabling Dynamic Page Generation 25

1 Introduction 26

2 Requirements of a HTTP Server for P2P Web Hosting 26

3 Alternative Deployment Choices 26

3.1 Mozilla Firefox: LiveConnect . 27

3.2 NPAPI plugin . 27

3.3 Internet Explorer: ActiveX . 28

3.4 Internet Explorer: BrowserHelperObjects (BHOs) 28

3.5 Internet Explorer: Plugins . 28

3.6 Standalone HTTP Servers . 29

3.7 Java-Based Ajax Servers . 29

3.8 Summary . 29

4 Light-Weight HTTP Servers 31

4.1 Cherokee . 31

4.2 Hiawatha . 31

4.3 lighttpd . 31

4.4 nginx . 32

4.5 HFS (HTTP File Server) . 32

4.6 Comparison of Lightweight HTTP Servers 32

5 PHP and Java: Integration Techniques 32

5.1 Separate Java HTTP Server . 33

5.2 Java Webservice . 35

5.3 CGI . 36

5.4 Example: Java Function Call . 37

5.5 Conclusion . 38

6 Summary 38

Part IV: XML Data Management and Access Capability 39

4

1 Introduction 40

2 Native XML Database 41

3 Native XML Database versus Flat-file XML Database 43

4 General XML Schema for pWeb Documents 44

Part V: Client Software Implementation 45

1 Introduction 46

2 System Architecture 46

2.1 Server Side PHP Components . 46

2.2 Client Side Java Components . 46

3 First Database Architecture 47

4 Application Features 49

4.1 User management system . 50

4.2 Upload Content . 51

4.3 Database Lookup or Video Search . 51

4.4 Content Access and Video Streaming . 52

4.5 Group Management System . 52

5 Index Server Management 54

5.1 Patterns and binary tree . 54

5.2 Routing Table . 56

5.3 Upload . 57

5.4 Search . 57

6 Java Component 57

7 Choice of Technology 59

8 Installation Manual 60

5

9 Summary 61

6

Part I:

System Architecture

1 System Architecture

In this section we present the overall architecture of pWeb system so the reader may

have a better understanding of the subsequent parts of this report. The components of

the pWeb hosting architecture and the interactions between them are shown in Figure 1

and Figure 2, respectively. At the core of this architecture resides Plexus routing [4]

and all other components are built around it. Figure 1 shows the components that

make it possible to realize a web hosting framework on dynamic P2P network and

Figure 2 shows the interaction between these components. The arrows in Figure 2

depict the “uses” relationship between the components. From Figure 2 we can see

that the Group Management component uses four other components, namely: P2P

Naming system [5, 7], Plexus Routing [4], Dynamic Page Parser, and Data Storage.

Similarly the Indexing & Publishing and Query Processing [1, 3] components use the

Group Management component. A brief outline of the functionality of these components

is presented below.

1. P2P Naming System: This component uses the Plexus routing mechanism to

publish website names to the pWeb network and resolve website names to alive

peers’ IP:Port pairs in the network.

2. Group Management: The purpose of this component is to keep track of the

uptime history for each peer in a distributed manner, which is used to construct

replication groups. This component also keeps track of the existing peer groups

and provides a mechanism for mapping peer groups to an alive peer in that group

at any given time. This component uses the Plexus routing, P2P naming system

and data store components for performing these tasks.

3. Indexing & Publishing: This component provides a user interface for publishing

websites to the pWeb network. The task of publishing includes publishing the

website name using the P2P naming system, advertising indices using the Plexus

routing protocol, and replicating websites within a replication group using the

group management component. This component collaborates with every other

component within a peer and accesses the data storage component.

4. Query Processing: The query processing component converts query keywords

to a list of codewords and then forwards the codewords to the peers responsible for

them using the Plexus routing mechanism. This component uses the P2P naming

system to get the names of the websites where any matching content is found. It

8

Indexing &
P2P Naming system Publishing

Query Processing

Plexus
RoutingGroup Management

Dynamic Page Parser

P2P Web Server
D t StData Store

Figure 1: Components of pWeb hosting architecture

also interacts with the group management component and data storage component

for finding an alive peer and searching local repository, respectively.

5. Data Store: This component allocates some space from a peer’s secondary storage

for storing indices, web pages, images, scripts, Flash content etc. For enabling

light-weight database support, an XML-based file management API is also offered

by this component.

6. Dynamic Page Parser: This plugable component enables hosting of dynamic

web pages and conforms to the interface exported by the P2P web server. De-

velopers can build various implementations of this component enabling different

server-side scripting languages for pWeb hosting.

7. P2P Web Server: Each peer runs a local web server that will handle all P2P

Web requests. This web server operates in three modes: a) browsing, b) hosting,

and c) searching. In browsing mode, the web server resolves a web page name to

target IP:port pair using the P2P naming system and downloads the document

from the target peer’s web server. If a web page contains dynamic content then

the hosting peer’s web server uses the dynamic page parser component to generate

the page locally. In hosting mode, a web server responds to the download requests

from other web servers by providing web pages. Finally, in searching mode the

web server uses the query processing component to resolve a query.

9

Host

Browse Search

P2P Web Server

Search

P2P Naming System

Plexus
Routing

Indexing &
Publishing

Query
Processingg

Group
Manager

Data
Store

Dynamic
Page Parser

Figure 2: Interaction between the components of pWeb hosting architecture

Our P2P web hosting stack is built on top of a Plexus routing and indexing framework.

Though in Plexus [4], we used Golay Codes for routing, here we use the Plexus variant

using Reed-Muller Codes introduced in [23]. Using Reed-Muller codes, Plexus can scale

to millions of peers without using subnets or super-peers. This way the overlay network

can have a flat and symmetric structure. On top of this overlay network, replication

groups are formed based on uptime history of peers. The functional dependencies be-

tween the architectural components have a direct impact on the naming scheme and

vice versa. The three crucial processes within the naming component–Advertisement,

Peer Join and Group Maintenance, and Query–are presented below.

1.1 Advertisement Process

To facilitate searching web sites efficiently, we use a distributed Hamming distance based

indexing mechanism on top of Plexus routing. As depicted in Figure 3, the advertisement

process consists of the following four steps:

• Step a: Each peer in the system will belong to a replication group. Suppose peer X

belongs to group G and wants to advertise site S. The search keywords (or other

meta information) related to site S are r, s and t. Peer X sends this information

10

Website
Name

Keywords Group
ID

S r, s, t G

Target peers =
List‐Decode(BF(r,s,t)+BF(S))

Peer: X, Group: GPeer: X, Group: G
register Site: S,
Keywords: {r, s, t}

X a b

A

B D

E

Plexus

X

Y

b

c

B1
B2

B3
D

Peer: Y, Group: G
Replicates site : S

Y

d

Z

Figure 3: Advertisement of a Site

to a peer A in the Plexus indexing framework.

• Step b: In this step, peer A creates two advertisement patterns (basically Bloom

Filters). One from the meta information (i.e., , r, s and t) and the other from the

website’s name. Then peer A list decodes the patterns and computes the set of

codewords within a pre-specified Hamming distance from the advertised patterns.

Then it uses the Plexus routing mechanism to multicast the site index to the peers

(B1, B2, B3) responsible for the computed codewords. The indices stored in the

indexing peers (i.e., Bi’s) are in the form of <Website Name, Keywords, Group

ID> triplets.

• Step c and d: Newly hosted sites or updates to existing sites are propagated to

all the members (i.e., peers Y and Z) of the hosting peer’s (i.e., X’s) replication

group (i.e., group G). This update propagation (if any) takes place whenever a

group member rejoins the network. More detail on the peer join and replication

process is given next.

1.2 Peer Join and Group Maintenance Process

In order to maintain diurnal availability, peers collaborate in small groups in such a way

that at any given instance in time at least one peer from a group is online with very high

11

Website
Name

Keywords Group
ID

S r, s, t G

A

B D

E

Plexus
Y

Group ID Peer Status

G
X Offline

Y Online

Z Online

B1
B2

B3

C

D

α

β

Returning
Peer: Z, Group: G has
a replica of Site: S

Y

γ

Z
α

a replica of Site: S

Figure 4: Accommodating new/returning peers

probability. Content in each peer within a group is fully replicated and synchronized.

To ensure replica consistency, whenever a peer joins or returns to the system it finds

its group’s active members, updates its online status and synchronizes the replicated

contents in the following manner:

• Step α: As depicted in Figure 4, peer Z, a member of group G, becomes online

after being offline for a while. Once online, peer Z requests the address of a peer,

say C, in the Plexus indexing framework to find the members of its own group G.

If Z is joining the network for the first time, its replication group is determined

based on its uptime history.

• Step β: Peer C, constructs a pattern (Bloom Filter) from the group ID G, decodes

the pattern to find the closest codeword, and routes the query to the responsible

peer (here D) using Plexus routing. Upon receiving the query, peer D updates

the current status of peer Z to online, records its network address and returns the

IP:port list of all of the online members of group G.

• Step γ: After learning about the current online members of group G, peer Z

synchronizes website replicas with the online members.

12

Website
Name

Keywords Group
ID

S r, s, t G

Query for
keyword r

A

B D

E

W
1

2

3
4

Plexus

Group ID Peer Status

G
X offline

Y offline

Z online

B1
B2

B3

C

D

Z

Figure 5: Keyword-based content searching

1.3 Query Process

There are two types of queries: a) keyword search and b) name search. The second type

is more straight forward and a special case of the first type. Hence we explain the first

type only, i.e., query by keywords. As depicted in Figure 5, the keyword search process

can be performed in the following four steps:

• Step 1: In the example scenario peer W is searching for the sites that have keyword

r. It first sends the query to a random peer, say E in Plexus overlay.

• Step 2: Upon receiving the query, peer E constructs a query pattern (a Bloom

filter) from the query keywords and uses list decoding to find the codewords within

a pre-specified Hamming distance. Then it uses the Plexus routing to forward the

query to the peers that are likely to have the meta-information on sites with the

queried keywords. In the example in Figure 5, peer B3 responds with the website

name, keywords and the group ID (G) of the group hosting the website.

• Step 3: Once peer E receives the group ID G, it queries the Plexus network (similar

to the rejoin process) to find the list of currently online members of group G. In

this instance the network address of peer Z will be discovered and returned to the

querying peer W .

• Step 4: Now peer W can directly browse the website from peer Z.

13

Part II:

File System

1 Introduction

A file system organizes persistent data by providing an interface to store, retrieve and

modify data on persistent storage. It also organizes the free space in a storage device.

The storage device can be a standalone physical device (e.g., flash disk, magnetic disk),

a network of such devices, or it can have a virtual existence and backed by another

device. A file system usually provides the following functionalities:

• Space management on the storage device

• Organization of content (such as files in directories)

• Content Naming

• User access control to content

• Low-level interface to manipulate the storage

• High-level interface to end users that hides the storage level complexities

In this section, we describe a file system for pWeb. The file system defines a set of plat-

form independent Application Programming Interface (API) for the pWeb dispatcher to

store and retrieve data to and from peers. This protocol also defines mechanisms that

enable a peer to request file system services from a remote peer.

We begin our description with a discussion about the requirements for such a file system

protocol in Section 2. Then we present a short but necessary survey on the existing peer

to peer file systems in Section 3. Section 4 discusses the architecture of the proposed

file system for pWeb in more detail. Finally, we summarize the proposal in this part in

Section 5.

2 Requirements for the File System

The requirements of our file system greatly depend on the pWeb architecture. pWeb

has a decentralized architecture, where there are two types of peers: super peers for

forming the DHT, and regular peers for storing content. Each peer is identified by a

unique identifier called peer ID (pID). Peer groups are formed in such a way that at

least β(>= 1) group member is online at any given instance in time with a very high

probability [36, 37]. These groups are called availability groups and they are identified

by another unique identifier called group ID (gID). Each peer in an availability group

stores the same contents as all other members in that group.

15

Based on the different properties of pWeb architecture, we have identified the following

requirements for the file system:

• Decentralized. The file system must be decentralized. Individual peers should

be able to work without any global knowledge of the system. The file system

should work inline with the DHT based indexing scheme of pWeb.

• Portable. The file system should provide the peers with a platform independent

interface for storing and retrieving content. This feature will enable content to be

easily portable across different hardware and operating systems. The file system

can be considered as a socket, and the content can be considered as a plug. The

file system needs to be designed in a way that the hyper-linked content (i.e., the

plug) can be easily pulled out from one peer and plugged into another.

• Read / Write Security. The file system should be able to provide object level

read and write capabilities to object owners, while making the storage secured and

protected from any illegal access, including the peers replicating and hosting the

objects.

• Remote Invocation. A peer will replicate all the content from all of its group

members. Therefore, peers should be able to remotely invoke file services of any

other peer for storing and retrieving content.

• Scalable. The file system should scale with the growth of stored content and

group size, as well as updates to the existing content.

3 An Overview of Existing P2P File Systems

Distributed file systems have received a lot of attention in the past. Early works include

the Network File System (NFS) originally developed by Sun Mircosystems, CODA,

Andrew File System (AFS) etc. More recent works include The Google File System [28]

(GFS), Hadoop File System [38] (HDFS) and Amazon’s Dynamo [19]. These file systems

are tailored to work optimally for specific needs e.g., GFS is designed to work optimally

with MapReduce programming model and perform well with the Google search engine.

The content in these file systems is distributed across a number of servers but the

operations on the file systems are coordinated by some centralized controller. Therefore,

they do not meet the requirements of pWeb.

16

The inherent scalability property and decentralized nature of P2P systems along with

their sucess over the last decade has generated many research efforts in designing dis-

tributed file systems. We have selected the following five projects as a representative set

for discussion about P2P file systems: CFS [18], Freenet [11], OceanStore [25], IVY [31],

and BitTorrent [14]. We will present a brief discussion on these research efforts in the

following sections.

3.1 CFS

CFS [18] is a read-only peer-to-peer file system developed at MIT. It has four primary

design goals: guaranteed efficiency, robustness, load balancing and scalability. It uses

the Chord DHT for the storage of blocks. The set of blocks are distributed over the

CFS servers. From the user’s perspective CFS is a read-only file system.

CFS has a number of positive features. It divides files into chunks and distributes them

across a number of storage nodes. This reduces the load on the storage nodes during file

access. The Chord DHT enables logarithmic time lookup, and caching and replication

are used to further reduce the lookup response time. However, maintaining files in small

blocks imposes a large overhead on the system. All the blocks of a file are not guaranteed

to be stored in a single storage node so a single file retrieval may involve routing along

the longest path in the DHT.

3.2 Freenet

Freenet [11] is a read only P2P file system that enables the publication, replication and

retrieval of content. Freenet operates as a location-independent distributed file system

across many individual peers that allows files to be stored and requested anonymously.

Freenet’s design goals are anonymity, resistance to third party access, dynamic storage

and routing, and decentralized policy.

Freenet identifies files by 160-bit keys obtained through the SHA-1 hash function. Search

queries are also performed using hashed keys and can be either locally processed or

forwarded to the lexicographically closest node in the routing table.

The main advantage of Freenet is that it provides anonymity for both publishers and

consumers of information. It also provides fast lookup time for popular content by

replicating it across the network. On the other hand, this system is vulnerable to security

threats, such as Denial of Service (DoS) attacks and Dictionary Attacks. Furthermore

the flat namespace requires globally unique identifiers and this affects scalability when

the number of content items becomes large.

17

3.3 OceanStore

OceanStore [25] provides distributed access to persistent content on a global scale. It is

designed using a cooperative utility model that has consumers pay a small fee to service

provides to ensure they access to persistent storage.

The core of OcenStore’s storage system is a set of untrusted servers provided by a number

of service providers. OceanStore encrypts all data before storing it on the untrusted

servers and aims to provide high availability. Data in the system is located by either a

non-deterministic fast algorithm or a deterministic slow algorithm. OceanStore provides

both read and write access but write access can be restricted using Access Control Lists

(ACL). Lookup requests are routed between the servers using the Tapestry DHT.

3.4 IVY

IVY [31] is a read/write P2P file system. It uses journaling and a distributed hash table

to provide users with an NFS [34] like interface. The journal is comprised of a number

of logs maintained by each participant and enables recovery from failures. Although it

provides an NFS like interface to end users, it performs two to three times slower than

NFS.

3.5 BitTorrent

BitTorrent [14] is one of the most popular P2P networks. BitTorrent is a file shar-

ing protocol that relies on other global components such as websites for indexing and

searching torrent files. BitTorrent offers only read only access to files i.e., original con-

tent cannot be modified. Files are divided into and distributed in chunks and once a

peer has received a chunk it acts as a provider for that chunk. This enables content

to be distributed quickly and efficiently throughout the network. Each peer is respon-

sible for maximizing its download rate by contacting other peers. The Kademilla [29]

DHT is used for index lookup in the BitTorrent system. BitTorrent can scale to a very

large number of users but the dependency on global components restricts its use as a

decentralized file system.

3.6 Discussion

Most of the P2P file systems discussed were designed as academic projects and do

not have robust and efficient implementations. Only Freenet and BitTorrent have been

deployed in a large scale real world environment, but neither of them allow content to be

18

updated once it has been published so they do not fulfill our requirement of a read/write

file system. CFS is also a read only file system and is not suitable for pWeb. OceanStore

and IVY are both read/write file systems but OcenaStore’s utility model conflicts with

our philosophy of voluntary participation and also depends on the untrusted servers of

the service providers. Based on the observations in this section, we conclude that instead

of using an existing P2P file system for pWeb, we will develop our own file system that

is tailored to our requirements. The details of the pWeb file system are described in the

following sections.

4 File System for pWeb

4.1 Overview

We propose a virtual disk based file system for pWeb. Each peer stores all of its content

in a single file which appears to be a virtual disk to that peer containing data as objects.

Every type of content that can be stored is treated as an object. The objects can be of

different types. The major object types are (but not limited to):

• Web Pages

• Images

• Video

• Video Chunks (Since, video objects are large, they will be stored in chunks)

• XML files (for database)

• Style Sheets

• Client Side Scripts

• Plain Text Files (mainly for configuration purposes)

4.2 Naming and Directory Structure

The proposed naming scheme for pWeb [7, 8] identifies the individual objects using an

ID called pRL that is comprised of a number of components. The objectID component

of the pRL is used to identify the individual objects within a website while the remainder

of the pRL is used to identify individual sites.

19

The grouping and naming scheme of the pWeb architecture is a two level hierarchy.

Each peer stores the objectIDs for individual pRLs (level 1), which in turn belong to

a particular pID (level 2). Therefore, we propose the following naming scheme for the

virtual file system:

Each object of a website will be identified by the objectID in the pRL. The objects will

be stored in a two level hierarchical directory structure within the virtual disk. The

levels will be organized as:

Level 0 - The root directory: The root directory will contain all other directories

in the file system. The root directory will be identified by the “/” symbol.

Level 1 - Directory for different peers: There will be a directory for each peer hav-

ing the same gID. These directories will be located one level down the root di-

rectory in the directory lever in the hierarchy. The directory for a peer will be

identified by the pID of that peer.

Level 2 - Directory for different sites: The directory for a peer identified by pID

will further contain a number of directories within it. Each of them will contain

the objects of a site, and these directories will be identified by the site’s pRL

without the objectID field. For what follows next we refer to this as site prl

The fully qualified name of an object will be /pID/site pRL/objectID. Figure 6 gives

a more clear picture of the hierarchical directory structure.

Root Directory

Directory for different

peers

(identified by pID)

Directory for different prl

for a same peer

Objects of a same prl

Two Level

Directories

Figure 6: Two Level Directory Structure

20

4.3 Object Structure

An object will be a set of attribute-value pairs. We will use XML schema, a popular

format for describing attribute-value pairs, to describe our objects. The minimal set of

XML tags for describing an object are:

• objectID: The objectID part of the pRL.

• publisherAssignedName: Content publisher’s assigned human friendly name.

• type: The type of the content (e.g., webpage, images, videos etc.).

• author: Name of the content’s publisher.

• size (bytes): Size of the content in bytes.

• Last Access Time: Time stamp indicating when the content was last accessed.

• Last Modification Time: Time stamp indicating the content’s last modification

time.

• Version Number: If the content exists in multiple version (i.e., an image may

have multiple versions for multiple resolutions), then this field is used to provide

a version scheme.

• iNodeNumber This is similar to the I-node in UNIX like Operating System

(OS) [27] except for the virtual disk.

This set of tags provides a generic interface for describing an object. For objects of

specific types a number of extra attributes might be added if necessary. We provide a

set of additional attributes for different object types described in Section 4.1.

• Webpage

– Page Type: Type of language used to generate the page, i.e., HTML, PHP

etc.

– Technology Version: HTML version, PHP version, etc.

• Image

– Encoding Type: The type of compression the image is using, e.g., jpeg,

png, bmp, etc.

• Video

21

– Encoding Type: The format of the video, e.g., mpeg, mkv, avi, etc.

– Number of Chunks: A video in this file system is divided into fixed size

chunks. Each chunk is considered as an object. This field contains the number

of chunks of a video content.

– Chunk Size: The size of each video chunk

– Chunk Indices An array where the i-th element contains the I-node number

of the i-th chunk

• Video Chunk

– Video Object ID: objectID of the constituent video file.

– Chunk ID: A sequentially numbered identifier (starting from 0) to identify

a video chunk of a video file.

• Client Side Script

– Script Language: The language used for writing the script, e.g., javascript,

vbscript, actionscript etc..

• Plain Text File

– No extra attribute

4.4 File System Details

4.4.1 Disk Layout

The virtual disk will be flexible in size, that is, it will grow in size as needed. I/O will

be performed on the disk in groups of bytes for performance since most physical file

systems that will be used to store the virtual disk uses block level granularity instead of

byte level granularity. This reduces the total number of disk operations (which are slow

compared to main memory operations), and thus improves the system throughput.

We can adopt the I-node based UNIX file system with some simplification for imple-

menting the virtual file system. An I-node is a data structure for each object and

directory in the file system. An I-node keeps track of the disk blocks of an object or

directory. Each I-node is identified by a unique I-node number starting from 0. The

disk blocks of a directory will contain the name of the objects and their I-node numbers.

The whole virtual disk will be divided into a number of regions:

22

Super block: This region will contain meta-data about the file system, i.e., free I-node

list, free disk block list, size of the file system etc.

I-node list: This region will contain all of the I-nodes in the system. In our context

an I-node carries the same semantics as it carries in UNIX file system

Data blocks: This region will contain the object data.

4.4.2 File System APIs

The set of file system APIs will form two interfaces. One will provide lower level block

I/O capabilities that will be used by the virtual file system itself to manipulate data

on disk. The other interface will provide object level I/O capabilities to the pWeb

dispatcher. The lower level API will depend on the OS specific file system calls to

manipulate data on the virtual file system (which in turn is a regular file in the host

operating system’s file system). On the other hand the higher level API will provide a

platform independent interface to the pWeb dispatcher. The pWeb file system is can be

thought of as a socket with one end is attached to the host operating system while the

other end provides an interface for putting in any plug (virtual disk) into it; therefore,

all the contents of a peer can be easily ported to another peer.

Lower Level APIs The lower level APIs will encapsulate the operations on the virtual

disk and they will provide block based I/O functionality to the higher level APIs. At

minimum the following API function calls will be supported and available to the higher

level APIs.

readBlock(blockNo, buffer): This function reads the blockNo block from the disk

and puts the data into the memory space pointed by buffer. This function returns

the number of bytes read or a negative number on read failure.

writeBlock(blockNo, buffer): This function writes the data contained in the mem-

ory space pointed by buffer to the blockNo block in the virtual disk. buffer

points to a memory space which has a size equal to the number of bytes in a disk

block.

getNextFreeINode: This function returns the next available free I-node from the I-

node list.

getNextFreeBlock: This function returns the next available free block for storage from

the virtual disk.

23

Higher Level APIs The higher level APIs will be available to the dispatcher to

perform various operation on the file system. A list of API functions are as follows:

createDirectory(pID, site pRL) This will create a /pID/pRL directory in the virtual

file system of the invoked peer. pID identifies the invoking peer.

createObject(pID, site pRL, object) This function call will create the passed ob-

ject in the /pID/site prl virtual directory of the invoked peer. pID identifies the

invoking peer. First the 〈attribute, value〉 pairs will be serialized and then the

serialized object will be written to the virtual disk using the lower level APIs.

readObject(pID, site pRL, objectID) This function call will use the lower level

APIs to read the byte stream corresponding to the objectID from the /site pID/pRL

directory on the virtual file system of the invoked peer. Then it will de-serialize

the bit stream and return the object as a set of 〈attribute, value〉 pairs to the

invoking peer.

modifyObject(pID, site pRL, objectID, 〈attribute, value〉list) This function will

read and de-serialize the whole object identified by objectID from the /pID/site prl

virtual directory of the invoked peer. Then it will update the values of the at-

tributes in attribute with value. Then it will erase the old copy of the object

from the virtual disk and will write the entire object to the virtual disk.

5 Summary

In this section, we have described a decentralized file system for pWeb. The file system

provides an OS independent interface to the pWeb dispatcher. The file system’s OS

dependent part for performing low level disk I/O can be easily implemented in OS by

mapping our low level disk access API to a number of system calls. The described file

system API along with the file system protocol will provide a platform for developing

easily portable websites.

24

Part III:

Server-side Scripting Enabling Dynamic Page Generation

1 Introduction

This module enables hosting of dynamic web pages in pWeb. Client and server side

technology choices i.e., scripting languages, data storage mechanisms, data transfer

protocols, etc. greatly depend on the deployed webserver and its supported features. We

introduce the requirements of a HTTP webserver in Section 2. Alternative deployment

choices for web servers are presented in Section 3. Next, we present a survey of suitable

webservers in Section 4. Section 5 describes how we can integrate server and client side

scripts using CGI, PHP and Java.

2 Requirements of a HTTP Server for P2P Web Hosting

One of the primary objectives of pWeb is to be able to run seamlessly on a variety of

platforms. For this reason, we have distilled the following requirements for the pWeb

HTTP server:

• Lightweight: We envision our pWeb software to run on a wide range of hardware

devices, including cell phones, smart phones, tablets, set-top boxes, laptops, desk-

tops etc.A lightweight HTTP server with a small memory footprint will make it

possible to deploy pWeb on nodes with restricted resources without affecting user

experience.

• Ease of deployment: The HTTP server should be easy to deploy on a peer

independent of its underlying hardware. A single installer should be able to install

both the pWeb client and the HTTP server.

• OS independent: It should be installable or portable to all major OSs.

• Suport for CGI: The webserver should support CGI and FastCGI. CGI is re-

quired to access pWeb Java library from PHP scripts.

• Site portability: Websites deployed under the webserver should be easily portable.

One should be able to run the website from a different peer just by copying the

website directory from one peer to another.

3 Alternative Deployment Choices

In this section we evaluate different approaches for deploying an HTTP server on a peer

and linking PHP and JavaScript running in the server to pWeb Java codebase.

26

3.1 Mozilla Firefox: LiveConnect

LiveConnect [22] is an API enabling JavaScript executing within Mozilla browsers to

call Java code (and vice versa). However, these privileges only apply to the JavaScript

code written as a Firefox extension, not the JavaScript running within HTML pages.

The Java code called runs as a separate process, has full networking capabilities, access

to the local filesystem, and can (in particular) start a local HTTP server. LiveConnect

requires the Java plugin to be installed.

An advantage of LiveConnect is that Plexus is implemented in Java and can therefore be

called within the same process, without additional complexity, delay and multi-platform

compatibility and reliability issues. The disadvantage is that LiveConnect works on

Firefox only. We would need to find a separate implementation for every other browser.

Moreover, LiveConnect is unstable from Firefox version 4 and above.

3.2 NPAPI plugin

The NPAPI (Netscape Plugin Application Programming Interface) is an interface for

web browser plugin development. NPAPI was originally created for the Netscape Navi-

gator web browser and is still supported by most web browsers except Internet Explorer.

The Mozilla Foundation has developed an ActiveX Control for hosting Netscape plugins

in Internet Explorer [21]. However, that project is outdated and has a number of de-

ficiencies in terms of the supported features. Despite the incompatibility with Internet

Explorer, NPAPI has a number of advantages that are presented below:

• NPAPI is a well established standard; NPAPI plugins are supported by most

browsers except Internet Explorer. In Google Chrome, NPAPI plugins can be

included as browser extensions [10].

• No need to install Java plugin for the browser.

This approach has the following disadvantages:

• NPAPI plugins need to be recompiled for every operating system, so the deploy-

ment effort increases.

• NPAPI plugins are not subject to any sandbox security measures. Therefore,

security exploits, e.g., malicious JavaScript in HTML can have severe consequences

for the machine running a browser with this plugin.

27

• The source code for P2P web server etc. would have to be incorporated into the

NPAPI plugin, increasing the implementation’s complexity and reducing manage-

ability. Web browser code typically comes in libraries yet the interaction with such

libraries still requires web server development knowledge, i.e., how the web server

operates internally. Therefore, the required knowledge goes beyond web server

usage knowledge, i.e., how to set up the web server (perhaps automatically) and

integrate it with other applications.

Browser Extensions NPAPI Plugins

One solution for all browsers No Yes

One solution for all OSes Yes No

JVM required Yes No

Table 1: NPAPI Plugins vs. Browser Extensions

3.3 Internet Explorer: ActiveX

ActiveX allows the developer to use a number of functionalities from within a webpage,

including access to the local file system. However, ActiveX works only on Internet

Explorer, which in turn works only on Microsoft Windows. Therefore, we would have to

create separate solutions for other browsers and operating systems. As a result, using

ActiveX for starting and managing web servers would increase the development effort.

3.4 Internet Explorer: BrowserHelperObjects (BHOs)

BHOs extend the web browser [15], providing functionality similar to Firefox browser

extensions. For example, BHOs can intercept page loads and modify the contents of

HTML pages loaded within the browser. BHOs implement the Component Object

Model (COM) interface and can be implemented in C# or C++ [16], [13], [12].

3.5 Internet Explorer: Plugins

It is possible to develop plugins for Internet Explorer, e.g. using the tool available at [17].

However, these tools and tutorials are outdated and are not compatible with current

version of Internet Explorer.

28

3.6 Standalone HTTP Servers

A standalone HTTP server can be installed along with the pWeb client under the same

installation package. The advantage of this approach is that the server can run in the

background and data can be exchanged over the HTTP protocol. However, we need a

mechanism for communicating between the PHP script and the Java code running on the

same peer. This can be done using CGI. A CGI script written in scripting languages like

Perl or Python can facilitate data transfer between PHP and Java. This approach has

several other advantages such as ease of deployment, configuration and interoperability–

any light-weight HTTP server with similar features can co-exist on the pWeb network

so different HTTP servers can be run on devices with different capabilities.

3.7 Java-Based Ajax Servers

A local HTTP server could be implemented using indirect Ajax frameworks. Rich In-

ternet Application (RIA) frameworks have opened a new era of developing complex user

interfaces using regular web-browsers. RIA frameworks depend heavily on Ajax for dy-

namic and partial content loading. Ajax frameworks based on JavaScript are executed

on the client and allow components to be created using JavaScript functions, generating

the required HTML elements automatically.

Indirect Ajax frameworks based on Java require a central server, which can be deployed

on each peer. This framework provides the following features:

• Establishes the HTTP server for serving both static and dynamic content

• Gives the user a convenient way to create his/her own web content, e.g., with a

WYSIWYG tool on top of the Ajax framework

However, indirect Ajax frameworks do not provide support for CGI. Direct communica-

tion between server side PHP scripts and client side pWeb Java code is not possible.

3.8 Summary

Based on the advantages and disadvantages of the deployment choices discussed in this

section, we have made the following decisions:

• A standalone lightweight HTTP server will be deployed on each peer

• Java-based Ajax frameworks can be used for content editing and uploading

29

• Browser plugins help in handling pWeb Resource Locators (pRLs) by translating

between pRLs and peer IP addresses
Interaction between pWeb client

components
Web Server

ptp://<content name>
Web Server

Web Browser Browser
Extension

Handling Page pWeb Java
Library

Web Server

File Manager

Data
Store

Browser
Extension

Web Server

Handling Page
pWeb Java
Library

A pWeb Client
File Manager

Data
Store

Remote Peer

Figure 7: Interaction between server and client side components

Interaction between these components are shown in Figure 7. After a user enters a pRL

in the browser address bar in the form of ptp://<content name> (here ptp stands for

pWeb Transport Protocol), the browser invokes the pWeb plugin to handle the address.

The plugin forwards the content name to a special handling page, hosted in local web

server, for processing. The handling page forwards the content name to the pWeb

Java client using CGI. The Java client invokes the name resolution module and resolves

the supplied pRL to a currently alive peer’s IP:port pair in the network hosting the

corresponding content. The IP:port pair is returned to the browser extension through

CGI, which then retrieves the web content from that IP. Each peer has a webserver

which servers both static and dynamic content. XML files are used for storing dynamic

data in the Data Store and the File Manager manages other static files like HTML,

images, video, scripts, etc.

In the next section, we provide a brief survey of several lightweight HTTP servers along

with their provided features and discuss the suitability of each server in the context of

pWeb.

30

4 Light-Weight HTTP Servers

We intend to avoid running a fully-fledged HTTP server (e.g. the Apache HTTP Server)

due to resource issues (particularly on mobile devices) and automatability of deployment.

Instead, we require a minimal-weight, yet PHP-enabled web server, which requires no

or minimal configuration from the user. In this subsection, several light-weight servers

are compared with regards to whether they exhibit these properties.

4.1 Cherokee

The Cherokee webserver runs on all major platforms, including Windows, Unix-based

systems and Mac OS, and supports a large number of server-side scripting languages but

support for them must be set up manually. In particular, the PHP interpreter needs to be

set up separately and Cherokee needs to be configured to use this particular interpreter.

Cherokee is very well documented, but a user without background in computer science

will not be able to set up the local HTTP server manually. As a result, Cherokee (like

most other webservers) does not qualify in terms of ease of use.

4.2 Hiawatha

Hiawatha is a cross-platform, light-weight webserver with a comprehensive set of security

features [26]. Hiawatha is similar to Cherokee in many ways, including the fact that

the PHP interpreter needs to be downloaded and set up manually. While Hiawatha can

be run as a Windows Service, it was “never fully tested” under Windows [26] and the

author even recommends to use Hiawatha under Windows only for websites for testing

purposes. While there are no high-availability requirements towards the peers of pWeb,

it would still be desirable to have the server running reliably when the peer machine is

running.

4.3 lighttpd

lighttpd is highly optimized for speed–in particular, it is intended to solve the “C10k

problem”, which is the problem that most web servers cannot handle more than 10,000

simultaneous connections [40]. As a result it “is used by a number of high-traffic web-

sites” [24], including YouTube and Wikipedia. The intended purpose of lighttpd is the

quick distribution of many small files (“Ad-Server Front-Ends”) and “load-balancing the

php-request over multiple PHP-servers”. These goals differ from the typical scenario of

a web server on a pWeb peer, which will likely not have to handle more than 10,000

31

simultaneous requests. The intended users of lighttpd are individuals who are very

proficient in computers. Yet, lighttpd can be deployed within an installation package

with preconfigured options, despite the focus on speed and efficiency. lighttpd comes

in binaries, without having to do any compilation, which makes automated deployment

and integration into a pWeb installation package easier, particularly under Windows.

4.4 nginx

nginx [39] is a cross-platform lightweight webserver that is similar to the lightweight

webservers presented previously. In contrast to many others, including Apache and

lighttpd, nginx does not automatically spawn FastCGI processes. As a result, providing

PHP support via CGI or FastCGI is more complex to set up, reducing the automatability

of deployment.

4.5 HFS (HTTP File Server)

HTTP File Server (HFS) [30] is a web server designed for easy-to-use file sharing. HFS

is only available for Windows and does not support server-side scripting and dynamic

content, e.g., PHP. These drawbacks are the main reasons why HFS does not fulfil the

requirements the pWeb project has for the local HTTP server.

4.6 Comparison of Lightweight HTTP Servers

In this context “automatability” refers to automatability of deployment, setup and op-

eration of the HTTP server.

From our survey, we can conclude that most lightweight web servers are either (i) hard to

set up automatically and have poor support for Windows or (ii) provide no support for

dynamic content. lighttpd, however, is more automatable than most other lightweight

HTTP servers, which makes lighttpd our choice.

5 PHP and Java: Integration Techniques

pWeb peers serve content to other peers via a lightweight local HTTP server, which

needs to support PHP in order to support dynamic content. In this section, we refer to

this server as the Content HTTP Server (CHS).

At the same time, major pWeb components, including name resolution and replication as

well as content advertising and searching, are written in Java and need to be accessed by

32

Dynamic

Content

Automatability Recompile for

each Platform

Cherokee Via CGI

(Manual Setup)

No Yes

Hiawatha Via CGI

(Manual Setup)

No Yes

lighttpd Via CGI

(Manual Setup)

Yes No

nginx Via CGI

(Manual Setup)

No Yes

HFS Not supported Yes Windows only

Table 2: Comparison of Light-Weight HTTP Servers

web browser extensions. As these run in a separate process, the web browser extension

needs to communicate with the Java components via XMLHTTPRequest. This section

presents and analyzes approaches on how to integrate PHP and Java components for

collaboration on a peer.

5.1 Separate Java HTTP Server

JRE 1.6 includes a simple Java webserver, which can be used to expose the Java func-

tionality to other processes, e.g., a web browser extension. The local Java HTTP Server

runs independently from the CHS. The server publishes the pWeb functionality within

several resources, with which the browser extensions and provided webpages interact.

The following list shows some examples:

• The resource /nameresolve is the interface for name resolution, which is per-

formed by Java components. The URL to access this resource is

http://localhost:10001/nameresolve?contentname=www.google.ca.

• The resource /getsetting is used to read settings. Only one setting can be

retrieved at a time. The URL to access this resource is

http://localhost:10001/getsetting?settingname=<settingname>.

• The resource /updatesetting is called to update settings. An example URL to

update the two settings maxdown and maxup is

http://localhost:10001/updatesetting?maxdown=200&maxup=202.

33

Data Store

FB 5

Figure 8: Interaction between different technologies

Several settings can be changed with one call. Settings are read and written using a

special Java component which connects the Java server to the other components of

the pWeb installation. For example, when editing the settings of the CHS, the Java

server will accept the request for setting update and then edit the configuration

file of the CHS.

The Java Server can be called by any other process on the local machine. For example,

the extJS framework (which is used to implement the UI) and the browser extensions

can use XMLHTTPRequest to connect to the local Java HTTP Server. The Java server

is not intended to receive connections from other machines, and will deny any requests

which do not originate from localhost.

This solution takes advantage of the fact that the Java server is simple to implement. A

major drawback of this solution is that two servers need to run on each peer. We intend

to avoid having to run several servers and having to use several ports on the machine,

due to:

• performance, and

34

• port management: Assume pWeb uses e.g., port 80 for a web content server and

another port for a server exposing the Java component’s functionality to web

browser extensions. Then, that other port can be either static, causing collision

problems, or the Java server can be dynamically bound to a free port upon each

startup. In this case, however, the port needs to be communicated to the web

browser extension at each startup. Also, when the functionality implemented

in Java is exposed under another port than the script where the UI pages are

hosted, the same-origin policy prevents those webpages from consuming the Java

functionality directly.

Note: Due to the reasons stated above, the Java webserver solution has been replaced

with the CGI solution presented in Section 5.3. The resources presented above have

been replaced with a single resource named update on the light-weight CHS, which calls

the appropriate Java components via CGI.

5.2 Java Webservice

This solution exposes the functionality of the Java components as a webservice, which

is then accessed by a PHP wrapper function. In Java, it is possible to expose methods

to a webservice with very little coding effort:

@WebService

@SOAPBinding(s t y l e=Sty l e .RPC)

public class Concatenator {
public long concat (S t r ing val1 , S t r ing va l2) {

return va l1 + val2 ;

}
}

Listing: The class whose functionality is exposed to webservice. In this example, the

class performs a simple string concatenation.

public class ConcatServer {
public stat ic void main (St r ing args []) {

Concatenator c = new Concatenator () ;

Endpoint endpoint =

Endpoint . pub l i sh (

” http :// l o c a l h o s t :8080/ concatenator ” ,

35

c

) ;

}
}

Listing: Creation of webservice.

t ry {
$x = new SoapCl ient (

” http :// l o c a l h o s t :8080/ concatenator ? wsdl ”

) ;

$a = ”abc” ;

$b = ” de f ” ;

$y = $x−> s o a p C a l l (” concat ” , array ($a , $b)) ;

echo $y ;

} catch (Exception $e) {
echo $e−>getMessage () ;

}

Listing: PHP wrapper function.

The URL of WSDL file is: http://localhost:8080/concatenator?wsdl.

However, this simple interface hides the complexity and resource consumption behind

offering a webservice. A separate server is started, requiring a second port to be reserved

besides the CHS’s port. Therefore, this solution also requires two ports.

5.3 CGI

Using CGI, the webserver–lighttpd in our case–redirects requests for resources of speci-

fied types to a predefined executable. The following listing shows the part of the lighttpd

configuration file where .php files are sent to the PHP executable and .jav files are sent

to a batch file named CGIConsole.bat. The batch file then processes the request by

running a JAR file with the parameters of the request, and then returns the values

returned by the Java component.

c g i . a s s i g n =(

” . php” => ”C: / php/php−c g i . exe ” ,

36

” . jav ” => ”C: / CGIConsole . bat ”

)

s t a t i c−f i l e . exclude−ex t en s i on s = (” . php” , ” . jav ”)

Listing: CGI configuration of lighttpd

To interact with functionality implemented in Java, the pWeb HTTP server (lighttpd,

as mentioned earlier) provides one single resource. The resource is named update and is

called using POST parameters. The fname parameter specifies the function name, e.g.,

getSetting for retrieval of a setting. The param parameter specifies the arguments by

which the function is called, encoded in JSON format.

5.4 Example: Java Function Call

The following listing shows an example for a function call of a Java component. Assume

the Java function is named updatesetting and requires the parameters settingname

and settingvalue, so the setting “maxup” is updated to “100”. The function definition

of the Java source file would be void updatesetting(String settingname, String

settingvalue).

A process outside the Java component calls the function updatesetting by invoking

the URL http://<ip of peer>/update, which is hosted by lighttpd, with the POST

parameters fname=updatesetting and param=<parameters>, where <parameters> is

a placeholder for the listing below.

[

{
”paramname” : ” sett ingname ” ,

”paramvalue” : ”maxup”

} ,

{
”paramname” : ” s e t t i n g v a l u e ” ,

”paramvalue” : ”100”

}
]

Listing: JSON encoded parameters when updating a setting of the pWeb software. For

every parameter of the function to be called, the JSON array contains another element.

37

5.5 Conclusion

There are extensions to CGI, namely FastCGI and SCGI (Simple CGI), which provide

better scalability and an easier interface. However, both of these technologies rely on a

separate server, so the required number of ports would be two for FastCGI and SCGI.

We choose CGI to couple PHP and Java, since CGI does not require a second server or

port.

6 Summary

In this section we presented the mechanisms for supporting dynamic web content in

pWeb. A typical user will be able to create his or her dynamic content using a mix of

PHP, XML, JavaScript, and Ajax, which have become popular technology choices for

creating dynamic content. Here, XML files are used as data store, which are accessed

from PHP or Ajax for generating dynamic pages. Moreover, these scripts can be ported

to any peer just by copying them to that peer and the new peer can start serving

those pages right away. The PHP scripts access the pWeb Java code base by using CGI,

which is provide by lighttpd web server. Our selected mechanism for supporting dynamic

pages provides a coherent solution, where each individual component is self-contained

and connected to other components through well defined interfaces.

38

Part IV:

XML Data Management and Access Capability

1 Introduction

XML (EXtensible Markup Language) is widely used to transport and store data. It

provides a way to represent data in an object-oriented fashion. It is very similar to

HTML, but the tags are not predefined. Tags in XML are defined by the users based

on the data that needs to be stored or transported. Figure 9 shows an example of XML

file representing employee information.

<Employee>

<FirstName>Rakibul</FirstName>

<LastName>Haque</LastName>

<Address>Waterloo</Address>

<Position>Research Assistant</Position>

</Employee>

<Employee>

<FirstName>Golam</FirstName>

<LastName>Rabbani</LastName>

<Address>Waterloo</Address>

<Position>Teaching Assistant</Position>

</Employee>

Figure 9: Example of XML

The following rules are enforced when defining an XML document:

• All XML elements must have an opening and a closing tag

• XML tags are case sensitive

• XML elements must be properly nested

• XML documents must have a Root element

• XML attribute values must be quoted

A webserver uses storage for the websites that generate dynamic webpages as shown in

Figure 10. We chose XML as the storage for the following reasons:

• Objects/data can be represented in a structured self-descriptive manner

• Transferring objects/data will be easier

• XML is platform-independent

40

Dynamic webpage
Web server

Storage

Figure 10: Dynamic webpage

• The whole website needs to be portable; the use of XML as storage will increase

portability as opposed to using a dedicated database management system.

• XML processing and query tools are widely available and supported in many plat-

forms.

2 Native XML Database

A native XML database is one that treats XML documents and elements as the fun-

damental structures rather than tables, records, and fields. Such a database enables

developers to use tools and languages that more naturally fit the structure of the docu-

ments they’re working with, thereby enhancing productivity.

In most XML databases, the fundamental unit is the XML document, which roughly

corresponds to a record in a relational database. One big advantage of a native XML

database is that it can run queries that combine (or join, in SQL parlance) information

contained in multiple XML documents. The need to query multiple documents explains

the design of XQuery, the developing query language for native XML documents, which

is in turn based on XPath 2. In fact, the ability to query multiple documents is probably

the single most fundamental difference between XPath 1 and XPath 2/XQuery. What

SQL is to relational databases, XQuery is to native XML databases.

XQuery does not provide as much functionality as SQL does. Whereas SQL has four

DML (Data Manipulation Language) operations: SELECT, INSERT, UPDATE, and

41

DELETE as well as some DDL (Data Definition Language) commands for creating and

dropping tables and users. XQuery only supports SELECT to retrieve information from

an XML database. It can’t add documents to the database, delete documents from

the database, or modify existing documents. Most native XML databases implement

an XQuery extension for data manipulation. For example, XUpdate is implemented by

eXist [20].

There are a few commercial and open source native XML databases. Some of them are

listed below:

• Qizx [33] is an XML database engine which allows the users to store and index

XML documents, of any type and size, and to perform searches and transforma-

tions on stored documents. It can be integrated into a standalone Java application,

or it can be the core of a server. It fully supports the XQuery language and its

extensions XQuery Full-Text and XQuery Update.

• BaseX [9] is a platform independent, open source, light-weight and scalable XML

Database engine and XPath/XQuery 3.0 Processor. It includes full support for the

W3C Update and Full Text extensions. It also provides an interactive user-friendly

GUI to give the users an insight into their XML documents.

• eXist-db [20] is an open source database management system built using XML

technology. It stores XML data according to the XML data model and features

index-based XQuery processing. It is highly compliant with the XQuery standard.

The query engine is extensible and features a large collection of XQuery Function

Modules. eXist-db provides a powerful environment for the development of web

applications based on XQuery and related standards. Entire web applications

can be written in XQuery, using XSLT, XHTML, CSS, and Javascript (for Ajax

functionality). XQuery server pages can be executed from the filesystem or stored

in the database.

• Sedna [35] is a free native XML database which provides a full range of core

database services, i.e., persistent storage, ACID transactions, security, indices,

and hot backup. Flexible XML processing facilities include W3C XQuery im-

plementation, tight integration of XQuery with full-text search facilities and a

node-level update language. It also provides user role and privileges for database

security purposes.

• OrientX [32] is a native XML database system, developed at the Renmin Uni-

versity of China. The OrientX system stores XML data and preserves its tree

42

structure. It also allows users to retrieve XML data in the form of the XPath/X-

Query language and has an API for C/C++ development. OrientX stores XML

data in its native tree structure, according to the XML data model, and supports

element-based and subtree-based granularity.

• Xindice [42] is a native XML database designed specifically for storing XML

data. It uses XPath for its query language and XML:DB XUpdate for its update

language. Xindice provides an implementation of the XML:DB API for Java de-

velopment and it is possible to access Xindice from other languages using a built-in

XML RPC API.

3 Native XML Database versus Flat-file XML Database

Native XML databases can process and manage large volumes of XML documents effi-

ciently. These native databases will be useless for fewer numbers of documents. If the

number of XML documents is small, then a simple XML parser is sufficient to process

them. In pWeb, each website will be stored as a stand-alone file and replicated irre-

spective of the underlying hardware and software systems as shown in Figure 11. If a

native XML database is used, compatibility among the systems will be an obstacle for

the portability of websites. As the number of XML documents is small for each website,

it would be wise to use flat-file XML documents for describing websites’ files and data.

Storage

Storage

Figure 11: Portable website

43

4 General XML Schema for pWeb Documents

A minimal XML schema for pWeb documents is:

• objectID: The objectID part of the pRL.

• publisherAssignedName: Content publisher’s assigned human friendly name.

• type: The type of the content (e.g., webpage, images, videos etc.).

• author: Name of the content’s publisher.

• Version Number: If the content exists in multiple version (i.e., an image may

have multiple version for multiple resolutions), then this field is used to provide a

version scheme.

44

Part V:

Client Software Implementation

1 Introduction

Our implementation of pWeb provides a video streaming service to the end users. The

end users can register video stored in their local machines to a set of servers that index

meta information about the videos. Any user can search for a video in their local server,

which is responsible for routing the search query to other servers to resolve it. After

a query is resolved the user can view the video, which is stored in another user’s local

machine.

We discuss the system architecture in Section 2 and the database architecture in Sec-

tion 3. Section 4 describes the features available in the prototype implementation and

briefly shows the message exchanges between server(s) and client(s). The implementa-

tion specific choice of technology is described in Section 7.

2 System Architecture

The components in the system can be classified as: (a) Server side PHP components

and (b) Client side Java code. In the subsequent sections we give a brief description

of the functionality of these components. A high level view of the system is given in

Figure 12.

2.1 Server Side PHP Components

The server side PHP components are responsible for:

• Client to index server communication: Allow client-side uploading for meta-

information and searching the system, peer-device to IP mapping, and content

replica/location update

• Server to server communication: Server to server peering for database infor-

mation exchange, server locations exchange

• SQL Database: Stores the meta-information, users and peer information

2.2 Client Side Java Components

The client side Java components are responsible for:

• Client to server communication: Upload meta-information of advertised or

replicated contents, name-to-IP binding, and server information download

46

• Client to client communication: Streaming video contents, and exchange

known server locations

Server-2 Server-1

Browser

Content Hosting Peer

Web based Media

Player

Java Code

Streaming

Server

Storage

Content Requesting Peer

S
tr

ea
m

in
g
 R

eq
u

es
t

Streaming Data

V
id

eo
 M

et
a

 i
n

fo
rm

a
ti

o
n

 U
p

lo
a

d

Indexing &

Query Message Search Query and Resolution Messages

Figure 12: Architecture of Prototype Implementation

3 First Database Architecture

The diagram on Figure 13 represents the first database prototype:

We introduce the concept of User and Peer entities in this architecture. They are both

defined by a UUID (uID and pID) and as the schema shows, a user can have multiple

peers. Indeed, a user can own one account but we can assume that he will connect to the

pWeb application through many devices. But each device has its own IP address, so the

Peer entity is directly linked to a device (device name, device type). A user has access to

the group features (linked to the uID) while a peer can upload meta-information (linked

to the pID, especially because in order to stream a content, the application needs the

IP adress of the device). This database is described by the following tables:

• Users:

47

– uID: the user ID is an unique identifier provided by the user’s e-mail

– Username: the username is chosen by the user but is also unique in order

to avoid duplicates in group features or video comments

– Password: the password is encrypted with the MD5 function provided by

PHP

– last seen: is updated every time a user connects to the application

• Peers:

– pID: the peer ID is an unique identifier that is automatically provided by

the database (automatically incremented integer)

– uID: the user ID

– pIP: the peer IP is the IP adress of the device used at the connection. It is

automatically updated at each connection

– pPort: the peer port is the port used by Red5 to stream content. It is set

by default to 8088 but it can be changed by the user

– device name: a user can create a device every time he connects to the

application. He will have to give it a name and choose the type of the device

– device type: can be Personal computer, Public computer, Laptop, Mobile

phone, ...

• Group Members:

– gID: a group ID is a unique identifier provided by the group’s creator

– uID: uID of the user who have joined the group

• Groups:

– gID: a group ID is a unique identifier provided by the group’s creator

– isPrivate: boolean that defines if a group is Public or Private

– Description: a full description of the group provides by the group’s creator

• Uploads:

– pID: pID of the peer who uploads the video

– vID: vID of the uploaded video

48

– gID: a video can be uploaded only in a group. If not, this case is blank

– date: date of the upload

• Metas:

– vID: a video ID is a unique identifier that is an automatically incremented

integer

– vName, Keywords, Description, Image: video information provided by

the uploader

– Views, Likes: set to 0 when the video is uploaded

– peer serverIP: server IP adress from which the peer has uploaded the metas

Users

uID
Username
Password
last_seen

Group_Members

gID
uID

Groups

gID
isPrivate
Description

Peers

pID
uID
pIP
pPort

device_name
device_type

Metas

vID
vName
Keywords
Description
Image
Views
Likes

peer_serverIP

Uploads

pID
vID
gID
date

uID gID

uID

pID vID

gID

Comments

vID
uID

Comment

vID

Figure 13: First database Architecture

4 Application Features

The prototype implementation of pWeb provides the following set of features:

49

4.1 User management system

Users can login into a web based interface in order to create a session. Information

requested on the login page is the user’s Username and Password. In the prototype

implementation, the server applies the MD5 hash function to the password and stores

user information in the database. A user can also fill out a form for a new User ID (his

e-mail), a Username and a Password. Then, his login information is uploaded to the

database and he is redirected to the index page. After login, the application asks the

user which device he is using (device stored in the database) or offers the possibility of

creating a new one. After registration, the application will automatically ask the user

to create a new device. Then, the server checks the IP of the device and stores it into

the database.

Figure 14: Login form

Figure 15: Choose or create a device after login

Figure 16: Registration form

50

Figure 17: Create a new device after registration

4.2 Upload Content

Users can choose a file on their local storage and upload it (from a practical point of

view, the file has to be on the specified Red5 home directory). The server wont store

the file but only its meta information in the Metas table of the database. The upload

function performs some check on the video file, i.e., the extension must be .flv, it must

not exceed a maximum video size and all the accented characters are replaced. The

upload form contains the following fields:

• File: uploading HTTP data form

• Keywords (optional): the user can enter some keywords, if not, the application

will create automatically keywords by parsing the video’s name

• Description of the file

• A cover Image (URL)

Figure 18: Upload form

4.3 Database Lookup or Video Search

Users can enter keywords on the form. Then, the server performs a local lookup on his

database to find the related videos and returns all the matches to the browser. The user

can choose one or more groups on the search form and the system will return the videos

that have been uploaded into these groups.

51

Client

Server

Server

Server

http://IP/pWeb/pWebcs.php?fn=uploadMeta

POST
File name

Description
Keywords

Image
Client IP

Figure 19: Upload content message

Figure 20: Search form

4.4 Content Access and Video Streaming

There is a link on each result for the search query that allows the user to watch the

video. The JwPlayer makes a request to the video owner’s Red5 server. Upon receiving

the request, the Red5 server on the owners machine sends the video using the RTMPT

protocol.

4.5 Group Management System

The grouping system allows users to upload and stream videos in small groups of users.

The first prototype of this system aims to create interest groups but some extra features

can be added like device syncing, sharing data, etc. Each group is identified by an unique

ID called gID (gID). A group contains a list of Peers and can be Private or Public. A

user can create a group by filling out a form with the group’s name (gID), a description,

and by setting the group’s privacy. Then, the user will atomatically join this group.

A user can also join one or more groups (Figure 28). Then, he will be able to have some

information about the group in the menu “My Groups” which lists all groups joined.

52

Figure 21: Results

Browser

POST
Keywords

[gID]

Display info < [gID,] vName,
Description, Image >

Internal info < vID >

Server

Server

Server

http://IP/pWeb/pWebcs.php?fn=search

Figure 22: Look-up database message

Some features are available like “See group members”, “Change privacy of the group”,

“Upload a video in this group” and “See the group videos”.

After loging in, the button “My groups” appears. In this menu, the user can check all

his groups, see the videos uploaded in those groups and the members who have joined

53

Figure 23: Streaming video player and comments

them. He can also change the group privacy.

5 Index Server Management

In order to keep persistent data, the metas have to be uploaded on different servers

called index servers. The details of the index server system are described in the following

sections.

5.1 Patterns and binary tree

Each index server stores one pattern. A pattern is a string of 36 characters (abcdefghi-

jklmnopqrstuvwxyz0123456789) that represents a keyword. For example, if the metas

has the following keyword: “Avatar”, the pattern will be: “100000000000000001010100

00000000000”. Then, we can assign one different pattern to each server that will store

54

Browser

GET
vID

Internal Info < vName, pIP, pPort >

JwPlayer Peer

< vName, pIP, pPort >

RTMPT stream

Display Info < Views, Likes >

Server

Server

Server

http://IP/pWeb/pWebcs.php?fn=streaming&video=vID

Figure 24: Video streaming message

Figure 25: Create a group form

Client Server Update
Group_Members tables

POST
gID

Description
isPrivate

http://IP/pWeb/pWebcs.php?fn=createGroup

Figure 26: Group creation message

the corresponding metas. The servers are arranged as an ordered binary tree: In this

example, the application uses five servers (full circles) and the binary tree has three

levels. When a server is added, the binary tree becomes one level higher. The added

server goes on the left (0) and the current one on the right (1). Then, a pattern is

constructed by using the combination of the binary tree.

55

Figure 27: Join a group

Client Server Update
Group_Members tables

POST
gID

http://IP/pWeb/pWebcs.php?fn=joinGroup

Figure 28: Group joining message

Figure 29: My groups menu

5.2 Routing Table

Each server has a routing table in its database. When a server is added, the Routing

tables of the current server and the new one are updated. Each server has a direct link

to the nearest ones. This table is described by the attributes below:

• Level: Level number of the server

• Keywords: Pattern stored in the server

56

10

10 10

10

000 001

01 10 11

Figure 30: Example of an arrangement of indexing servers

• Server IP: IP adress of the linked server

5.3 Upload

The upload feature is now working differently. Indeed, the keyword of the uploaded

metas is converted to a pattern. Then, by searching into the local server routing table,

the query will be redirected to the index server where the pattern has the highest

matching score. Then, the metas are inserted into the new server’s Metas table. Also,

the Uploads table of the local server is updated.

5.4 Search

This feature is also working differently. As explained in the previous section, the entered

keyword is converted to a pattern. Then, the highest matching score algorithm finds the

corresponding server. In order to provide the streaming of the video, the application is

using the peer server IP attribute stored into the Metas table. By redirecting to this

server, the application will find the IP and the Port of the Peer.

6 Java Component

57

10

10 10

10

000 001

01 10 11

User

10000000000000000101010000000000000

connected

Metas
Keyword= "Avatar"

upload

highest matching score

Figure 31: Routing system with an upload

// c r e a t i o n o f an URL

URL u r l = new URL(” http :// s e r v e r I P /pWeb/pWebcs . php? fn=c h e c k l o g i n ”) ;

// c r e a t i o n o f a connect ion us ing HTTPRequest

myConnection con = new myConnection (u r l) ;

// sending the l o g g i n g in format ions

con . sendRequest (Username , Password) ;

con . sendRequest (deviceName) ;

// a f t e r l o g i n , go to Upload page

u r l = new URL(” http :// s e r v e r I P /pWeb/pWebcs . php? fn=uploadMeta”) ;

// change the curren t u r l

con . setURL (u r l) ;

// c r e a t i o n o f a DirectoryReader o b j e c t

DirectoryReader d i r = new DirectoryReader () ;

58

// l i s t a l l the f i l e s in the d i r e c t o r y

F i l e [] f i l e s = d i r . l i s t F i l e s (”/pWebVideos”) ;

// c r e a t i o n o f a myFile o b j e c t

myFile f i l e L i s t = new myFile () ;

// read the t e x t f i l e and s t o r e the checked f i l e s in an array

St r ing [] read = f i l e L i s t . read (”/ f i l e L i s t . txt ”)

i f (f i l e L i s t . isNotEmpty ()){
f o r each (f i l e in f i l e s){

f o r each (read in f i l e L i s t){
i f (f i l e . equa l s (read)) cpt++;

}
i f (cpt==0){

f i l e L i s t . wr i t e (”/ f i l e s . txt ” , f i l e) ;

con . sendRequest (f i leName , Descr ipt ion , Image) ;

}
} else {

f o r each (f i l e in f i l e s){
f i l e L i s t . wr i t e (”/ f i l e s . txt ” , f i l e) ;

con . sendRequest (f i leName , Descr ipt ion , Image) ;

}
}

Listing: Java component

The Java code checks the specified folder if new files have been added since the last

check. If this is the case, then an HTTP request is sent to the server to upload the

meta-information for the file. The name of the uploaded file is then stored in a text file

that will be used during the next check.

7 Choice of Technology

A popular choice for video streaming server is Adobe Flash Media Server. But it comes

with a exorbitant price. And its streaming protocol RTMPT (Real Time Messaging

Protocol Tunneling) is a closed protocol. So, we have decided to choose Red5 streaming

server, which is distributed under LGPL license. It is written in Java and the streaming

protocol is open source. Its advantage is that is allows continuous diffusion to other

59

machines. In the front end we have used JwPlayer for playing streamed content.

This standalone server is going to encode the requested video for streaming and send it

to the HTML page. Then, the user will be able to watch the video after a very short

startup time. The video can be seeked to any time on the timeline. Here is the algorithm

for the HTML page that invokes the JwPlayer and the video by the RTMPT protocol:

<script type=’text/ j a v a s c r i p t ’ src=’ jwplayer . j s ’></ script>

<div id=’mediaspace ’>Video</div>

<script type=’text/ j a v a s c r i p t ’>

jwplayer (’ mediaspace ’) . setup ({
’ f l a s h p l a y e r ’ : ’ p l aye r . swf ’ ,

’ f i l e ’ : video name . f l v ’ ,

’ streamer ’ : ’ rtmpt :// c l i e n t I P / v i d e o d i r e c t o r y ,

’ autos tar t ’ : ’ true ’ ,

’ contro lbar ’ : ’ bottom ’ ,

’ width ’ : ’ 470 ’ ,

’ he ight ’ : ’320 ’

}) ;

</ script>

Listing: Javascript code for invoking JwPlayer from a HTML page

8 Installation Manual

• Download and install XAMPP [41].

• After installation open XAMPP control panel and run MySQL and Apache.

• Extract the pWeb.zip file to the XAMPP’s htdocs directory

• Run the install.bat file from the unzipped files

• Open a web browser and go to http://localhost/phpmyadmin

• Select the pweb database and then select the routing table

• Replace 127.0.0.1 with the IP address of your machine

60

• Open the $XAMPP HOME1/htdocs/pWeb/pWebcs.php file and go to line 665.

• Replace 127.0.0.1 with the IP address of your machine, save and close the file.

• Open a web browser and go to http://129.97.171.103/pWeb/pWebcs.php?fn=

index or http://129.97.170.85/pWeb/pWebcs.php?fn=index

• Select “Register” to create an account.

• Now Go to “Add Server” and fill the form with the IP address of your machine.

9 Summary

In this section we described the implementation of a pWeb prototype. The prototype

functions as a decentralized video streaming system that supports uploading, searching

and streaming videos. Users can host streaming content from their local machine by

uploading the content’s meta information to a set of indexing servers. Users can also

search content by keyword. A search query is routed between the indexing servers

using a simplified implementation of Plexus [2] targeted towards routing on names in

Information Centric Networks [6]. For the prototype implementation each user runs

Red5 video streaming server to stream their hosted content to other users.

References

[1] R. Ahmed and R. Boutaba. Distributed pattern matching for p2p systems. In Net-

work Operations and Management Symposium, 2006. NOMS 2006. 10th IEEE/I-

FIP, pages 198 –208, 2006.

[2] Reaz Ahmed, Md. Faizul Bari, Shihabur Rahman Chowdhury, Md. Golam Rabbani,

Raouf Boutaba, and Bertrand Mathieu. Route: A name based routing scheme for

information centric networks. In INFOCOM, pages 90–94. IEEE, 2013.

[3] Reaz Ahmed and Raouf Boutaba. Distributed pattern matching: a key to flexible

and efficient p2p search. IEEE Journal on Selected Areas in Communications,

25(1):73–83, 2007.

[4] Reaz Ahmed and Raouf Boutaba. Plexus: A scalable peer-to-peer protocol enabling

efficient subset search. IEEE/ACM Transactions on Networking (TON), 17(1):130–

143, February 2009.

1$XAMPP HOME is the XAMPP’s installation directory

61

[5] Reaz Ahmed, Raouf Boutaba, Fernando Cuervo, Youssef Iraqi, Tianshu Li, Noura

Limam, Jin Xiao, and Joanna Ziembicki. Service naming in large-scale and multi-

domain networks. IEEE Communications Surveys and Tutorials, 7(1-4):38–54,

2005.

[6] Md. Faizul Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, Raouf Boutaba, and

Bertrand Mathieu. A survey of naming and routing in information-centric networks.

IEEE Communications Magazine, 50(12):44–53, 2012.

[7] Md. Faizul Bari, Md. Rakibul Haque, Reaz Ahmed, Raouf Boutaba, and Bertrand

Mathieu. Persistent naming for p2p web hosting. In Tohru Asami and Teruo

Higashino, editors, Peer-to-Peer Computing, pages 270–279. IEEE, 2011.

[8] Md.Faizul Bari, Md.Rakibul Haque, Reaz Ahmed, Raouf Boutaba, and Bertrand

Mathieu. A naming scheme for p2p web hosting. Selected Areas in Communications,

IEEE Journal on, 31(9):299–309, 2013.

[9] Basex’s website: http://basex.org/home/.

[10] Google Chrome. Npapi plugins.

[11] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore Hong. Freenet: A dis-

tributed anonymous information storage and retrieval system. In Hannes Federrath,

editor, Designing Privacy Enhancing Technologies, volume 2009 of Lecture Notes

in Computer Science, pages 46–66. Springer Berlin / Heidelberg, 2001. 10.1007/3-

540-44702-4 4.

[12] Codeproject. How to attach to browser helper object (bho) with c# in two minutes.

[13] Codeproject. Mouse gestures for internet explorer.

[14] Bram Cohen. Incentives Build Robustness in BitTorrent, 2003.

[15] Microsoft Corporation. Browser helper objects: The browser the way you want it.

[16] Microsoft Corporation. Building browser helper objects with visual studio 2005.

[17] Microsoft Corporation. Spicie - simple plug-in creator for internet explorer.

[18] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.

Wide-area cooperative storage with cfs. In Proceedings of the eighteenth ACM

symposium on Operating systems principles, SOSP ’01, pages 202–215, New York,

NY, USA, 2001. ACM.

62

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: amazon’s highly available key-value store. In

Thomas C. Bressoud and M. Frans Kaashoek, editors, SOSP, pages 205–220. ACM,

2007.

[20] exist’s website: http://exist-db.org/exist/index.xml.

[21] Mozilla Foundation. Activex control for hosting netscape plug-ins in ie.

[22] Mozilla Foundation. Liveconnect.

[23] M.R. Haque, R. Ahmed, and R. Boutaba. Qpm: Phonetic aware p2p search. In

Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth International Conference on,

pages 131 –134, sept. 2009.

[24] Jan Kneschke. Lighttpd.

[25] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon, Westley

Weimer, Chris Wells, and Ben Zhao. Oceanstore: an architecture for global-scale

persistent storage. SIGPLAN Not., 35(11):190–201, November 2000.

[26] Hugo Leisink. Hiawatha.

[27] Linux inodes: http://www.linfo.org/inode.html.

[28] Petros Maniatis, David S. H. Rosenthal, Mema Roussopoulos, Mary Baker,

Thomas J. Giuli, and Yanto Muliadi. Preserving peer replicas by rate-limited sam-

pled voting. In Michael L. Scott and Larry L. Peterson, editors, SOSP, pages 44–59.

ACM, 2003.

[29] Petar Maymounkov and David Mazires. Kademlia: A peer-to-peer information

system based on the xor metric. In Peter Druschel, Frans Kaashoek, and Antony

Rowstron, editors, Peer-to-Peer Systems, volume 2429 of Lecture Notes in Com-

puter Science, pages 53–65. Springer Berlin / Heidelberg, 2002.

[30] Massimo Melina. Http file server (hfs).

[31] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and Benjie Chen. Ivy:

a read/write peer-to-peer file system. SIGOPS Oper. Syst. Rev., 36(SI):31–44,

December 2002.

63

[32] Orientx’s website: http://idke.ruc.edu.cn/orientx/index.html.

[33] Qizx’s website: http://www.xmlmind.com/qizx/.

[34] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon.

Design and implementation or the sun network filesystem, 1985.

[35] Sedna’s website: http://www.sedna.org/.

[36] Nashid Shahriar, Shihabur Rahman Chowdhury, , Mahfuza Sharmin Reaz Ahmed,

Raouf Boutaba, and Bertrand Mathieu. Ensuring β-availability in p2p social net-

works. In 5th International Workshop on Peer-to-peer Computing and Online Social

Networks, HotPOST 2013, 2013.

[37] Nashid Shahriar, Mahfuza Sharmin, Reaz Ahmed, Md. Mustafizur Rahman, Raouf

Boutaba, and Bertrand Mathieu. Diurnal availability for peer-to-peer systems. In

CCNC, pages 619–623. IEEE, 2012.

[38] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. The hadoop distributed

file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on, pages 1 –10, may 2010.

[39] Igor Sysoev. nginx.

[40] Wikipedia. C10k problem.

[41] Xampp’s website: http://www.apachefriends.org/en/xampp.html.

[42] Xindice’s website: http://xml.apache.org/xindice/index.html.

64

