Implicit Surfaces Seminar, Spring 2012

University of Waterloo Technical Report CS-2013-08

Khodakhast Bibak, Chun Liu, Hamideh Vosoughpour, Grace Yao,
Zainab AlMeraj, Alex Pytel,
William Cowan and Stephen Mann

September 25, 2013

Abstract

Implicit surfaces are one technique for surface modeling in computer graphics. In this report, we survey some implicit
surface papers, present some projects using implicit surfaces, and give our evaluation of this work.

1 Introduction

In Spring 2012, a seminar course in the David R. Cheriton School of Computer Science at the University of Waterloo studied
implicit surfaces. While the intent was to study recent modeling techniques in implicit surfaces, we ended up reviewing the
basics of implicit surfaces, various ways to render implicit surfaces, as well as some modeling papers for implicit surfaces. In
this report, we summarize our findings.

Generally speaking, there are four styles of modeling with implicit surfaces: algebraic surfaces, piecewise algebraic patches,
CSG-style, and interpolation/approximation methods. Modeling directly with algebraic surfaces is difficult and will only be
discussed in the background section.

There are a several topics that we did not investigate in this study, or only touched upon them when looking at other work.
In particular, there are a large number of papers on fast rendering of implicit surfaces; we only touched on a few of these papers,
and did not look at work on interval arithmetic as it relates to rendering implicit surfaces. We also did not look at any papers on
texture mapping or parametrication of implicit surfaces.

This report begins with a review of some background material on rendering implicit surfaces. Section 3, Section 4, and
Section 5 discuss the papers that were covered in lecture (with the sections being a rough attempt at grouping the papers). The
remaining sections are the reports on individual student projects, as well as some tests that one of the faculty members made on
one implicit scheme.

2 Background

Abel Gomes, Irina Voiculescu, Joaquim Jorge, Bryan Wyvill, and Callum Galbraith. Implicit Curves and Sur-
faces: Mathematics, Data Structures and Algorithms. Springer Verlag, 2009

As background for this course, we worked from the book of Gomes et al. In particular, we were interested in root isolation
methods and root finding techniques (to be used for ray tracing and other rendering techniques) and in methods for tessellating
an implicit surface, such as Marching Cubes. Chapter 3 of this book discusses root isolation methods; Chapter 5 discusses root
finding techniques; and Chapter 6 discusses methods for tesselating an implicit surface.

2.1 Root Finding/Ray Tracing

One way to render an implicit surface is to ray trace it. If the implicit surface is the zero set of a scalar valued function,
S(P) = 0, and a ray is given by r(¢t) = Py + tv, then solving S(r(t)) = 0 for ¢ gives the intersections of the ray with the
implicit surface. Thus, one approach to ray tracing an implicit surface is to do root finding.

For algebraic surfaces (i.e., S is a polynomial), we can exploit the properties of polynomials to isolate roots. While
Descartes rule of signs gives a bound on the number of real roots of a polynomial, Cauchy’s Theorem gives a finite interval in
which all real roots must occur, and Sturm sequences give the exact number of roots within an interval. Sturm sequences in

22 +y? + 22 ot oyt 2t (22 +y? + 22+ R? - 5:c +y
—4R?(2? +y) 452 +11.8
22 +y? 2t -2 2 +98 426 -1 8 226 +:U +2x (z —|—y2/4—1 22 /4 4 y? —

—2x2y2 +y* + 22 0.04 —0.075

Figure 1: Algebraic surfaces ray traced with a simple ray tracer.

particular gives us a way to recursively narrow down the interval in which roots occur, until we have subdivided the real line
into intervals each of which contain either O or 1 root.

The root finding methods discussed by Gomes et al. [20] are the 1-point and 2-point methods. The 1-point methods include
Newton-Ralphson, Newton’s method, and the Secant method, which use derivatives or approximations to the derivatives to find
the 0’s of a function. These methods have the potential problems of diverging or converging to a local minimum.

With a 2-point method, we start knowing two z values where f(xzo) < 0 < f(z1) where f is the function whose roots we
are trying to find. A simple bisection method will find the root (assuming there is one root within the interval), although for
faster convergence the Regula Falsi method may be preferred.

All these methods work reasonably well in the univariate case, but additional complications occur in the multivariate case.
Interval arithmetic is another method used for root finding, although we did not investigate it.

We implemented a simple ray tracer in Octave, using Sturm sequences to isolate the roots of an algebraic surface and
then using the bisection method to find the root.! The ray tracer used a single, fixed point light source, up and to the right
of the viewer, and diffuse, gray scale shading was used. The most difficult part of the ray tracing code was representing and
manipulating multivariate polynomials. Figure 1 shows some surfaces ray traced in this manner.

2.2 Marching Cubes

As an alternative to ray tracing the surfaces, Marching Cubes [31] is one method of triangulating implicit surfaces.> The idea
of Marching Cubes is to sample 3D space on a regular grid of points and evaluate the implicit surface at these points (Figure 2
shows a 2D version of Marching Cubes). Then on adjacent grid points, compare the the signs of the values of the implicit
function; if they are of opposite sign, then the surface intersects the line segment between the two grid points. We can then use
linear interpolation to approximate the zero along this line segment, or use the bisection method if more precision is desired. A
piecewise linear approximation to the implicit surface can be made by connecting the zeros on the line segments.

Marching Cubes has a variety of issues. In particular, the grid density needs to be high enough so that you do not miss
small features of the implicit surfaces; the step to create the piecewise linear approximation is difficult; and for general implicit
surfaces, finding the region where the surface lies is non-trivial.

Much of the complexity of Marching Cubes comes from handling ambiguous cases where there are multiple possibilities
for how a surface could slice a cell (Figure 3 shows a 2D example); this topic is further considered in one of the projects
(Section 7). We can vastly simplify Marching Cubes if we only want line drawings and if we ignore the ambiguous cases. With
this simplified approach, we just construct line drawings through the 2D faces of the cubes. The advantage of this approach is

I'This root finder was compared to the root s routine built-in to Octave and found to give the same results.
2 Although Marching Cubes is the most well-known of these algorithms, similar ideas appeared earlier in the literature [61].

< +

Figure 3: Ambiguities in Marching
Cubes. Both the red and blue curves
give the same signs at the corners.

+ + + +

Figure 2: Simple Marching Squares example. Implicit
function drawn in green; piecewise linear approxima-
tion in magenta.

Figure 4: Algebraic surface rendered with a simplified Marching Cubes. The surface on the far right is the BanchoffChmutov
By; all others appears in Figure 1

that you can get an impression of your surface and interactively manipulate it without much coding effort, although there is a
limit to the complexity of the surface that can be visualized this way because of the lack of hidden surface removal.

In addition to a 2D Marching “Squares” algorithm (used to generated Figures 5, 6), a simplified 3D Marching Cubes was
implemented. This version of Marching Cubes merely calls the 2D version of Marching Cubes on each face of each cube,
giving a line drawing rather than a surface. Figure 4 shows some examples of surfaces drawn this way.

Bloomenthal’s version of Marching Cubes [24] was also implemented for one of the projects (Section 10).

Another difficulty with Marching Cubes is finding the region where the surface lies. Given a seed point P, a search can be
made in an ever growing region around P until a cell is found that contains a zero, and a grid of cells can be grown around
this point (this is roughly the approach taken by Bloomenthal [8]). The search for the initial point on the surface is potentially
expensive, so starting with a seed poing on or near the surface greatly speeds the process. However, among other issues, this
“growing method” will likely miss disconnected components.

One approach to modeling with implicit surfaces that avoids the problem of finding the region where the surface lies is to
start with simple implicit surfaces whose bounding box you know, and then create a complex model by using CSG and other
blending techniques; by construction, you then know a reasonable bounding box that contains the surface. For example, the
max and min functions act as intersection and union, respectively, as illustrated in Figure 5. If smoother boundaries are desired,
other blending functions can be used; Figure 6 shows an example of a “union” of two circles that are smoothly blended. Note
that these figures were created by using a 2D version of Marching Cubes; the somewhat asymmetrical result of the max in
Figure 5 is a result of using a cell size that is too large and linear interpolation is used to approximate the location of the zero
on the Marching Squares edges.

AIB) | N | | mag(A@

Figure 5: Max and min act as CSG operations on implicit circles.

Figure 6: CSG-like blending operations on circles give smoother joins.

Figure 7: Sphere tracing from point p0.

2.3 Sphere Tracing

Another approach to rendering implicit surfaces is sphere tracing [23]. The idea in sphere tracing is to trace a ray Py + tv.
From Py, we find the point X, on the implicit surface S such that Xy is the point on S closest to Py.® This guarantees that S
does not lie within the sphere of radius |Py — Xo| centered at Py. We then repeat this process from Py = Py + |Po — Xo|U
until S is within a pre-specified distance € of P;, at which point we use P; as the intersection of our ray with S. See Figure 7
for an example.

The key idea in sphere tracing is that the surface S has to have a Lipschitz bound. Such a bound allows us to compute a
signed distance function for .S. GPU versions of the algorithm exist [16].

3 Papers—CSG Style

Older papers Discussion

James F. Blinn. A generalization of algebraic surface drawing. ACM Trans. Graph., 1(3):235-256, July 1982

Brian Wyvill, Craig McPheeters, and Geotf Wyvill. Animating soft objects. The Visual Computer, 2(4):235-242,
1986

The 1982 paper of Blinn [7] was one of the first papers in computer graphics to use implicit surfaces for modeling. The
particular modeling problem was the display of molecular models. Rather than a ball-and-stick model, Blinn decided to draw
the molecules as blended spheres. The modeling aspects comprise only a few pages of the paper, with the bulk of the paper
containing now-standarded rendering details, as well as speed and memory optimizations, with the latter being needed to
overcome the limited memory of the 1980’s PDP-11 computer used to render the models.

Blinn modeled each atom as an exponential drop-off function from the center of the atom (with the square of the distance
from the center being used to avoid a square root computation). For a molecule model, he used a sum of exponential functions
for each atom.

Figure 8 shows a 2D reproduction of Figure 3 of Blinn’s paper of 3D spheres. The B and R parameters are those appearing
in Blinn’s paper, with B representing “blobbiness” and R being the radius of the sphere(s).

The 1986 paper of Wyvill et al. [60] builds on the work of Blinn to build and animate soft objects. The main idea is that
a soft object is represented by a set of spheres, blended in a method similar to Blinn. Animation is achieved by implementing

3We don’t actually need the closest point on S; a bound on the distance to S is sufficient, although the tighter the bound, the faster the process will converge.

B=-4, R=0.75 B=-2, R=0.75 B=-1, R=0.75 B=-0.5, R=0.75 B=-0.25, R=0.75 B=-0.125, R=0.75

B

Of |
O

OO

i
-

B=-4, R=1 B=-2, R=1 B=-1, R=1 B=-0.5, R=1 B=-0.25, R=1 B=-0.125, R

cECEEmENE

B=-4, R=1.25 B=-2, R=1.25 B=-1, R=1.25 B=-0.5, R=1.25 B=-0.25, R=1.25 B=-0.125, R=1.25

SHEmINS

Figure 8: Blending two circles with Blinn’s model; centers are at (0,1) and (0,-1); axes are [-1,1] in 2 and [—4, 4] in y in all
cases.

a keyframing system on the spheres, with the blending filling in the gaps between the spheres and having reasonable shape as
long as the spheres remain “close enough to each other”.

3.1 Skeletal Implicit Modelling Grace Yao

Andrew Guy and Brian Wyvill. Controlled blending for implicit surfaces. In Implicit Surfaces ’95, April 1995

Brian Wyvill, Eric Galin, and Andrew Guy. Extending the CSG tree. Warping, blending and boolean operations
in an implicit surface modeling system. Computer Graphics Forum, 18(2):149-158, June 1999

Loic Barthe, Brian Wyvill, and Erwin de Groot. Controllable binary CSG operators for soft objects”. Interna-
tional Journal of Shape Modeling, 10(2):135-154, 2004

Implicit surfaces have proven to be well suited and efficient for modeling animating and morphing shapes of arbitrary
topologies. To allow complex objects to be modelled easily and intuitively, a series of algorithms have proposed for enhancing
the range of models that can be defined with a skeletal implicit surface system [22, 59, 4].

Guy and Wyvill [22] introduced a method using a graph to specify blending among objects. The main idea is that objects
connected in the graph are blended with each other and objects not connected are deformed against each other with the resulting
function of implicit surfaces constrained to be continuous. Their method partially achieved the goal of making blending occurs
only when it is desirable. However, this paper failed to consider field values that are not C*, which results in discontinuities in
the normals.

Barthe, Wyvill, and de Groot [4] presented a theoretical background that laid the foundation for the construction of binary
Boolean composition operators for bounded implicit primitives. They derived a set of Boolean operators providing union,
intersection and difference with or without smooth transition. The new operators integrate accurate point-by-point control of
smooth transitions and they generate G''-continuous potential fields even when sharp transition operators are used. However,
the operators are expensive to evaluate and limited to only binary compositions.

Wyvill and Guy [59] introduced the Blob-Tree model to assemble complicated objects from a small number of skeleton
based primitives using arbitrary combinations of blending, warping and Boolean operations. A systematic approach to the
construction of the Blob-Tree is given that notes what each node stands for and how to define the operators on the nodes to
maintain continuity. The Blob-Tree is applied to render the models in two ways: polygonalization and ray tracing by traversing
the tree. For polygonalization, Wyvill and Guy illustrated a post-processing method to reproduce the discontinuities that play

5

an important role in the resulting model. This method iteratively looks for more accurate approximations of the intersection
point of the Boolean operations. The field value and normal from each of the contributing nodes at a number of points in space
are needed to guide the moving direction from the original guess. These values can be computed by traversing the tree, which
is one of the pros of Blob-Tree model. The ray tracing method is based on Lipschitz techniques to determine the roots. The
efficiency of their ray tracer is further improved by finding accurate Lipschitz bounds using spatial subdivision and disable
non-contributing elements along the ray.

There are several problems with the method proposed by Wyvill and Guy [59]. First, their blending operation can cause
unwanted bulging and unwanted shape changes due to large size differences. Guy and Wyvill [22] suggested using the graph as
a method of solving the unwanted blending problem by applying a deformation function to each skeletal primitive to manipulate
the field function. Wyvill and Guy [59] combined the graph idea with the Blob-Tree model by labelling graph edges so that the
type of join between primitives can be specified. In addition, de Groot, Wyvill and van de Wetering [14] introduced a method
for solving this problem using locally restricted blending. They added a parameter to each pair of nodes to control the influence
of the nodes far way or that need not be considered. However, this method is limited due to the requirement of processing the
blending in sequence. (Turk and O’Brien [53] also considered how to make bulge-free blends with implicit surfaces, although
their method is in a different setting than that of the Blob-Tree.)

Second, in an articulated model, there is a need to make the movement of joints smooth. Such smooth motion would be
needed to generate an animation of an articulated object modeled with the Blob-Tree. However, Wyvill and Guy do not discuss
the effects of motion on the joints of a Blob-Tree.

The last concern is that the pre-processing step to find the boundary curve between two nodes of a Boolean operation can
be computationally expensive; this boundary is needed to improve the quality of a Marching Cubes solution, for example. One
approach to improve the efficiency would be to attach side information to the Blob-Tree nodes to help rendering. Instead of
finding the joint during a pre-processing step, the joint points can found during the blending step in the Blob-Tree and marked
for later use.

3.2 Complex Skeletal Implicit Surfaces with Levels of Detail Hamideh Vosoughpour

Aurlien Barbier, Eric Galin, and Samir Akkouche. Complex skeletal implicit surfaces with levels of detail. In
Proceedings of WSCG, page 2004, 2004

The paper proposed a framework for automatic handling of different levels of detail which is essential in interactive design
of implicit surfaces, because the designer needs to see the result in real-time. Also, it would be useful in terms of saving
process and time to automatically switch between levels of detail, for example, when a complex surface is going to be shown
in small size and most of the details are not actually needed to be computed and rendered. To achieve this goal, the paper
introduced a modified version of BlobTree in which the skeletal primitives are categorized into four groups: curves, surfaces,
voluminal skeletons, and surfaces of revolution. Modifying the primitives of the BlobTree makes it more powerful in modeling
more complex surfaces with fewer primitives. To model the objects in different levels of detail, the paper introduces high level
primitives that are modeled with a different number of basic primitives in different levels of details. The proposed high level
primitives are: curve based primitives, surface based primitives, and volumes of revolution each of which are composed of
several primitives based on the required level of detail.

The paper talks about several ideas and techniques from other studies to propose a framework that handles different levels
of detail automatically. Firstly, it introduces the modified BlobTree, which it claims is more powerful. Afterward, the paper
discusses levels of details and suggests a technique for automatic transition between them. Finally, it talks about the optimization
techniques.

Smooth transition between different levels of detail, which is supposed to be the main contribution of the paper, is discussed
only roughly in the paper. The proposed method is only developed and discussed on curve based high level primitives and it
cannot be easily generalized into two other categories of high level primitives. In curve based high level primitives, as explained
in the paper, if we decrease the contribution of some sample points while switching between levels and finally remove those
sample points, then a good transition will be achieved, but if we do the same procedure for surface based high level primitives,
some holes will appear in the surface. That is because in curve based primitives the connection between the previous and the
next points to the removed point compensate for the lack of the contribution of the removed point and having a point with small
weight of contribution is similar to when that point is removed. Hence, the transition is smooth. But this cannot be generalized
into the surface situation.

3.3 WarpCurves Chun Liu

Masamichi Sugihara, Brian Wyvill, and Ryan Schmidt. WarpCurves: A tool for explicit manipulation of implicit
surfaces. Computers & Graphics, 34(3):282-291, 2010. Shape Modeling International (SMI) 2010

The main contribution of this paper is that it develops a curve-based interface supporting explicit manipulation of implicit
surfaces. The WarpCurves technique is achieved by applying curve-based spatial deformation to a model. It deforms the
underlying scalar field of an implicit point primitive and renders the iso-surface of the deformed scalar field. Mathematically,
it takes a scalar field of the original implicit model fas as input and generates a deformed scalar field f}, as output. This task
is realized by displacing the sample 3D points p of the original model. The deformed scalar field f;, is defined as follows:
fr(®) = frr(p + foounding(p) * D(p)) where foounding : R?® — R is bounding field, and D : R®* — R? is deformation
field. The deformation field D(p) returns the displacement of a point p using the variational warp techniques with off-curve
constraints. And the bounding field fyounding(p) localizes the deformation effects using convolution with the Cauchy kernel
function and Wyvill function adjustments. With this equation, they achieved curve-based spatial deformation.

The main advantage is that they integrate WarpCurves in ShapeShop, which demonstrated an interface for novice users to
create 3D models with implicit surfaces. ShapeShop uses BlobTree, a hierarchical data structure that allows arbitrary composi-
tions such as blending warping and Boolean operations.

4 Papers—Piecewise Algebraic

4.1 A-patch rendering of algebraics Stephen Mann

Chandrajit L. Bajaj, Jindon Chen, and Guoliang Xu. Modeling with cubic A-patches. ACM Trans. Graph.,
14(2):103-133, April 1995

Lionel Alberti, Georges Comte, and Bernard Mourrain. Meshing implicit algebraic surfaces: the smooth case.
In Schumaker, editor, Mathematical Methods for CAGD: Tromso 2004, pages 11-26. Nashboro, 2005

Stephen Mann. Using A-patches to tessellate algebraic curves and surfaces. Technical Report CS-2009-21,
University of Waterloo, 2009

A-patches are a form of algebraic patch defined over the tri-variate Bernstein polynomials. The tri-variate Bernstein poly-
nomials are

n _ 0, %1 ,,13 14
Bf (P)= (g‘)uo Uy Uy Uz,

where (uo, u1, u2, us) are the Barycentric coordinates of P relative to a tetrahedron ATo7175T3 in 3-space, i= (f0,11,12,13)
Withij >0andig + 41 + 42 + 73 = nand

n\ n!

i) iolinliolis!

An algebraic surface in Bernstein form is given as

S(P)y= Y ¢BF(P),

B,)i]=n

where ¢; € R. The coefficients can be thought of as being arranged in a tetrahedral array.

A-patches are a form of algebraic surface in Bernstein form with restrictions on their coefficients. Roughly speaking the
algebraic surface is in A-patch format if when the coefficients are considered in layers relative to one of the directions, then there
is one layer j such that all layers above j have positive sign and all layers below j have negative sign, where the coefficients on
layer j may have either sign (Figure 9); see [2] for a more precise definition of the A-patch format.

One of the advantages of being in A-patch format is that you can show that the algebraic surface is single sheeted over the
tetrahedron 7" and further that there is an easy way to tesselate it (see [35] for details). Bajaj et al. used A-patches to construct
a piecewise algebraic surface that interpolated positions and normals of a triangular mesh, with the algebraic patches meeting
with C'! continuity [2].

Luk [32] later used A-patches as a means of tessellating a general algebraic surface. The idea is to place a tetrahedron
around the region of interest, and convert the algebraic surface to the Bernstein form. If all the coefficients are of one sign,
then the surface does not pass through the tetrahedron; if the coefficients are in A-patch format, then you can tessellate the
algebraic surface in this region. Otherwise, the tetrahedron is divided into smaller tetrahedron and each subtetrahedron is
recursive checked. (The actual algorithm of Luk worked on an Octree, with each bottom level Octree cell being subdivided into
tetrahedrons and checked; if any of these tetrahedrons needs subdivision, then the Octree cell is subdivided, and the algorithm
proceeds from there.)

At times, Luk’s algorithm is slow to converge. Mann [35] found a more relaxed A-patch like condition. Using this relaxed
condition, faster convergence was possible.

Figure 9: Examples of separating layers in A-Patches; the white points have opposite signs as the black points; the purple points
(on the separating layer) may have either sign.

Alberti et al. had earlier developed a similar algorithm for algebraic surfaces represented in tensor-product format. The
single-sheeted conditions on the tensor-product coefficients were (essentially) that in one of the three coordinate directions, the
deriviatives must be of the same sign. (A later paper [15] claims to improve on this work, but we did not read it.)

A direct comparision of the Alberti algorithm to the Luk algorithm was not possible without implementing both of them. In
particular, it is unclear whether one set of single-sheeted conditions on the coefficients (required to tessellate) would result in
less subdivision, or if either type of condition could be used in the other technique.

S Papers—Interpolation and Approximation

5.1 Implicit Manifolds, Triangulations, and Dynamics Alex Pytel

L. Velho, J. de Miranda Gomes, and D. Terzopoulos. Implicit Manifolds, Triangulations, and Dynamics. Journal
of Neural, Parallel, and Scientific Computation, 5(1-2):103—120, 1997. Special issue on CAGD

One class of methods for polygonizing an implicit surface involves the following three steps: decomposition of the ambient
n-space into simplices, identification of a simplicial complex that intersects the surface, and triangulation of the surface inside
each n-simplex that it intersects. This paper shows how the quality of triangulations resulting from such a procedure can be
improved by constructing a mass—spring system out of the vertices and edges of the intersecting simplicial complex and letting
a dynamics simulation reshape it.

The main dynamics equation that governs the position x; of each particle of the mass-spring system is based on Newton’s
2" law:

m dzxi + 5 dCEl

dt? dt

where 7y is a dampening constant and n; is the net force acting on each particle. The net force is a sum of three types of

forces: spring forces exerted by the particle’s neighbors, a force defined inside an e—neighborhood of the implicit surface that

repels particles away from the surface, and a force defined outside the e-neighborhood that attracts particles to the surface. The
simulation uses Euler integration to solve for z; of an equilibrium state.

Simulations of particle dynamics have found many uses as versatile modeling and visualization tools. For example,
Szeliski et al. [50] describe a system for modeling surfaces based on the motion of particles and the orientation of their lo-
cal coordinate systems. Levet et al. [29] use particles to sample implicit surfaces. While particle simulations tend to have a lot
in common, the formulation of particle motion used by Velho et al. is somewhat unusual for two reasons. First, the interactions
between the particles are defined by the connectivity of the graph representing the simplicial complex that intersects the pro-
vided implicit surface. It is more typical for particle simulations to have particles exert forces on each other based on proximity
instead. Second, the particles of Velho et al. are free to move in n-space while under the influence of various forces. Other
systems impose additional constraints on the particles. In particular, Szeliski et al. [S0] constrain the rotational dynamics of
their particles, while the particles in the scheme of Levet et al. [29] move on the implicit surface that they are sampling.

One weakness of the paper by Velho et al. is that the authors do not discuss possible shortcomings of their system resulting
from underconstrained particle motion. The examples given in the paper do not appear to exhibit any anomalous particle
positions, but the examples are limited to spheres, cylinders, and tori. These surfaces do not possess areas of high curvature that
could cause problems for underconstrained particles.

Another weakness of the paper concerns the concept of subordinate triangulation that the authors use to justify the improve-
ments to the quality of triangles in the final triangulation produced with their algorithm. A subordinate triangulation 7 is a

+mni =0, M

8

simplicial complex with the following special relationship to a given implicit surface M: for each simplex § of 7 that intersects
M there is a point p € M N4 close to the barycenter of ¢ such that the tangent space of M at p is close to the support hyperplane
of one of the faces of 4.

This property seems to suggest that J has one vertex on one side of M and three on the other. Additionally, assuming that the
initial tetrahedralization of space is sufficiently fine, the property seems to imply that M inside § is close to being parallel with
one of its faces while also passing through the barycenter of §. Intuitively, the polygonization of M inside § in this situation
should result in better triangles than if M intersected § in an oblique way. However, Velho et al. make no provisions to ensure
that these observations hold in the situation when a tetrahedron of the initial complex resulting from the regular decomposition
of ambient space intersects M by having two vertices on each side of it. The mass-spring simulation is not guaranteed to pull
one of the vertices to the other side through the repelling e-neighborhood around M. Furthermore, the authors do not provide
any proof of their mass—spring dynamics reshaping the starting simplicial complex into a subordinate triangulation.

5.2 Modeling with Implicit Surfaces That Interpolate Khodakhast Bibak

Vladimir Savchenko, Er A. Pasko, Oleg G. Okunev, and Tosiyasu L. Kunii. Function representation of solids
reconstructed from scattered surface points and contours. Computer Graphics Forum, 14:181-188, 1995

Greg Turk and James F. O’Brien. Shape transformation using variational implicit functions. In Proceedings of
the 26th annual conference on Computer graphics and interactive techniques, SIGGRAPH *99, pages 335-342,
New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co

Greg Turk and James F. O’Brien. Modelling with implicit surfaces that interpolate. ACM Trans. Graph.,
21(4):855-873, 2002

Turk and O’Brien [53] gave an approach for modeling interpolating implicit surfaces. Their method is based on applying
variational techniques and the radial basis function (RBF) ¢(x) = |x|®. Their interpolation function can be written in the form

f@)=nd " w;p(x—¢;) + P(x), @)

j=1

where ¢; are the points to interpolate and P(x) is a linear polynomial (Turk and O’Brien only say that P contains linear terms
missing from the radial basis function; Jin et al. [25] claim that it ensures affine invariance; regardless, P ensures that the linear
system is solvable [57]). Given interpolation data h; = f(c;), (2) yields a linear system of equations that can be solved for the
unknown w; and the coefficients of P. Further, the system is positive definite and guaranteed to have a solution.

In their 2002 paper, Turk and O’Brien introduced interior, exterior, and normal constraints. By a boundary constraint we
mean points located on the surface. Positive-valued constraints were used to specify interior constraints, which are to specify
aregion that is inside the surface. Likewise, negative-valued constraints were used to specify exterior constraints, which are to
prevent the surface from overshooting into regions where the model should not exist. Also, normal constraints are placed very
close to the boundary constraints. In fact, given a control point at (x, y, z), with the normal (n, ny, n.), a boundary constraint
is created at (z, y, z) and a normal constraint is created at (z — kng,y — kny, 2 — kn.). Note that at least one interior, exterior,
or normal constraint is required to avoid the trivial solution of w; = 0.

Turk and O’Brien also discuss using the method of Witkin and Heckbert [58] to build an interactive modeling system where
the user directly moves the points on the surface, although since Turk and O’Brien resolve the linear system each time a point
is moved, it seems unlikely that their system would be interactive for large models. They also point out that their method can be
used to blend multiple models by discarding those points of any model that lies within the implicit surface of any other model;
the remaining points are interpolated using their technique. They also discuss using a Marching Cubes algorithm to render their
surfaces, as well as using Sphere Tracing to ray trace their surfaces. For Sphere Tracing, they need a Lipschitz bound on their
model over a reasonable region containing their model; they numerically calculate this constant by sampling the gradient of
their surface over the relevant region, and using the maximum value of the gradient as the approximation to a Lipschitz constant.
They note that in some cases their heuristic could fail; we further note that since their bound is unlikely to be tight for most of
the space, then the sphere tracing is likely to be slow.

This 2002 paper of Turk and O’Brien is related to a paper of Savchenko et al. [46]. In Savnchenko et al.’s method, the
implicit surface is reconstructed by introducing a carrier solid, which in the simplest case can be a sphere. First, the radii of the
carrier functions are calculated at all given points. The reconstruction problem is now shifted to finding a volume spline function
that interpolates all values of radii. This spline is found by solving a linear system of equations. While the system is symmetric,
it is not positive definite. Savchenko et al.’s method has some drawbacks. For example, volume interpolation requires heavy

calculations (so the surface can neither be efficiently reconstructed nor efficiently evaluated). Also how to determine an adopted
carrier solid is a challenging problem.

The 2002 Turk-O’Brien paper also builds on an earlier Turk-O’Brien [52] which used the variational technique in shape
transformation. Interpolating implicit surfaces are constructed in a similar way, using (2) but with thin-plate splines radial
basis functions instead of |x|? (in this earlier paper, they also do not use interior/exterior/normal constraints). They then blend
between two implicit surface as follows. Given two shapes A and B, place the constraints that describe each shape into a 4D
space described by coordinates of the form (x, y, z, w). For each constraint (z, y, z) of shape A, create a 4D constraint at the
position (z,y, z,0). Similarly, the constraints of shape B are placed in the w = 1 subspace, so each of these constraints is of
the form (z, y, z, 1). Now, look at the implicit function formed by these 4D constraints (from both shapes). A three dimensional
slice through this function at the value w = 0 yields shape A, and a slice at w = 1 gives shape B. Slices between these two
locations, 0 < w < 1, result in shapes that are intermediate between the two original shapes. (Tests of the Turk-O’Brien
scheme appear in a companion technical report [36].)

6 Projects

The remaining sections are shortened forms of the project reports for the course. Each student wrote their own report, and the
instructors made a pass through the reports, cleaning up the writing and deleting less relevant material. The projects could either
be an implementation project, or a survey project, and possibly a combination of both.

7 Marching Cubes and Marching Squares: Face Ambiguity Chun Liu

There is an interest in approximating implicit surfaces with polygonal meshes [8] primarily to take advantage of graphics
rendering systems that can render triangles faster than other primitives. The Marching Cubes algorithm is one technique that
converts implicit surfaces into polygonal meshes. The purpose of this project is to investigate face ambiguity issues in the
Marching Cube algorithms. I will illustrate the face ambiguity problems using the Marching Square algorithm in this project.

7.1 Marching Cubes

Marching Cube algorithm was originally proposed by Lorensen and Cline [31], although Wyvill et al. [61] proposed a similar
algorithm earlier. Marching cubes is widely used in scientific visualization, including medical imaging [31, 51], biomechanical
modeling [55], and constructing surface from contour data [27]. In Lorensen and Cline’s paper, the algorithm was designed for
the visualization of multiple 2D slices of the human body taken from computed tomography (CT), magnetic resonance (MR),
and single-photon emission computed tomography (SPECT). Marching Cubes was used to generate the connectivity between
two slices. A grid of cubes is formed in between slices. Each cube is processed individually. Marching cubes determines how
the unknown data surface intersects a cube. There are twelve edges on a cube. The algorithm detects which edges the data
surface intersects. Using the intersection points, we interpolate the data surface by connecting intersection points according to
a topology assumption. Then inside a cube, interpolating polygonal meshes are formed. After processing a cube, the procedure
moves (or marches) to the next cube in the grid and repeats the process until no more slices remain.
In summary, there are three steps to polygonize data surface in the Marching Cube Algorithm:

1. Partitioning in between inter-slices into a grid of cubes.
2. Determining how the data surface intersects each cube’s edges, and
3. Connecting intersection points and forming triangular meshes according to topological configurations.

For determining the topological configuration in a cube, an 8-bit code can be used to encode the state of each corner vertex C.
If f(C) > 0, the corresponding bit is set to 1. If f(C) < 0, the corresponding bit is set to 0. I will discuss case f(C) = 0
in Section 7.5.2. The 8-bit code is used as an index into a look-up table of all possible topological configurations of Marching
Cubes.

Since there are eight vertices in each cube, there are 2% = 256 possible ways in how a surface intersects a cube. Using
symmetry and rotational operations, the 256 cases can be reduced into 14 patterns, some of which are shown in Figure 10.

7.2 Marching Squares

Marching Squares is a 2-Dimensional version of the Marching Cubes algorithm. In Marching Squares, the algorithm polygo-
nizes a 2D curve instead of a 3D surface. Similar to Marching Cubes, there are three main steps to polygonize a 2D implicit
curve with the Marching Square Algorithm:

1. Partitioning a region of interest into a grid of squares.

10

Figure 10: 6 of the 14 patterns on how a surface intersects a cube. Based on a figure of Lorensen and Cline [31]. Cases 4 and
10 in are ambiguous. Case 4 is the case that Chernyaev handled.

2. Determining how the curve intersects each edge of square, and
3. Connecting intersection points according to topological configurations.

For determining the topological configuration in a square, a 4-bit code can be used to encode the state of each corner vertex
C.If f(C) > 0, the corresponding bit is set to 1. If f(C') < 0, the corresponding bit is set to 0. I discuss case f(C') = 0 further
in Section 7.5.2. The 4-bit code is used as an index into a look-up table of all possible topological configurations of Marching
Squares.

There are four vertices in each square. As a result, there are 2* = 16 possible cases on how a curve can intersect a square.
Using symmetry, these can be reduced from 16 to 8 cases. And using rotational symmetry, the cases can be reduced into four
unique patterns (see Figure 11).

I re-implemented the Marching Square Algorithm of “Processing” [18] (an integrated development environment). Figure 12
shows an example of my re-implemented Marching Square Algorithm on the function f(P) = 2 + y* — 4.7, where I avoided
the case f(C) = 0 at the grid points. I implemented the Marching Squares algorithm as follows:

Step 1: Partition a region of interests into a grid of squares. In my implementation, the region of interests is scaled to fill the
display area of the screen. As a result, the Euclidean width of square differs in the examples, even though they may
appear the same size in the images.

Step 2: Determine how the curve intersects each square’s edges. Evaluate the value f(C) at the four corner vertices C' of a
square. If f(C) > 0, I display a ‘+ sign on that position. If f(C) < 0, I display a ‘—". If f(C) = 0, I display ‘o’ to
represent a vertex sitting on the implicit curve. See Figure 19 (b) for an example with all three cases. The states of four
vertices are encoded in a 4-bit code. Using the 4-bit code and according to the topological configurations in Figure 11,
I decide which edges are intersect with the curve. I find the curve-edge intersection point on an edge using the Secant
Method.

Step 3: Connect (linearly interpolate) the intersection points according to the topological configurations in Figure 11.
Step 4: March to the next square and repeat step 2 and step 3 until there are no more squares to process.

An example of applying Marching Squares to a high degree implicit cure is shown in Figure 19 (a).

7.3 Face Ambiguity

Marching Squares does not guarantee that the topological configuration is correct. In Figure 11, I showed the 16 Marching
Square topological configurations, and that these 16 cases can be reduced to four patterns. Among these four patterns, a face
ambiguity appears in Pattern 3. The ambiguity occurs because we do not know how to connect pairs of intersection points on
the edge of square. In Pattern 3, there are two ways to connect them, which are shown in Figure 11 in different colours: Either
we connect the intersection points using the green lines or we connect them using the purple lines but not both. The chosen
connected points forms the shape of a hyperbola. Notice that this ambiguity happens when positive and negative vertices are
diagonally opposed. An example of the Marching Squares face ambiguity is shown in Figure 13 (a), and a high degree case in
Figure 19 (c).

Likewise, a similar issue happens in the 3D case. Marching Cubes also does not have topological guarantees. Face ambigu-
ities happen in configuration 3, 4, 6, 7, 10, 12, and 13 for Marching Cubes, with cases 4 and 10 shown in Figure 10. We simply
do not know how to connect the intersection points on the edges of the cube. If points are incorrectly (or at least, inconsistently)
connected, “holes” can appear on the polygonized surface mesh [39, 13, 20, 40, 37].

11

o O @ O O /o ®
Case0 Casel Case 2 Case3
O ® O / ®
O
Case b Case7
° O @ \,}
> C O ©
Case8 Case 9 Case 10 Case 11
L ® © ® @ ® @ L
O O @ /{) 0\ o @ L
Case 12 Case 13 Case 14 Case 15
Pattern0 Pattern1 Pattern 2 Pattern 3

Figure 11: 16 cases and four summarized patterns on how a curve intersects a square

B S« o=-:==
B B S |
Pt + o+ o+ + + 4+ o+ o+ A
F—+ + A
oo+ + A
oo+ + A
— +
oo+ + A
oo+ + A
oo+ + A
— +
Foo+ o+ o+ o+ + o+ 4+ o+ o+ A

Figure 12: Applying Marching Squares to circle. The width of each square is 0.5 units. Circle: f(P) = 2% + y? — 4.7

12

i W S =

T A S e e Fo+ o+ o+ o+ o+ N - - = =
oo+ o+ o+ o+ o+ + - G S S S +
R T A S S + - Fo+ + + o+ o+ +
o+ o+ o+ o+ o+ +——— G S S S +
oo+ o+ o+ o+ o+ + - Fo+ o+ o+ o+ o+ + - - = =
oo+ o+ o+ o+ o+ + - Fo+ + + o+ o+ +
(a) (b)
—_—— T
- + o+ o+ o+ il r’- - - - - + o+ o+ 4+ o+ A
- + + 4+ o+ o+ A - + o+ o+ 4+ o+ A
- - - - = + o+ o+ o+ o+ 4 - - = = = +
- + + o+ o+ o+ A - - - - - h+ + 4+ o+ A4
e e o S — — — e e e + 4+ 4+ + A
+
Fo+ o+ o+ 4 S IS N — o+ o+ o+ o+ 4+ R
I S S S +——F— Fo+ o+ o+ o+ 4 S S R R R —
Fo+ o+ o+ o+ 4 S IS N — T L S S +——F—F—T1
Fo+ o+ o+ o+ 4 S IS N — o+ o+ o+ o+ 4 ———— o]
T S S S +——F— Fo+ o+ o+ o+ 4 S I S R E——
(©) (d)

Figure 13: Rectangular Hyperbola: f(P) = (z — 1.5)(y — 1.5) — 0.1. (a) Face Ambiguity appears when we process Pattern 3
square. The width of each square is 1.0 unit. (b) Four triangles technique when we process Pattern 3 square. The width of each
square is 1.0 unit. (c) Case when four triangles technique fails. The width of each square is 2.0 units. (d) Asymptotic Decider
in Pattern 3 square. The width of each square is 2.0 units.

13

7.4 Face Disambiguation

There are a couple of techniques that try to solve the face ambiguity problem in Marching Cube. In this project, I will describe
three face disambiguation techniques—Wyvill et al.’s four triangles [61], Nielson and Hamann’s Asymptotic Decider [39],
and Chernyaev’s Marching Cube 33 [13]. I used my Marching Squares algorithm to briefly test these face disambiguation
techniques.

7.4.1 Evaluate the Vertex in Square Center

Wyvill et al. [61] proposed a technique to avoid face ambiguity. The concept is simple. Basically, we evaluate an extra point
in a Pattern 3 square. Wyvill et al. chose evaluating the vertex P at the center of the square because the value at the centre of
a square is approximately the average function value of four corner vertices. If the function value f(P) is greater than O (a
threshold value, they called “magic”), they defined this point as a “hot” point. Otherwise, if f(P) is less or equal than 0, they
called this point “cold”. In a Pattern 3 Square, there are two “hot” points and two “cold” points on the corner vertex. The center
point can be either “hot” or “cold”. We separate these five vertices as “hot” or “cold” using two lines. For example, if the center
vertex is evaluated as “cold”, then we group two “cold” corners with center vertex and we draw two lines to separate the “hot”
points. One of my test results using their method is shown in Figure 13 (b). In this case, the configuration is correct.

Unfortunately, although this technique solves many cases with the face ambiguity problem, it does not solve all cases [40,
20, 37]. In other words, this technique does not really solve the face ambiguity problem. For as a counter-example, consider a
situation in Figure 13 (c). Although the “hot” points were together, the interpolation is still wrong. The correct interpolation
is shown in green lines. This technique fails because they assume that the value at the centre of a square is approximately the
average function value of four corner vertices, but this assumption is not enough to guarantee correctness. This technique is a
fast and simple way to solve many cases, but it is not recommended to guarantee correctness.

7.4.2 Asymptotic Decider

The second face disambiguation technique is called asymptotic decider. This technique was proposed by Nielson and Hamann [39].
Their original purpose was to try to solve more general ambiguities in the Marching Cube Algorithm, including face ambiguities
and interior ambiguities. In this paper, I focused on testing face ambiguities in Marching Squares.

In Asymptotic Decider, they assume that the Pattern 3 topological configuration always forms the shape of a hyperbola, and
the contour curves can be bilinearly interpolated. The function,

sen=u-so (50 5 (1)

bilinear interpolates the contour curves of hyperbolas, where (s, t) is an arbitrary point in the square and Boo, Bo1, B1o, B11
are the four corner vertices of square. The interpolated value of the two asymptotes’ intersection point (sq to) is

BooB11 + BioBo1
B(5a, ta) = .
(s) Boo + B11 — Bio — Bo1

If B(Sa,ta) < 0, then the two asymptotes’ intersection point (sa, to) is negative. Then we group the negative corners and
the point (sq, to) together and draw lines separating the two positive corners, which is similar to Wyvill et al.’s four triangle
methods. One of the tests result is shown in Figure 13 (d).

Others have found that asymptotic decider gives a topological guarantee and works beautifully [13, 20, 37], but when I
tried it on the case of two parallel lines, the asymptotic decider fails (see Figure 14). The red lines are how asymptotic decider
interpolated, while the green lines are the actual implicit curves. This problem occurs because of the assumption that the
Pattern 3 topological configuration always forms a hyperbolic shape. Ning [40] notes that “the decision is correct if bilinear
interpolation is an accurate estimate of the actual function’s behavior between samples.” In Figure 14, the bilinear interpolation
is an incorrect estimation of the actual function’s behavior. However, while the reconstruction (of the lines) is incorrect, the
result given by asymptotic decider is consistent (i.e., each connected component has no holes). Another problem case is shown
in Figure 19 (d).

7.4.3 Marching Cube 33

Marching Cube 33 is a face disambiguation technique proposed by Chernyaev [13]. This technique uses Asymptotic Decider,
but in additional generates 33 topological configuration patterns for the Marching Cubes algorithm. The difference with Nielson
and Hamann’s is that instead of evaluating B(sq to) < 0, Chernyaev compares BogB11 and Bi1oBoi. If BooB11 > BioBo1,
we connect Boo and Bj; together and draw lines separating B1o, Bo1; otherwise, we connect B1g and By together and separate
Boo Bi1.

There is another difference between Nielson’s and Chernyaev’s. Nielson-Hamann considered ambiguities that happen in
configuration 3, 6, 7, 10, 12, and 13, while Chernyaey noticed that configuration 4 is also ambiguous. Configuration 4 forms an

14

SRR ERERAZAERER
Fo+ o+ o+ o+ 4+ + i—? + o+ o+ A
Foo+o+ o+ + 0+ (—> + + + o+ A
Fo+ o+ o+ + o+ > +—+—+ 4+
R S e (—7 B e S
oo+ o+ o+ (—? + +—+ 4+
N
Ft A B S S
i S B & + 4+ o+ o+ o+ A
7 + ottt A S T A
Fo+ o+ o+ o+ o+ + 4+ o+ o+ o+ A
Fo+ o+ o+ o+ o+ + o+ o+ o+ o+ A

Figure 14: Asymptotic Decider fails in my implementation. The width of each square is 0.5 units. Two parallel lines: f(P) =
(y—(z—-1.2)(y— (x —1.2) — 0.5)

O—
T TE

NS

Figure 15: Multiple intersections on an edge of a square. Most of the time, repeatedly subdividing the square will result in a
case that Marching Square can handle.

interior ambiguity instead of face ambiguity. In this project, I focused on face ambiguity. In particular, note that configuration 4
can not occur in Marching Squares.

7.5 Discussion

I encountered several concerns while implementing the Marching Squares algorithm and testing several cases. In particular,
what happens if there are two curve-intersection points on the same edge? How do we handle the situation when the values of
square’s corners are zero? What problems occur when the implicit curve has self-intersections? I will discuss each concern in
the rest of this section.

7.5.1 Two Intersections on the Same Edge

It is possible that an implicit curve intersects an edge of square twice. Such a case is shown in Figure 15, left. Marching
Squares does not have a topological configuration for multiple intersections on the same edge. To solve this issue, most of the
time, we keep subdividing the square until we reach a case that Marching Square Algorithm can handle [20, 8, 40]. In my
implementation of Marching Squares, I did not handle the case of multiple intersections on an edge. As shown in figures 19 (b)
and (c), the curve cannot be interpolated near the center.

7.5.2 Zeros at the Corner Vertices

A zero value on a square corner does not seem to affect how the Marching Squares algorithm behaves. Zero vertices do not
change the topological patterns of Marching Square. In Figure 16, each zero case pattern can be summarized as a corresponding
pattern in Marching Squares. Or we can say that a zero case is a sub-case of the four topological patterns. An example with a
zero case is shown in Figure 19 (b).

Note that if two zero vertices are neighbors, we consider this case as two intersections on the same edge. As discussed
before, we need to subdivide such an edge. An example is shown in Figure 17.

15

Pattern0 Pattern 1 Pattern 2 Pattern 3

Figure 16: Each Zero case pattern can be summarized as a Marching Square pattern.

[-F

Figure 17: If two zero vertices are neighbors, we consider this case as two intersections on the same edge. As we discussed
before, we need to subdivide.

7.5.3 Self-Intersections

Curve self-intersection probably is the worst case for the Marching Squares algorithm. This is illustrated in Figure 18. The
correct interpolated curve cannot be generated by the above Marching Squares technique. The correct interpolation is neither
green lines nor purple lines in Figure 18. The correct result is the yellow lines in Figure 18, which were are hand-coded for this
example.

To fix this problem, there are some techniques exist that trying to handle self-intersections surfaces, but I did not investigate
them further, since I was focusing on face ambiguity and face disambiguation.

7.6 Conclusion

In this project, I investigated face ambiguity issues in the Marching Cubes algorithm by analyzing the Marching Squares algo-
rithm. Iillustrated face ambiguity problems using my re-implementation of Marching Squares. And I discussed three techniques
to solve face ambiguity in Marching Squares—Wyvill et al.’s four triangles method, Nielson and Hamann’s Asymptotic De-
cider, and Chernyaev’s Marching Cube 33, although Chenyaev’s method does not differ from Nielson and Hamann’s method on
Marching Squares. I tested these three techniques with my version of the Marching Squares algorithm, and I generated several
failure cases.

There were several issues I had with implementing a Marching Squares algorithm. And this was only a 2D case. I believe
that ambiguity problems and other concerns would be much worst for Marching Cubes.

I believe that Marching Square and Marching Cube Algorithms are better in visualizing surfaces in a fast and simpler way.
However, if our priority is to visualize surfaces without errors, Marching Cube and Marching Square might not be a great
choice.

8 An Improvement on Curve-Based High-Level Primitive Hamideh
Vosoughpour

A curve-based high-level primitive is one of a few high-level primitive categories introduced in [3] to handle different levels of
details automatically. This category of high-level primitives models thick 3D curves at different levels of details. In this project,
a curve-based high-level primitives is implemented, and it is shown that the models created by the method in the paper have

16

Figure 18: Marching Square fails on a self-intersecting implicit curve. The width of each square is 0.5 units. Folium of
Descartes: f(P) = (z — 0.2)3 + (y — 0.2)3(z — 0.2)(y — 0.2)

() (d)
Figure 19: Additional examples. (a) Applying Marching Square on a high degree implicit curve. The width of each square
is 0.1 units. Moon: f(P) = (x — y? — 2% + 1)* + (y? + 22)* — 0.9; (b) Applying Marching Square on zero case (With
Face Ambiguity). The width of each square is 0.5 units. Folium of Descartes: f(P) = z3 + y® — 3zy; (¢) Applying
Marching Square on a high degree implicit curve (With Face Ambiguity). The width of each square is 0.5 units. Two Trifolium:
f(P) = (y? + 2%)* — 24(y® — 32%y)?; (d) A fail case when applying Marching Square on a high degree implicit curve (With
Asymptotic Decider). The width of each square is 0.5 units. Two Trifolium: f(P) = (y* + 2%)* — 24(y® — 322y)?

17

Figure 20: A curve modeled by a number of cones

some unwanted creases in the final surface. I proposed a modification to improve the model and used this category of primitives
to model an object.

The model proposed in [3] for curve-based primitives is based on cutting the curve into a number of smaller curves and
approximating each sub-curve by a truncated cone. Thicknesses of the curve at cut points determine the radii of cones where
they are truncated.

At a higher level of detail the curve is cut into more segments which leads to a more accurate but more complex model.
Figure 20 shows a rough, 2D example of a curve modeled with a number of cones.

In this project, the curve is given in a parametric form with parameter p:

xzfm(p)v y:fy(p)7 Z:fz(p)7

where p € [po, p1].

The thickness of the curve is also assumed to be a function of p, so we have t = ¢(p).

Using this form of equations we can cut the 3D curve by cutting the parameter interval. For a given level of detail «, the
interval [po, p1] is divided into v equal sized subintervals, and the curve is approximated with a truncated cone in each of these
small intervals. For a small interval [ps, p.], the start and end points of the curve are indicated by (zs ys zs) and (Ze ye 2e),
respectively, where

(@sys 25) = (falps) fy(ps) f2(ps)),
(e ye 2e) = (fa(pe) fy(pe) f=(pe))-
The thickness of the curve at ps and p. are indicated by ¢, and t., respectively. Figure 21 shows the truncated cone that

should be rendered for the interval [ps, pe].
The following equation for a truncated cone for p € [ps, pe]| is used:

1’2 + y2
c2

ts

= (Z_ZO)27 c= E

Figure 22 shows the cone for this equation. The axis of cone is the z-axis, and the base of the cone located on the xy-plane with
radius ts. The part of the cone we need to render is for 0 < z < [, where [= p. — ps.

The matrix representation for the cone is

XxTAX =0,
where
x 1 0 0 0
|y o1 o0 0
X= z |’ A= 0 0 —c 0
1 0 0 2z0c® —22

The condition of 0 < z < [can be interpreted as forcing the cone equation to be between two planes: z = 0 and z = [.
The plane equation has also a matrix form:
xTp=o,

18

te

Ps 1

Figure 21: The truncated cone to model the 3D curve at [ps, pe] Figure 22: The cone in its normal configuration

where P is a4 x 1 matrix. For the planes of z = 0 and z = [we have:

P PQZPz*l:

o= OO
—_ o O

A point X lies between Py and P» if X7 P, and X T Py have different signs.

To get a truncated plane of arbitrary location and orientation, we need to rotate the cone equation such that cone axis fits
on the vector connecting (s ys 2s) to (e Ye 2¢); call this vector d. We also need to translate the shape such that the origin is
located on ps. The rotation consists of a rotation around the z-axis by « and then a rotation around y-axis by 5. The angles
« and [are shown in Figure 23. In this figure, the bold vector shows the vector d, which is going to be the new cone-axis.
Therefore, we have

=4y
Va3 +dy+d2
Vd2 + d?
V& +d2+d2
A
d.
The transformation is the combination of a rotation by « around the z-axis, R, a rotation by 3 around the y-axis, R,, and
a translation, 7" that moves the origin to (zs ys 2s):

sin(a) =
cos(a) =
sin(8) =

cos(f) =

M=Tx Ry x Ry.

We need to change the equations of cones and truncating planes such that any point X maps to X’ = M X in transformed
system. Setting X’ = M X gives X = M~'X’, and replacing X in X7 AX = 0 we have:

(M'X"NYTAMT'X) = 0.
= X'TM T AMTIX = 0.
Therefore, the matrix for new quadratic equation is A’ = M 1T AM ~1, and the truncating planes are P, = M ’1TPS and
Pl=M"'"P.

19

Figure 23: The rotations needed to fit z-axis on vector d

Figure 24: Nothing done to avoid gaps. See the unwanted gaps Figure 25: Using shared planes between cones. See the un-
between cones in the convex areas. wanted gaps between cones in the concave areas.

8.1 Ray Tracing

To ray tracing to these models, we need to intersect the ray with the truncated cones. The ray may intersect with more than
one cone, it can intersect a cone in a point outside the truncated area, and it may intersect a cone in more than one point. If a
ray intersects a cone, we apply test that the intersection point lies between the two truncating planes. In the case that a cone
intersects the ray in a point outside its truncated area, we just ignore the intersection. With these modifications, the ray tracer
described in Section 2.1 was used to ray trace the surfaces.

8.2 The Gap Between Cones

In modeling 3D thick curves with cones, the gap between cones needs to be handled. Figure 24 shows a sample object modeled
with the curve-based high-level primitive without doing anything regarding the gaps. The curve in this example is a circle, its
thickness is a linear function, and it is modeled with 20 cones. As is clear from the picture, the gaps between consecutive cones
is because that the cones have different angles at the connection points. However, there is no gap in concave parts of the object
because the cones fully cover it.

To solve this problem, one simple idea is to change the truncating planes such that they cover the gap between cones as
much as possible. An implementation of this idea is shown in Figure 25. In this model the normal vector of truncating plane is
the tangent vector of the curve at the connection point of two cones instead of the axis of the cone. This way, two consecutive
cones shares a single truncating plane which makes the gap smaller. However, while the truncating planes in this model seem
better in convex areas, they sometimes cause unwanted cuts in the concave parts. Figure 26 compares this method to the original
model of cones. As shown in Figure 26, modifying truncating cones lead to a better result in convex areas, but makes unwanted

20

(@ (b)

Figure 26: Half circle with quadratic thickness modeled with 20 cones, with original, and modified truncating planes.

Figure 27: Modified truncating plane cannot fully cover the gap even in convex areas.

cut in concave parts.

The problem of the method of modifying truncating planes is not limited to concave areas. Figure 27 shows a case in which
two cones may reach the truncating plane in different points, which forms a gap between them even in a convex area. Figure 28
shows another example of the spiral curve with both linear and quadratic thickness functions using the modified truncating
planes method. In Figure 28 we can see the gap in both convex an concave parts of the surface. The idea proposed by Barbier
et al. to avoid the gap is to put a sphere in each connection to make sure that the gap will be fully filled. Figure 29 shows how
the sphere can fully cover the gap.

To avoid the intersection of the sphere with other cones, we need to truncated the connecting sphere, too. The only part of
the sphere needed to fill the gap is the part between the second truncating plane of the first cone and the first truncating plane
of the second cone, which can be easily identified with different signs of plane equations. Figure 30 shows the spiral with
quadratic thickness modeled with this new technique in two different levels of detail. As we can see in the figure, there is no
gap and this model fully covers the gaps.

Although using spheres in the connections make bending smoother and more realistic, a problem may occur with spheres.
As is visible in Figure 29, the sphere can form a concave crease in convex area of the surface which is undesirable. To avoid
this problem and still cover the gap between cones, one idea is to replace sphere with an elliptic cylinder passing through the
bases of consecutive cones. This model does not have the problem of sphere model, because the slope of this elliptic cylinder
will be the mean of two cones’ slopes.

To find the equation of the elliptic cylinder, similar to what we did for cones, we find the equation of an elliptic cylinder with
the z-axis as the cylinder axis and transform it by appropriate rotation and translation matrices. Finally, the elliptic cylinder
should be truncated with the same planes that form the base circles.

The equation for elliptic cylinder with z-axis as its axis is

T\ 2 Y) 2
el J =1
(a) + (b ’
where a and b are its two radii. Here a is equal to the radius of base circles, 7, and b is smaller due to the angles between two
base circles. This angle is determined by the angle between axes of cones. So b can be computed as follows:

21

(a) (b)
Figure 28: Spiral with linear and quadratic thickness. See the dark pixels due to the gap.

/—\ Concave crease

Figure 29: A sphere in each connection can fully cover the gap.

(@) (®)
Figure 30: Spiral with quadratic thickness with spheres at connections to fill the gaps, in two different levels of details.

22

(@ (b)

Figure 31: Spiral with quadratic thickness with elliptic cylinder at connections to fill the gaps, in two different levels of details.

21.25
cos(20) = ———
LA PPy
b = rcos(0).

In the elliptic cylinder, the radius b is along the angle bisector of Z7 and 23, and a is perpendicular to the plane passing zi
and 23, so the vectors of base ellipsoid of the cylinder can be computed as:

Zioy Z = -
B = il T Teal = z1 X Z2
— 1A ENR 7‘Z_’XZ_"7
el s

z1| 22|

and the axis of cylinder is perpendicular to both @ and b, it can be computed as:

x b.

Q

c=

Now, we should transform the axes to lie on @, I;, and ¢. We also should translate the origin to the connection point of the
cones, p. The transformation matrix is

i@ i-b i-C pa
K= |d@ it ieop
k-a k-b k-@ p. |’

0 0 0 1

where i = (100),j = (010),and k = (00 1) are the unit vectors of the coordinating system.
Figure 31 shows the spiral rendered with this model in two different levels of details.
Figure 32 shows a spiral rendered with these two models as well as without any object filling the gap.

8.3 Conclusion

The curve-based high-level primtive helps the designer to render the sphere in different levels of details automatically. Using
this model, we can model any non-quadratic implicit surfaces by quadratic primitives. The only problem with this model is
the transition between truncated cones. In this project three approaches were implemented and tested. The first one (extended
truncated planes) could not cover the gaps between cones perfectly, and it also may cause some undesired cuts, but the two
other models (using spheres or elliptic cylinders), are guaranteed to fill the gap. The first one makes a seamless transition from
one cone to the next one, but can result in a concave crease in a convex area or a convex part of a sphere in the concave area,
neither of which is desirable. The model of elliptic cylinders fills the gap between cones with a minimum information about
the surface. It does not form any unwanted creases, and all discontinuities formed by it are in the direction of a natural crease
between the cones.

9 Variational techniques in implicit surfaces Khodakhast Bibak

The Radial Basis Function (RBF) method is one method for constructing 3D implicit surfaces. Roughly speaking, an RBF is
a real-valued function whose value depends only on the distance from the origin or alternatively on the distance from some

23

Figure 32: Spiral with quadratic thickness modeled with (left) spheres at connections; (center) with elliptic cylinders at con-
nections; (right) without any object at connections.

other point called a center. RBFs apply to data fitting in neural networks and the theory of functional approximation [30].
One advantage of RBFs is their invariance under Euclidean transformations and their adjustable local influence when used
for implicit modelling. Recent research has used RBFs to reconstruct implicit surfaces from scattered points. In this project,
I will discuss some work using variational techniques to reconstruct surfaces from a point set. The next section describes
reconstruction methods using RBFs with global support. Section 9.2 discuss methods allowing a higher number of constraints
using greedy fast evaluation techniques of radial basis functions with global support. Section 9.3 presents methods using
compactly supported radial basis functions, and thus also allow a higher number of constraints. In Section 9.4 looks at multi-
level reconstruction techniques. Hermite Radial Basis Function (HRBF) implicits are discussed in Section 9.5.

9.1 Global Support

About 30 years ago, in an extensive survey, Franke [17] identified RBFs as one of the most accurate and stable methods to
solve scattered data interpolation problems (this problem, roughly speaking, is stated as follows: Given n data points scattered
on zy-plane along with corresponding scalar height values, find the smooth surface that interpolates each height at the given
locations, i.e., find a smooth function f that passes through a given set of data points). The pioneering work to reconstruct
implicit surfaces from given point sets using variational techniques can be attributed to Savchenko et al. [45]. In their method,
the implicit surface is reconstructed by introducing a carrier solid, which in the simplest case can be a sphere. First, the radii
of the carrier functions are calculated at all given points. The reconstruction problem is now shifted to finding a volume spline
function that interpolates all values of radii. This method has some drawbacks. For example, volume interpolation requires
heavy calculations (so the surface can neither be efficiently reconstructed nor efficiently evaluated). Another drawback of this
method is that, besides the choice of the volume spline function, the carrier solid to use has to be defined. The choice of the
carrier solid has a significant impact on the shape of the reconstructed surface, and it is a challenging problem how to determine
an adapted carrier solid.

One reason for using a carrier solid for reconstructing implicits is to avoid the trivial solution of all coefficients being 0.
Turk and O’Brien [53] gave another way to avoid the trivial solution of the system equations. In addition to the reconstruction
constraints, they added additional constraints at off-surface points, which allows for the reconstruction of the implicit surface
directly without defining a carrier solid. They introduced interior, exterior, and normal constraints. Then they applied the
variational technique using the RBF ¢(x) = |x|®. By a boundary constraint we mean points located on the surface. Positive-
valued constraints were used to specify interior constraints, which are to specify a region that is inside to the surface. Likewise,
negative-valued constraints were used to specify exterior constraints, which are to prevent the surface from overshooting into
regions where the model should not exist. Also, normal constraints are placed very close to the boundary constraints, although
the normal constraints are just a variation on interior and exterior constraints.

The Turk-O’Brien paper has some drawbacks. First, they did not mention the following items which are crucial in their
paper: Energy function in 3D; the reason for appearance of P(x) (however, P is required to guarantee that the linear system is
solvable [57]); and also four orthogonality conditions for the system (see, e.g., [26]). Besides, their method, while it has several
advantages, also has some drawbacks. For example, the additional constraints (or even a small change in even one constraint)
can cause a large change in the resulting surface. Also, the off-surface points may contradict one another and some heuristics
might be necessary to ensure that off-surface points produce a distance field consistent with the surface data. In addition, the
linear system is dense and is tractable only for small data sets. In addition to the cost related to the solution of the equation
system, a high-quality visualization of the isosurface requires the function to be evaluated at a large number of points. Because

24

of the global nature of variational implicit functions, all their terms must be used in computing the value function at any one
point. Thus, each evaluation of the interpolated function has O(n) time complexity. (Tests of the Turk-O’Brien scheme appear
in a companion technical report [36].)

9.2 Fast Evaluation Techniques

The pioneering work to reconstruct implicit surfaces using radial basis functions with global support from a ‘high’ number of
constraints can be attributed to Carr et al. [11]. They overcame the previously discussed computational cost and storage limita-
tions by using a greedy fast evaluation technique of radial basis functions that allows for fast and storage-efficient computation
of the matrix-vector products [5, 6], hence making iterative solutions attractive as solvers for the linear system. The greedy
fast evaluation technique is based on the Fast Multiple Method of Greengard and Rohklin [21] that takes benefit of the fact,
that when evaluating the radial basis function f at an argument z, infinite precision is not required and the evaluation can be
approximated by dividing into far and near field expansions for a given argument z. On the one hand, all radial basis function
terms in the near field, i.e., where the centers are close to the argument x, are computed directly and explicitly. On the other
hand, many radial basis function terms of the far field whose centers are close to each other (but far away from the argument
x) are approximated simultaneously by a Taylor series of truncated Laurent expansions. The accuracy, i.e., the length of the
truncated Laurent expansion, can be preset, for example to a multiple of the machine precision of the computer in use. To
identify the near and far fields of a given argument efficiently, the data has to be structured hierarchically.

Using the greedy evaluation technique, the evaluation cost drops from O(n) to O(1) after a O(nlogn) setup, and cal-
culating a matrix-vector product drops from O(n?) to O(n). The computational cost to solve the linear system drops from
O(n®) to O(nlogn). Furthermore, since the involved matrix of the linear system never has to be calculated explicitly, storage
requirements are also greatly reduced to only O(n) compared to O(n?) before. Consequently, the method of Carr et al. can be
considered efficient. Unfortunately, the far and near fields are complex to implement, and its derivation has to be done for every
radial basis function separately. Besides the gain in computational and storage complexities, the reconstruction of the implicit
surfaces is similar to Turk and O’Brien. Carr et al. also define off-surface constraints; however, they propose to add two new
constraints at normal off-surface points on both sides of the surface for a subset of the initial points.

9.3 Compact Support

Morse et al. [38] propose another way to allow a higher number of constraints when reconstructing implicit surfaces by using
Wendland’s compactly supported radial basis functions of minimal degree [56]. In contrast to the methods presented so far, the
resulting linear system is sparse. Similar to Turk et al. and Carr et al., Morse et al. use normal constraints to avoid the trivial
solution of the linear system.

The sparsity has several advantages. For example, the linear system can be built up in O(nlogn) time, solved in the
range O(n*?) to O(n'®), and the evaluation drops to O(logn). Concerning storage complexity, by using sparse-matrix
representations, only O(n) storage is required.

The major drawback of this method is that the support radius has to be chosen globally, hence an additional parameter
compared to globally supported radial basis functions is introduced. Choosing a large radius drops the performance, and
may result in the same computational and storage complexities as by using globally supported radial basis functions. On
the other hand, choosing a small radius may result in a too local reconstruction, possibly with the generation of holes in the
surface. For these reasons, compactly supported radial basis functions should only be used to reconstruct implicit surfaces
from quasi-uniformly distributed point sets. Another disadvantage is that the reconstructed implicit surface f is not the only
set of zero-valued points in space, but there are extra zero-sets. Hence, point membership classifications, which are often used
in constructive solid geometry (CSG) are not directly applicable to this kind of surfaces, as the common convention of the
implicit surface to be positive inside and negative outside is not met. (Extra zero-sets are a common problem implicit surface
reconstruction methods, and unless a method explicitly proves that there are no extra zero-sets, it should be assumed that the
method creates them.)

The work of Morse et al. was further improved by Kojekine et al. [28] by organizing the sparse matrix into a band-diagonal
sparse matrix in an efficient manner using an octree data structure. The resulting linear system can be solved more efficiently
using a combination of block a Gaussian solution and a Cholesky decomposition [19]. Furthermore, Kojekine et al. use a
carrier solid instead of normal constraints, which reduces the number of constraints and thus further improving efficiency. But
Kojekine et al. state also that compactly supported radial basis functions are only suitable for ‘moderately sized’ 3D point sets.

Chen et al. [12] presented a method for efficiently creating compactly supported RBF-based implicit representations from
the vertices of a polygonal model using hierarchical spatial partitioning. This method employs a hierarchical spatial partitioning
that imposes a successive series of embedding functions constrained so that when they are added to one another, they interpo-
late the point set. The approach begins with the careful selection of a representative subset of the point set from which an
interpolating implicit surface that provides a base model can be created. This base model interpolates the core subset of data
points and serves as the foundation for the coarse-to-fine hierarchy. The data space is recursively divided into an octree with
additional data points selected, and more detailed embedding functions are derived for each child octant that, when added to the

25

base model, accurately interpolate the more complete, higher resolution model. Unlike many other approaches that combine
local interpolations through compactly supported blending functions, no explicit blending function is required—each level and
partitioned patch is calculated so that a simple linear combination of them produces an exact interpolation.

9.4 Multi-level Methods

Compactly supported radial basis functions are also used by Ohtake et al. [42] to reconstruct implicit surfaces from larger
point sets in a multi-resolution manner. Given a point cloud distributed along a surface, they first use spatial down sampling
to construct a coarse-to-fine hierarchy of point sets. Then they interpolate the sets starting from the coarsest level. They
interpolate a point set of the hierarchy, as an offsetting of the interpolating function computed at the previous level. Note that
Ohtake et al. use the preconditioned biconjugate gradient method to solve the linear system, and since their function can be
considered as a local carrier solid, no extra off-surface constraints are needed.

The multi-resolution approach of Ohtake et al. overcomes several limitations encountered before when compactly supported
radial basis functions were used. First, the number of constraints can be significantly higher, i.e., Ohtake et al. reconstruct
implicit surfaces from several hundreds of thousands of input points. Second, as the support radius varies throughout the
different levels of the hierarchy, highly non-uniformly sampled point sets can be reconstructed allowing us to fill larger holes
and repair incomplete data. On the other hand, similar to the drawback of traditional reconstruction methods using compactly
supported radial basis functions, extra zero-sets are generated when the surface described by the sampled point set has thin
parts. Furthermore, since the reconstruction of the finest levels of the hierarchy involves the solution of sparse linear systems
with a high number of constraints, the number of input points is still limited.

To reconstruct implicit surfaces from a large number of points with associated normals, Ohtake et al. [41] use multi-level
partition of unity implicits, i.e., an implicit surface with a global defining function that is reconstructed by partition of unity
blending of local shape approximations. Basically, the reconstruction process starts by rescaling the point set into a bounding
cube and creating an octree-based subdivision of this cube. At each cell of the octree, a local shape approximation is calculated,
and while the local shape approximation is not accurate enough, the cell is subdivided recursively until a certain accuracy is
achieved. Note that in this way the depth of the octree is dependent on the complexity of the reconstructed shape instead of
on the number of points. Finally, local shape approximations are blended together in slightly overlapping domains using the
partition of unity method. Since all local shape approximations are done by quadratic functions, multi-level partition of unity
implicits can also be understood as piecewise defined algebraic surfaces. Multi-level partition of unity implicits are a powerful
tool since implicit surfaces can be reconstructed from a large number of input points as well as from incomplete data, and they
are one of the few methods that enables us to reconstruct implicit surfaces with sharp features [41].

Reuter et al. [44] obtained a multi-scale reconstruction method for large scattered data. To do this, they combined three
well-known methods: variational techniques using RBFs are used to solve a set of small local reconstruction problems, thinning
algorithms are used to obtain subsets of the data for intermediate resolutions, and the partition of unity (POU) method combines
the local solutions to get the final reconstruction.* This combination is not only robust and efficient, but also offers a high level
of scalability, and moreover it enables the adaptive selection of different precisions of the multi-scale reconstruction. In contrast
to partition of unity implicits [41], where the local reconstructions of all the leaf nodes are blended together using the partition
of unity method, Reuter et al. [44] used the partition of unity method also for the inner nodes of the hierarchy. Their method
enables an adaptive evaluation of the defining function of the implicit surface after being reconstructed. This is particularly
useful for a view-dependent visualization of the implicit surface, where surface parts closer to the viewpoint can be visualized
more precisely compared to surface parts farther away from the viewpoint. Note that Reuter et al.’s method also requires the
introduction of off-surface constraints, and takes a high reconstruction time compared to the methods of Ohtake et al. [41, 42].

9.5 Hermite Radial Basis Function Implicits

The offset requirement was avoided in some work deduced from a statistical-learning perspective [43], where normals were
directly used in the variational problem. Pan et al. [43] incorporated normals directly in their regularized variational problem,
where the reasoning is to consider the alignment of the gradient of the surface with the normals at the sample points. This
amounts to solving a linear system for n point/normal pairs. However, this approach seems sensitive to non-uniform point
distributions and does not ensure interpolated normals.

Hermite Radial Basis Function (HRBF) Implicits were introduced by Macédo et al. [33, 34]. HRBF implicits interpolate, on
its zero-level surface, simultaneously a given set of points and, unlike previous RBF approaches, their normal vectors. They are
a special case of a generalized interpolation theory—Hermite-Birkhoff interpolation with RBFs—so that new variants of surface
reconstruction methods can be designed for additional flexibility. HRBF implicits are an interpolant to first-order Hermite data
based on radial basis functions and polynomials that are robust with respect to coarse and non-uniformly sampled data, deal

4The main idea of the partition of unity method is to divide the global domain of interest into smaller overlapping subdomains where the problem can be
solved locally. More precisely, the global difficult problem is decomposed into several smaller local problems and their local solutions are combined using
weighting functions that act as smooth blending functions to obtain the global solution.

26

effectively with close surface sheets, are able to produce detailed surface reconstructions, regularize independently points and
normals and also reproduce polynomial-based surfaces [33, 34] (see also [9, 10]). Different from the previous RBF approaches,
HRBF implicits do not depend on offset points to ensure existence and uniqueness of its interpolant. Intrinsic properties of
this method allow the computation of implicit surfaces rich in details, with irregularly spaced points even in the presence of
close sheets. Note that since HRBF implicits interpolate both points and normals, it not only ensures the existence of a non-null
implicit function without the need of offset points, but it is also capable of generating effective results.

HRBF implicits has some drawbacks. For example, this model treated the ‘pure’ cases, but there is nothing to prevent
‘hybrid’ scenarios that might consist of data with different interpretations. For instance, it is not uncommon in sketch-based
modeling applications to have consistently-oriented points as well as pairs of points and tangent vectors. Cases like this may
be treated either as an instance of Hermite-Birkhoff interpolation and dealt with by solving a single linear system (since the
Hermite data would rule out the trivial solution) or as an eigenproblem, or even a combination of both.

10 Interpolating and Approximating Implicit Surfaces Using Moving Least
Squares Zhujun (Grace) Yao

10.1 Introduction

Polygon models are widely used in computer graphics applications. However, many models have problems such as holes, gaps,
T-junctions, self-intersections, and non-manifold structure. In contrast, other than self-intersection, implicit surface do not
have these problems, and have other advantages such as accuracy, conciseness, affine invariance, arbitrary topology, guaranteed
continuity, and efficient intersections. So it is meaningful to explore how to do the transformation from polygon models to
implicit surfaces.

This project explores the idea of the Moving Least Squares algorithm introduced by Shen [47] to build interpolating and
approximating implicit surfaces from triangle meshes. The user can choose either to interpolate the objects or approximate the
objects.

10.2 Moving Least Squares

The idea of the moving least squares approximation is to solve for every point x a locally weighted least square problem.
The influence of the data points is governed by a weight function w: R? — R, which becomes smaller the further away its
arguments are from each other. Ideally, w vanishes for arguments 2,y € R® with d(x,y) greater than a certain threshold.
Such behavior can be modeled by using a translation-invariant weight function. Thus the standard moving least squares (taken
from [57]) is defined as follows:

Definition 1 For x € R%, the value s 7,x (x) of the moving least squares approximation is given by sy x (x) where

sf,x () = min {Z [f(z:) — p(:ci)]2 w(z,z;):p€ wm(Rd)} . 3)

Use the following notation
b=[bi,...,bm] € RM
B=[b"(z1),...,b"(zn)]" € RV

c=lci,...,cu) € RM
W = diag (w(z,z;) : i € [0, N])

¢ =[f(x1),.... fan)]" € RY
the polynomial p can be defined in terms of basis functions b and coefficients ¢ (which are functions of) as

M

p=> cibs “
j=1

27

This reduces the minimization problem to finding the optimal coefficient vector c. We then to minimize the function derived
from Eq. 3

M 2

R(e) = [f(@:) =Y (e (w:) | wla, i)

i=1 j=1
N
= Z (i — Bic]® w(z, ;)

= (¢ —Bc)"W(¢ — Be)
= (¢"Wog) — 20"WBc + cTBTWBc.

Since R(c) is a quadratic function in ¢, we get a unique solution if BTWB is positive definite. Since W is a diagonal matrix
whose diagonal elements w(x, x;) are always positive, hence BTWB is positive semi-definite. Moreover, c"TBTWBc = 0
means that Bc = 0. Thus the polynomial p = ZJM: 1 ¢jb; vanishes on every z;. Since this set is assumed to be Tm (RY)-
unisolvent, p and hence ¢ must be zero. Since a unique solution exists we can use the necessary condition VR(c) = 0 to
compute it. We find that

VR(c) = -—2B"™W¢ +2B"™WBc =0 < B"WBc=B"W¢ (5)

which gives ¢ = (BTWB) ™ 'BTW ¢ and the problem is solved.
Shen took a non-standard approach to standard moving least squares in 3.5 General Matrix Form of his dissertation. He
changed the matrix form to

w(x, p1) bT(p1) w(x, p1) b1
. : c= - I (0)
w(x,pn)] [bT(PN) w(x,pn)] Lon
which according to our notation above is actually
WBc = W¢o. @
Compared to Eq. 5, Shen eliminate BT directly. Then to guarantee that Eq. 7 is solvable, Shen multiplies by (WB)T:
(WB)"™WBc = (WB)"W¢ ®)
B"W?Bc = B'TW?¢)

Shen states in his dissertation that a constant basis function gives good enough results. When f(x;) is constant, from Eq. 9
the implicit function is

Z»f\le UJ2 (X7 p1)¢z
Eivzl w? (X7 pi)
which is a form of Sheppard’s method [48, 57] (although Sheppard’s method typically does not square the weight function).

It is clear that the weight function is an important element of the method. Shen uses the weight function

f(x) = (10)

1
r2 4 2’

w(r) = 1
which can provide both interpolating and approximating behavior by adjusting the parameter e. When € = 0 the moving least-
squares function will interpolate the sample points (constraint values). When e is non-zero, the weight function is no longer
singular at zero, and the moving least-squares function only approximates the constraint values. The following sections will be

illustrated according to Shen’s derivation of moving least squares.

10.3 True-Normal Constraints

Moving Least-Squares has the same problem seen earlier for interpolatory implicit surfaces (Section 9.1): if we only use sample
points on the surface, then the we obtain the trivial solution of f(x) = 0. Shen looked at two options to solve this problem: the
Pseudo-Normal Constraints of Turk-O’Brien [53]° and what Shen calls True-Normal Constraints. I used Shen’s True-Normal
Constraints in my project [47].

5Turk and O’Brien called these “normal constraints”; Shen refers to them as “pseudo-normal constraints”.

28

The general idea of True-Normal Constraints is as follows. A point constraint associate with a normal vector gives us
information about the whole space instead of just the three points that are the original points and the two offset points. Assume
we have a point constraint at p with a normal 72, Shen used the following shape function .S:

S) = ¢+ x—p)n
¢o + P11 + P22 + P33,

where x = (1, z2, z3).
With this shape function, the value of point « will not only depend on the inside and outside, but also be influenced by

the distance to constraint point (which is on the surface and have constraint values ¢ as zero). The implicit function in Eq. 10

changes to:

SN w3 (x,pi)S(x)

R 5 T

12)

10.4 Integrating Moving Least Squares

The previous method will interpolate and approximate the point cloud constraints well. However, we want to manipulate the
data with triangles, and for each of these triangles we want to constrain the implicit function over its entire surface. If we
were not interested in interpolating the triangles, we could approximate the desired effect with point constraints scattered over
the surface of each polygon. Aside from potentially requiring a large number of points that require expensive computation,
scattered point constraints work reasonably well for approximating surfaces. However, interpolating surfaces and surfaces that
approximate closely will show undesirable bumps and dimples corresponding to the point locations. When we increase the
number of constraint points on the surface, the result becomes better. However, this leads to more expensive computation and
is infeasible. To get the infinite constraint points result, Shen integrated over each triangle. Assuming there are K triangles, let
Qk, k € [1... K], be the domain for each K input triangle. Eq. 10 becomes

Z?:l le w? (x — p:)S(x)dp
Zf:l fszi w?(x — p:)dp .

The shape function in Eq. 12 for triangles can be written as follows with p being regarded as the parametric representation
relative to a triangle Apo, p1, p2:

f(x) = 13)

S(x) =naTz —a"(po + (P1 — Po)s + (P2 — Po)t) (14)
=n"z —n"pg 15)
p = po + (P1 — Po)s + (P2 — Po)t. (16)

From Eq. 15, we know S(x) is constant over one triangle. Then Eq. 17 an be rewritten as
301 8(%) Jo, @ (x — pi)dp
Zf:l fsz,- w?(x — p;)dp

As S(x) is easy to calculate from the normal of triangle and position of po, the main issue is how to integrate the weight
function. With the parameters ¢ and s in Eq. 16, the eight function is

f(x) = a7

o5, 1) = () s
=)
" lx=po+ (P - Po)i + (p2 — po)t||*> + € (20)
T+ Ai(sgi2 + Bi(s)’ 1)
where T
A = (BB '||(pp20—+ ;()fﬁ; ol (22)
Bi(s) = Hpﬁﬁg;:gzﬂzixw — (Ai(s))? 23)
N R @9

29

I\D(S)
®
T
I

Figure 33: The function ;o(s)

So the integral of the weight function is

Num(x) = / w*(x — pi)dp (25)
Q;
= 22Area'/1 /1_S ! dtds (26)
' “Jo Joo 1t+Ai(s)? + Bi(s)]?
1
:C?2Areai/ Lio(s)ds (27
0
1—s 1
Lio(s) = dt 28
0= AT Eer @9
A;i(s)y/Bi(s) \/ Bi(s)(1+A;(s)—s) A;(s) 1+A;(s)—s
TEOTEG T BT A ()92 _arCtanL/Bi(s) Farctan | =020

= 2B,(5)°2 ' 29)

We know of no closed form solution to (27), so we need to compute the integral numerically. Unfortunately, integral of Z;o

(shown in Figure 33) is difficult to compute using the trapezoid rule due to the shape of ;0. In particular, even with a large

number of samples, large errors in the numerical evaluation of the integral can lead to gross artifacts. To compute this integral

accurately, Shen uses integration by substitution as detail in Appendix A; after doing the substitution, using the trapezoid rule
to compute this integral gives good results.

10.5 Numerical Integration

In the two-dimensional integration problem which is required by integrating constraints over triangles, Shen presents a solution
by transforming the integrands with singularities into flat ones using change of coordinates. The integrand is

1—s 1
w6 = [aer T aep G0

To follow his change of coordinates method, we need to approximate ;o (s) by a function that captures its near-singularities and
has a closed form integral. The crucial step to achieve a good approximation is to find the near-singularity point with maximum
function value I;,0. We can choose unconstrained optimization methods to search the maximum point. As it is hard to derive
the derivatives of I;o and to find the step size that suitable to every I;o, Gradient Descent and Newton’s method are not the
best approach to good results in limited steps. However, if we look into the properties of I;o and the geometry aspect of the
integration, a better way can be found to get the maximum point. The key of this method is to find the point within the triangle
that is closest to the given point. According to classic graphics algorithms, such closest point p,, can be represented using

pm = po + (p1 — po)sm + (P2 — Po)tm 3D
where s, and t,,, are two parameters. In this case, the value of
1
[(t+ Ai(s))* + Bi(s)]?
30

w(t,s) = (32)

reaches its maximum at pr, (tm, Sm), and decreases as the point moves away from p,,. According to Eq. 32, ifs moves away
from s, the value of w(¢m, sm) decreases at the rate four times |s — s,,|. At the same time, the change of integration interval
is linear to |s — sm|. When the largest exponent of s increases, the maximum position $mq. Will be closer to s,. The fourth
power is large enough so that s;nae — Sm < le — 6 in most situations. Therefore it is feasible to simply use Syaz = Sm in the
approximation except for the following situations:

e The triangle being integrated is an obtuse triangle, and the obtuse angle is on p1. This is an exception because the integral
interval grows a lot when moving from sy, .

e When s, = 1, w(tm, Sm) is largest but the integral interval is zero. So Smas should be less than s,,, and we cannot use
Smaz = Sm here.

For these cases when sm,q, 1s significantly different from s,,, an unconstrained optimization algorithm has to be employed
to find s;nqes. [implemented and tested three methods: Gradient Descent, Golden Search, and Fibonacci Search methods. A
correct localization of sy, that fulfills the condition |$m — Smaz| < le — 5 will lead to a good approximation that captures the
near-singularities of ;o and has a closed-form integral.

From MATLAB experiments, Golden Search is found faster and more accurate than Gradient Descent and Fibonacci Search
in most of the cases. However, there is no guarantee that any of these three methods will work well in all cases.

10.6 Fast Evaluation

It is infeasible to do integration on every triangle for each evaluation point. Approximation can be used when the distance
between triangles and evaluation points are faraway. KD-Trees are a popular method to do fast evaluation. I implemented this
but did not gain a significant speed-up. This is because building KD-Tree costs a lot of time. Since my test data was small, I
used a simpler way to get a speed-up. As I need to calculate the nearest point in the numerical integration, it is easy to get the
distance from the evaluation point to each triangle. I can use the distance information directly to classify the triangles as the
evaluation point ON, SINGULAR, NEAR, or FAR:

o If the point of evaluation is less than ON= 5¢~" from the triangle, I return zero to the implicit function;

o If the point of evaluation farther than ON but closer than SINGULAR=0.05, I use Shen’s method as described in Ap-
pendix A.

e If the point of evaluation farther than SINGULAR but closer than NEAR=0.5, I;o(s) will also have singularity issues even
though it is not as serious. To get a better result in less time, we can use the information of s,, calculated before: Make
Sm as the start point of the Newton-Cotes trapezoidal rule with irregularly spaced samples to capture the near-singularity
points.

e If the point of evaluation is greater than FAR away from the triangle, then I use the centre of the triangle to approximate
the contribution of the whole triangle’s weight function, as we can see in Eq. 35:

/ w?(x — pi)dp ~ / w?(x — pc)dp 33)
=w'(x=pc) [dp (34)

Q5
= > (x — pc)Area; (35)

10.7 Approximation, Interpolation, and Hole Filling

When the weighting function ¢ = 0, moving least squares exactly interpolates the triangle mesh. If the input data has gaps
or holes, this method would accomplish hole filling. However, this only resolves small holes. The result for small holes can
be seen in Figure 34. When the hole size grows larger the protrusion at the missing face position grows larger and eventually
extends to infinity; see Figure 35.

For € # 0, the value of weighting function is no longer singular at zero, and the moving least-squares function approximates
the constraint values. Instead of dealing with the near-singular problem, we can directly use the trapezoid approximation method
to compute the integral. Some results are shown in Figure 36.

The approximation method can also fill holes and give a better result than interpolation. But if the interpolation fill holes
failed, the approximation will also failed, as shown in Figure 37.

10.8 Rendering Time

The rendering time for different polygon meshes are shown in Table 1.

31

(b)

(d)

Figure 34: Interpolate Surface with Different Sizes of Face Missing.

Figure 35: Large holes will not be filled correctly.

10.9 Reference Implicit Surface Rendering Results

The three surfaces in Figure 38 are the Implicit Surface directly rendered from their implicit function. The rendered cube has
edges of 1, which is the same as the cube size I generated in previous sections. The sphere has a radius of 1. These numbers

Figure 37: Approximation for Face Missing Meshes

32

Table 1: Rendering Time for Different Meshes

Polys.In | € Tri.Out Time(s) € Tri.Out Time(s) € Tri.Out Time(s)
Cube 6 0 18720 2 0.02 18720 7 0.2 26480 11
Icosahedron 20 0 137164 18 0.02 137564 103 0.2 146468 115
LetterA 31 0 120524 39 0.02 121456 225 0.2 136864 287
Mushroom 448 0 24360 58 0.02 24856 390 0.2 36812 577
Sphere 512 0 44520 84 0.02 44644 826 0.2 52272 953
0.06 seconds 0.26 seconds 0.01 seconds
18720 triangles 45092 triangles 6972 triangles
(a) (b) ()

Figure 38: Implicit surface directly rendered from implicit function

should serve as a base-line for the time and triangle numbers I got for my implementation of Shen’s method.

11 Turk-O’Brien—Animation Stephen Mann

Turk and O’Brien suggest using their variational minimization method (described in Section 5.2) to create animations of mor-
phings between two 2D curves or between two 3D surfaces [52]. For their curve method, each curve is described by a set of
points on the curve. Turk and O’Brien embed the curves in a space of one higher dimension. Calling the extra dimension ¢, the
points for curve C; is embedded at ¢ = ¢; for some set of increasing values ¢;. A single surface is then fit to the set of all the
points in 3D. To construct an animation, you extract the level set of the 2D curve at a sequence of ¢ values.

To test this method, we created some animations using Koch snowflakes as the curves. Turk and O’Brien give no suggestions
on how far apart to space the ¢; values, so we tried several settings. Figure 39 shows our results. Several things can be observed
from the figure. First, as seen in the top row, if the curves are spaced too far apart, then the variational minimization creates a
surface that (in effect) smooths out the intermediate curves (as seen in the left column of Figure 39).

On the other hand, if we place the curves too close together, then neighboring curves have too strong an influence on one
another. The right column of Figure 39 illustrates this; compare the bottom curve in this row to the bottom curve in the top row
of the figure. In this example, the middle row has the best results, but even here, the top curves have noticeable influence on the
bottom rows. Note that in these examples that the large difference in the density of points between adjacent levels likely leads
to the strong influence of the denser curve to the less dense one. Regardless, each curve of data to interpolate will be influence
by the data in all the curves to be interpolated, since their method is a global method.

As an alternative, we note that if we construct two implicit curves Co(P) and C1 (P) using the Turk-O’Brien curve method,
then we can affinely blend the implicit functions to obtain a time varying implicit surface: C(¢, P) = (1 —t)Co(P) 4+ tC1(P).
A similar approach also works for surfaces. Figure 40 shows a comparison of this approach to that of Turk-O’Brien. In this
figure, the Turk-O’Brien figures correspond to the slices in Figure 39, top row. Note that the normal constraints were placed a
distance of 0.01 from the corresponding point to be interpolated.

The linear blend has several advantages over the Turk-O’Brien method. First, with the affine blend method, the curves/surfaces
constructed appear at the initial/final steps of the blend (which is not true of the Turk-O’Brien method); second, the method is
computationally less expensive, since the combined cost of inverting an (n + 4) X (n + 4) matrix and an (m + 4) x (m + 4)
matrix is significantly less than that of inverting an (n 4+ m + 4) X (n + m + 4) matrix. On the other hand, the affine blend
approach can make no claims about the variation minimization at the intermediate values of the interpolation, and if a sequence
of more than two curves/surfaces are blended, then there will be a discontinuities in the changing deformation at locations of
the curves/surfaces being blended.

33

Figure 39: Slices through Turk-O’Brien animations of the Koch snowflake. Left column: spacing of 1; center column: spacing
of 0.25; right column: spacing of 0.1. Top row: going from K to K. Bottom row: going from Ky to K; to Ks.

Affine

Figure 40: Comparison of affine blend to Turk-O’Brien blend. Top row: affine blend. Bottom three rows: Turk-O’Brien, with
left image extra coordinate at ¢ = 0 and right image extra coordinate at ¢ value appearing in figure. In all images, columns
correspond uniformly space ¢ values.

34

12 Summary

We saw four types of implicit surfaces: Algebraic surfaces; A-patches; CSG-style; and Data fitting. Algebraic surfaces were
mathematically the cleanest, but seemed the hardest to model with. A-patch and CSG-style implicits were similar to parametric
patches and CSG modeling; while there were some advantages to using the implicit form, the modeling effort of the implicit
was similar to the modeling effort of the non-implicit form, with somewhat similar results. The data fitting implicits gave the
most elaborate models, although this was because you can fit the implicit to scanned data, and scanned real world objects are
typically more elaborate than those modeled from scratch.

The choice among the four methods likely depends on your modeling and other needs, although it seems unlikely that one
would use algebraics beyond possibly simple algebraics as leaf nodes in a CSG style modeler. While there were both triangle
and rectangular surface patches in A-patch style, we did not study the rectangular style patches to decide if one is preferred to
the others. Still, the A-patch style surfaces seem like a less suitable choice than the CSG-style or data fitting implicits.

Of the CSG-style methods, the Blob-tree seems the most developed. Whether it is better to use the Blob-tree implicit form
of modeling over more standard CSG modeling often found in CAD packages is a harder question, mainly because there are
more users of standard CAD packages than of the Blob-tree. Possibly this suggests that the standard CAD packages are better
suited for CAD than the Blob-tree is, but we are not aware of any direct comparisons.

Of the data fitting methods, the two we studied most closely were the one of Turk-O’Brien and the one of Shen (a more
detailed study of the two appears in a companion tech report [36]). Of the two, the Turk-O’Brien method gave better shaped
surfaces with less effort than Shen’s methods, although Shen is able to interpolate polygons while Turk-O’Brien are limited to
interpolating points. Regardless, more recent methods are likely an improvement over both methods.

References

[1] Lionel Alberti, Georges Comte, and Bernard Mourrain. Meshing implicit algebraic surfaces: the smooth case. In Schu-
maker, editor, Mathematical Methods for CAGD: Tromso 2004, pages 11-26. Nashboro, 2005.

[2] Chandrajit L. Bajaj, Jindon Chen, and Guoliang Xu. Modeling with cubic A-patches. ACM Trans. Graph., 14(2):103-133,
April 1995.

[3] Aurlien Barbier, Eric Galin, and Samir Akkouche. Complex skeletal implicit surfaces with levels of detail. In Proceedings
of WSCG, page 2004, 2004.

[4] Loic Barthe, Brian Wyvill, and Erwin de Groot. Controllable binary CSG operators for “soft objects”. International
Journal of Shape Modeling, 10(2):135-154, 2004.

[5] R. K. Beatson and W. A. Light. Fast evaluation of radial basis functions: methods for two-dimensional polyharmonic
splines. IMA Journal of Numerical Analysis, 17(3):343-372, 1997.

[6] R.K.Beatson and G. N. Newsam. Fast evaluation of radial basis functions. Computational Mathematics and Applications,
24(12):7-20, 1992.

[7] James F. Blinn. A generalization of algebraic surface drawing. ACM Trans. Graph., 1(3):235-256, July 1982.
[8] J. Bloomenthal. Polygonalization of implicit surfaces. Computer Aided Geometric Design, 5:341-355, 1988.

[9] E. V. Brazil, I. Macédo, M. C. Sousa, L. Velho, and L. H. de Figueiredo. Sketching variational hermite-rbf implicits.
Eurographics Symposium on Sketch-Based Interfaces and Modeling, 2010.

[10] E. V. Brazil, I. Macédo, M. C. Sousa, L. Velho, and L. H. de Figueiredo. Shape and tone depiction for implicit surfaces.
Computers & Graphics, 35:43-53, 2011.

[11] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3d objects with radial basis functions. In Proceedings of ACM SIGGRAPH, pages 67-76, 2001.

[12] D. T. Chen, B. S. Morse, B. C. Lowekamp, and T. S. Yoo. Hierarchically partitioned implicit surfaces for interpolating
large point set models. In GMP ’06, pages 553-562, 2006.

[13] Evgeni V. Chernyaev. Marching cubes 33: Construction of topologically correct isosurfaces. Technical Report CN 95-17,
CERN, 1995.

[14] Erwin de Groot, Brian Wyvill, and Huub van de Wetering. Locally restricted blending of Blobtrees. Computers &
Graphics, 33(6):690-697, 2009.

[15] Daouda Niang Diatta, Bernard Mourrain, and Olivier Ruatta. On the isotopic meshing of an algebraic implicit surface. J.
Symb. Comput., 47(8):903-925, August 2012.

[16] William Donnelly. Per-pixel displacement mapping with distance functions. In Sweeney Pharr, Fernando, editor, GPU
Gems 2, chapter 8, pages 123—136. Addison-Wesley, 2005.

35

(17]
[18]
(19]
(20]

(21]

(22]
(23]

[24]
[25]

[26]
(27]

(28]

[29]

(30]

(31]

(32]
(33]

(34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

R. Franke. Scattered data interpolation: tests of some methods. Mathematics of Computation, 38(157):181-200, 1982.
B. Fry and C. Reas. Processing. http://processing.org/.
A. George and J. W. H. Liu. Computer solution of large sparse positive definite systems. Prentice-Hall, NJ, 1981.

Abel Gomes, Irina Voiculescu, Joaquim Jorge, Bryan Wyvill, and Callum Galbraith. Implicit Curves and Surfaces:
Mathematics, Data Structures and Algorithms. Springer Verlag, 2009.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulation. Journal of Computational Physics, 73:325-348,
1987.

Andrew Guy and Brian Wyvill. Controlled blending for implicit surfaces. In Implicit Surfaces ’95, April 1995.

John C. Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces. The Visual Computer,
12:527-545, 1996.

Paul S. Heckbert, editor. Graphics Gems IV. Academic Press Professional, Inc., San Diego, CA, USA, 1994.

Xiaogang Jin, Hanqiu Sun, and Qunsheng Peng. Subdivision interpolating implicit surfaces. Computers and Graphics,
27:763-772, 2003.

X. Jina, H. Sunb, and Q. Peng. Subdivision interpolating implicit surfaces. Computers & Graphics, 27:763-772, 2003.

M.W. Jones and M. Chen. A new approach to the construction of surfaces from contour data. In Eurographics 94
Conference Proceedings, volume 13, pages 75-84, 1994.

N. Kojekine, I. Hagiwara, and V. Savchenko. Software tools using CSRBFs for processing scattered data. Computers &
Graphics, 27(2):311-319, 2003.

F. Levet, X. Granier, and C. Schlick. Fast sampling of implicit surfaces by particle systems. In Proceedings of the IEEE
International Conference on Shape Modeling and Applications, SMI, pages 39-44, 2006.

Q. Li, D. Wills, R. Phillips, W. J. Viant, J. G. Griffiths, and J. Ward. Implicit fitting using radial basis functions with
ellipsoid constraint. Computer Graphics Forum, 23(1):55-69, 2004.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. SIG-
GRAPH Comput. Graph., 21(4):163-169, August 1987.

Curtis Luk. Tessellating algebraic curves and surfaces using A-patches. Master’s thesis, University of Waterloo, 2008.

I. Macédo, J. P. Gois, and L. Velho. Hermite interpolation of implicit surfaces with radial basis functions. In Proceedings
of XXII Brazilian symposium on computer graphics and image processing (SIBGRAPI ’09), pages 1-8, 2009.

I. Macédo, J. P. Gois, and L. Velho. Hermite radial basis functions implicits. Computer Graphics Forum, 30(1):27-42,
2011.

Stephen Mann. Using A-patches to tessellate algebraic curves and surfaces. Technical Report CS-2009-21, University of
Waterloo, 2009.

Stephen Mann. A study of two implicit data interpolation schemes. Technical Report CS-2013-09, Cheriton School of
Computer Science, University of Waterloo, September 2013.

Sergey V. Matveyev. Approximation of isosurface in the marching cube: ambiguity problem. In Proceedings of the
conference on Visualization *94, VIS *94, pages 288-292, Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

B. S. Morse, T. S. Yoo, P. Rheingans, D. T. Chen, and K. R. Subramanian. Interpolating implicit surfaces from scattered
surface data using compactly supported radial basis functions. In Proceedings of Shape Modeling International, pages
89-98, 2001.

Gregory M. Nielson and Bernd Hamann. The asymptotic decider: resolving the ambiguity in marching cubes. In Proceed-
ings of the 2nd conference on Visualization *91, VIS 91, pages 83-91, Los Alamitos, CA, USA, 1991. IEEE Computer
Society Press.

Paul Ning and Jules Bloomenthal. An evaluation of implicit surface tilers. IEEE Comput. Graph. Appl., 13(6):33-41,
November 1993.

Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel. Multi-level partition of unity implicits. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH 2003), 22(3):463-470, 2003.

Y. Ohtake, A. Belyaev, and H.-P Seidel. Multi-scale approach to 3d scattered data interpolation with compactly supported
basis functions. In Proceedings of Shape Modeling International, pages 153-161, 2003.

R. Pan, X. Meng, and T. Whangbo. Hermite variational implicit surface reconstruction. Science in China Series F:
Information Sciences, 52(2):308-315, 2009.

36

[44]
[45]
[46]
[47]
(48]
[49]
(501
[51]

[52]

(53]
[54]

[55]

[56]
(571
(58]
[59]

[60]
[61]

A

P. Reuter, C. Schlick, and I. Tobor. Reconstructing multi-scale variational partition of unity implicit surfaces with at-
tributes. Graphical Models, 68(1):25-41, 2006.

V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii. Function representation of solids reconstructed from
scattered surface points and contours. Computer Graphics Forum, 14(4):181-188, 1995.

Vladimir Savchenko, Er A. Pasko, Oleg G. Okuneyv, and Tosiyasu L. Kunii. Function representation of solids reconstructed
from scattered surface points and contours. Computer Graphics Forum, 14:181-188, 1995.

Chen Shen. Building Interpolating and Approximating Implicit Surfaces Using Moving Least Squares. PhD thesis,
University of California, Berkeley, 2007. UCB/EECS-2007-14.

D. Sheppard. A two dimension interpolation function for irregularly spaced data. In Proceedings of ACM National
conference, pages 517-524. ACM, 1968.

Masamichi Sugihara, Brian Wyvill, and Ryan Schmidt. WarpCurves: A tool for explicit manipulation of implicit surfaces.
Computers & Graphics, 34(3):282-291, 2010. Shape Modeling International (SMI) 2010.

R. Szeliski and D. Tonnesen. Surface modeling with oriented particle systems. Technical report, Digital Equipment
Corporation, 1991. CRL-91-14.

U. Tiede, K. Heinz, M. Bomans, A. Pommert, M. Riemer, and G. Wiebecke. Investigation of medical 3-d-rendering
algorithms. IEEE Computer Graphics and Applications, pages 41-53, 1990.

Greg Turk and James F. O’Brien. Shape transformation using variational implicit functions. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, SIGGRAPH 99, pages 335-342, New York, NY,
USA, 1999. ACM Press/Addison-Wesley Publishing Co.

Greg Turk and James F. O’Brien. Modelling with implicit surfaces that interpolate. ACM Trans. Graph., 21(4):855-873,
2002.

L. Velho, J. de Miranda Gomes, and D. Terzopoulos. Implicit Manifolds, Triangulations, and Dynamics. Journal of
Neural, Parallel, and Scientific Computation, 5(1-2):103-120, 1997. Special issue on CAGD.

Z.L. Wang, J.C.M. Teo, C.K. Chui, S.H. Ong, C.H. Yan, S.C. Wang, H.K. Wong, and S.H. Teoh. Computational biome-
chanical modeling of the lumbar spine using marching-cubes surface smoothened finite element voxel meshing. Computer
Methods and Programs in Biomedicine, 80(1):25-35, 2005.

H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree.
Advances in Computational Mathematics, 4(1):389-396, 1995.

Holger Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics.
Cambridge University Press, 2005.

Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit surfaces. In SIGGRAPH, pages
269-2717, 1994.

Brian Wyvill, Eric Galin, and Andrew Guy. Extending the CSG tree. Warping, blending and boolean operations in an
implicit surface modeling system. Computer Graphics Forum, 18(2):149-158, June 1999.

Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Animating soft objects. The Visual Computer, 2(4):235-242, 1986.

Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft objects. The Visual Computer, 2(4):227-234,
1986.

Shen’s Method: Transforming from singularities to flat ones

From Eq.(11), the integral is singular when e = 0 and the point of evaluation is on the surface, and near singular when the point
of evaluation is near the surface. So the trapezoid rule (or trapezium rule) for approximating the definite integral has significant
error with a limited number of steps. Even though we can decrease the error by increasing the step (in Figure 41), the resulting
surface may have bumps.

To reduce this error, Shen used integration by substituion. When we map the function we want to integrate onto a different
space and use a compensating multiplicative factor, we want to make sure that the new function satisfies two properties:

e Accurate: The area under the new function is the same as the area under the original, badly behaved function.

e Well-behaved: the new function should be roughly constant over the domain, and thus can be integrated much more

accurately than a function with a singularity.

37

\\\\\m«\m
L
Nldtidiiisssv..

(b)

(d
Figure 41: The comparison of 20, 50, 100, and 150 iterations

38

What we need to to calculate is L
/ [Z‘()(S)ds. (36)
0
To achieve this, we define another function in a different parameter space,
s=3s(j), J € [jo,j1] (37

where jo = s~ !(0) and j; = s~ !(1). Then Eq.(36) can be written as

1 sTH(1)
[e = [Lo(s(i)ast) (38)

0 s—1(0)

s7h) ,

— / Lio((7))s' (j)dj- (39)

s~1(0)

The part we want to be flat is

h(j) = Lio(s(j))s' (j) ~ 1. (40)

With this flat function Eq.(40), we want to choose s(j) so that the h(j) would satisfy the second property (to be well-behaved

and easy to integrate):
. 1
s(J)~ = (41)
Tio(s(4))
Unfortunately, I;0(s) does not have an analytical solution. To get s'(j), we can to approximate I;o(s) by a function that can
capture the near-singularities and has a closed-form integral. The curve of I;o(s) is plotted in Figure 33.

As we know the shape of I;o(s), we can use the following function to approximate it:

1

I_apprOX(S) _
i 282 + 15+ ¢o

(42)
To fit I;)"* (s) to I;o, which will capture the near-singularity part, the essential point is to find the maximum of I as accurately
as possible. It is not easy to get the maximum point directly; see Section 10.5 for my approach to computing it. With this
maximum point and two near points on the left and right called s,., s—, s+ we can solve for the coefficients co, c1, c2 of (42):

1

2 s- 1] [eo 11-0(15,)

Smoosmo 1| |e] = Lio(sm) (43)
83_ s+ 1 €2 Lio (IS+>

Figure 42(b) shows the approximate function, compared to the accurate one plotted in Figure 42(a). The comparasion of both
are in Figure 42(d)
T3P (s) will make s(j) a closed-form integral, and we can get s(j) and s’ easily as follows,

—c1 + y/—¢c3 + 4coca tan [%s/—c% + 460(22]

N — 44
s(4) 20 (44)
o sec? [%j\/—cf + 40002] (=c? + 4coca)
s(j) = ics (45)

Then h(j) is given by Eq.(40); an example appears in Figure 42(d). As we can see in Figure 42(d), the function we are going
to integrate is well-behaved and we can use 15 steps of the trapezoid rule to get a much better result than applying the trapazoid
rule to compute (36) directly. We can see the result of 200 steps of naive trapezoid approximation and the 15 steps of the flatten
transforming method in Figure 43. As we can see in the results, the rendering time decreases significantly and the uneven
problem in Figure 43(a) is also solved in Figure 43(b).

To summarize, the process for computing (36) is as follows:

1. Use optimization to find the maximum of [;o

2. Approximate I;o with I;5"
3. Compute s and s" using (44) and (45)
4

. Use s and s’ to compute (36) using (39).

39

14 14
12 12
10F 10]
8 8|
6 6|
4 4
2 2|
0 ot 02 03 04 05 06 07 08 09 1 0 ot 02 03 04 05 06 07 08 09 1
s s
x10
16
1ar of
I
1 L
12f :| 8
!
il ’
10 i
i o
N
8 II =
il
b
3 i o
i
b 3
ar !‘
I A
g
2F Y
I 1
)
5o
VA
L L 2 Ny L L L L i L L L L L L L
o of 02 038 04 05 06 07 08 09 1 % ER] 05 0 05 1 15 2
s i

x10*

Figure 42: The transform procedure: (a) is the plot of I;o(s), (b) is the approximate I;0" " (s), (c) is a comparison of (a) and
(b), (d) is the flatten function h.

(a) (b)

Figure 43: Comparison of 200 steps (a) of naive trapezoid approximation (120 seconds) and (b) 15 steps of the flatten trans-
forming method (48 seconds). The number triangles after marching cubes is 18720.

40

