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Abstract

Model checking is a powerful technique for debugging a system de-
scription because it generates a counterexample showing a path of the
system that fails a property. Instead of the traditional cycle of find bug –
fix bug – re-run model checker, often we would like to study multiple bugs
before fixing the model to help isolate the cause of the error and to im-
prove the user’s experience by avoiding iterations of this cycle. However,
the set of all counterexamples is often too large to generate or compre-
hend, and several counterexamples may be caused by the same error. We
present a novel method of using a model checker to generate a set of di-
verse counterexamples to an invariant of an extended finite state machine
(EFSM) model. The goal is that each diverse counterexample reveals
distinct information about a bug in the model. We use the modelling ab-
stractions of control states and transitions of an EFSM to define whether
two counterexamples are equivalent or not. Our method reduces the set of
counterexamples on-the-fly and can be used with any LTL model checker.

1 Introduction

Model checking is a powerful technique for finding bugs (errors, inconsistencies
and contradictions) in a model because it searches exhaustively all behaviours
of the system and generates a counterexample showing a path of the system
that fails a property [9]. We are interested in verifying an invariant, which is
a property that must be true at all times during the execution of the model.
The traditional use of model checking is the cycle consisting of find bug - fix
bug - re-run model checker, until no more counterexamples are found. However,
it can be useful to see multiple counterexamples prior to fixing the model to
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help isolate the cause of the error [4, 10, 14, 7], as one counterexample by itself
may not contain enough information to fix correctly the bug [10]. Additionally,
seeing multiple counterexamples at once rather than the user iterating this cycle
can improve the user’s experience of model checking and ultimately, the amount
of time it takes to create a correct model, in a similar way to having a compiler
return multiple errors in one pass [4, 10, 7].

If we use a tool that is able to generate multiple counterexamples (e.g.,
SPIN [17]), we find that the paths produced are often slight data variations of
each other. For example, if a counterexample follows a path that concludes at
a state where x = 5, seeing another counterexample following a path through
the same states but resulting in x = 6 could just be a data variation from the
designer’s perspective and might not show a distinct bug. The complete set
of counterexample paths is often too large to sift through to find those that
illustrate distinct bugs in the model.

Our goal is to create a method that produces for the user a set of di-
verse counterexamples, which each reveal information about distinct bugs in the
model. There is no single definition of what is a distinct bug in a model, and the
error is not always in the step immediately before an invariant fails. For the large
family of languages based on extended finite state machine (EFSM) [8] mod-
els (e.g., Statecharts [15], Requirements State Machine Language (RSML) [25],
MATLAB’s Stateflow [1], Specification and Description Language (SDL) [2])),
we have found that the modelling abstractions of explicit control states and
transitions provide a useful way of differentiating diverse counterexamples and
removing the non-essential details of the data variations of a path that fails an
invariant. These abstractions match the internal conceptual models that people
use to understand and represent complex systems [26].

Detecting multiple counterexamples requires either (1) a change to the model
checking engine [17, 10, 19, 7] or (2) the creation of an automatic method that
iteratively changes either (a) the model [4] or (b) the property, until a sufficient
set of counterexamples is generated. Some model checkers, such as SPIN [17],
generate all counterexamples by having the model checking algorithm continue
to search the state space after finding a counterexample until no more counterex-
amples exist. Yet, most of these counterexamples are slight data variations of
each other. Moreover, it can take a long time to generate all counterexamples
and the result is often too large to comprehend, providing little help in isolating
the actual bugs.

Ball et al. [4] follow the approach of modifying the model: when a counterex-
ample is generated, their method identifies a transition in the counterexample
that does not appear in the set of correct paths computed by their method so
far. Then, the identified transition is removed from the model and their method
continues, searching for another counterexample. By changing the model, they
eliminate the possibility of finding a different path that includes the removed
transition and, therefore, the set of counterexamples may not include a rep-
resentative of all distinct paths that fail the invariant. If the bug is actually
caused by a combination of factors along the path, an incorrect resolution may
be chosen, thus, leaving the model still susceptible to failures.
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We present a novel solution to the problem of generating multiple coun-
terexamples based on the third possible approach: automatically modifying the
property. In contrast to modifying the model checking engine or the model,
our method can work with any linear temporal logic (LTL) [27] model checker
(explicit or symbolic) and it produces representatives of the complete set of
counterexamples to an invariant because the model is never changed during the
process.

Our first contribution is four definitions of equivalence among counterexam-
ples. Each definition (or level) groups the complete set of counterexamples into
equivalence classes based on their properties in the EFSM, making paths that
are just data variations of each other equivalent. Our definitions of equivalence
were chosen carefully after experimentation with many examples, with the goal
that one representative from each equivalence class forms a useful set of distinct
counterexamples for the user to review and find all the bugs in the model. For
example, one level groups together all counterexamples that follow the same se-
quence of transitions in the EFSM, but if a modeller wants less detail, another
level groups together all counterexamples that end at the same control state.
We describe how each level can be useful to isolate errors at different times
during the analysis process.

Our second contribution is to show how these definitions can be used to gen-
erate one counterexample from each equivalence class on-the-fly during model
checking iterations to produce a set of distinct counterexamples. It is fairly
straightforward to create a property that disallows a previously output coun-
terexample (disjunct the invariant with a property describing the counterexam-
ple path). However, an approach that produces all counterexamples and groups
them afterwards (e.g., [10]), is extremely time-consuming. Instead, we add an
LTL property that describes all paths in the equivalence class, thus disallow-
ing the generation of any counterexamples that are equivalent to those that
we have already seen. This “on-the-fly” nature of our method dramatically re-
duces the time it takes to produce a useful set of counterexamples as only one
counterexample per equivalence class is generated.

We demonstrate the use of our method on several case studies of hierarchical
EFSMs, including an air conditioning system, an audio player, as well as, four
automotive feature design models created in Stateflow [21], which are represen-
tative of industrial models. These EFSM case studies show both the usefulness
of our definitions of what are equivalent counterexamples and the reduction we
achieve in the amount of information provided to the user. In future work,
we plan to tackle the problem of generalizing our definitions and methods for
concurrent state machines.

2 Motivating Example

Consider the EFSM model of a simple air conditioning system (AC) in Figure 1.
The input variable e can take on the values enter and exit, while the input
variable t (temperature) and controlled variable pt (previous temperature) range
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OFF IDLE ON

(e=enter∧ t ≤ 24) / 
1
:    t pt=t  

4
:    t (t ≥ 24) / pt=t

 
2
:    t (e=exit) / pt=t  

5
:    t (t ≤ 26) /pt=t

 
6
:    t (e=exit) / pt=t

(e=enter ∧ t > 24) / 
3
:    t pt=t

Figure 1: EFSM of an air conditioning system (AC)

over the values 0..40. Checking the invariant that model AC is in the control
state ON if and only if the previous temperature is greater than 24, the model
checker first generates the counterexample

c1: 〈(OFF, –, e=enter, t=22, pt=0),
(IDLE, t1, e=enter, t=24, pt=22),
(ON, t4, e=exit, t=26, pt=24)〉

where the transition taken is part of the counterexample information. The
bug is that the model reaches ON when the previous temperature is 24. After
examining the model, we observe that there is an error on t4: the condition
(t≥24) should be (t>24). However, if we consider all counterexamples prior to
correcting this one, the model checker could generate another counterexample
for the same property, such as,

c2: 〈(OFF, –, e=enter, t=24, pt=0),
(IDLE, t1, e=enter, t=24, pt=24),
(ON, t4, e=enter, t=22, pt=24)〉

and yet another counterexample is

c3: 〈(OFF, –, e=enter, t=20, pt=0),
(IDLE, t1, e=enter, t=24, pt=20),
(ON, t4, e=enter, t=25, pt=24)〉.

From the modeller’s perspective, counterexamples c1, c2 and c3 are all instances
of the EFSM path 〈OFF-t1-IDLE-t4-ON〉 and identify the same bug: an incorrect
transition guard on t4. These variations would not be eliminated by cone of in-
fluence reduction [24] because the verification of the property depends on the
values of both t and pt. However, the data variations found in these counterex-
amples do not help to find another bug in the model. We would much rather
find a path that identifies another bug in the model, such as counterexample

c4: 〈(OFF, –, e=enter, t=23, pt=0),
(IDLE, t1, e=enter, t=25, pt=23),
(ON, t4, e=enter, t=26, pt=25),
(IDLE, t5, e=enter, t=26, pt=26)〉,

which is an instance of the EFSM path 〈OFF-t1-IDLE-t4-ON-t5-IDLE〉. This
counterexample, where the model reaches IDLE when the previous temperature
is 26, illustrates a different bug in the model: the condition (t≤26) on transition
t5 should be (t≤24). The approach by Ball et al. would not produce counterex-
ample c4 because transition t4 would have been eliminated from the model after
identifying either counterexample c1, c2 or c3. Section 4 will show concretely
the reduction that our method achieves for a variant of model AC in Figure 1.
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3 Background: EFSMs

An extended finite state machine (EFSM) is a model with a finite set of con-
trol states and labelled transitions, extended with variables [8]. These variables
can be used in transition triggers or as part of the actions of the transitions.
We explain our method using a generic flat EFSM as a common basis amongst
the many EFSM-based modelling languages. Our method generalizes to models
with hierarchical control states easily in Section 6. Graphically, control states
are represented as nodes with transitions as edges, and the initial control states
are designated with edges that have no source control state, as shown in Fig-
ure 2.

A B

t
1
: (p ∧ q) / r=1

Figure 2: Example of simple EFSM

The syntax of an EFSM consists of a tuple

〈CS, IV, OV, T, InitCS, FinalCS, InitV 〉

where
• CS is a finite set of control states.
• IV is a set of input variables, OV is a set of output (controlled) variables,
and the sets IV and OV are disjoint. We use V = IV ∪ OV. All variables
are of finite type.

• T is a finite set of progressing transitions. Each transition has a name, a
source and destination control state, and a label of the form (c)/a, where
(c) is an optional condition on variables in V called a guard, and a is an
optional set of assignments to variables in OV called actions.

• InitCS is a set of initial control states (InitCS ⊆ CS ).
• FinalCS is a set of control states that are not the source of any progressing
transition (FinalCS ⊆ CS ).

• InitV is a set of sets of initial values for variables. Each set contains one
pair for each variable, and each pair assigns a value to the variable from the
variable’s type.

Events, which are often present in EFSMs, can be modelled as Boolean variables
with values that do not persist.

The semantics of an EFSM is a set of infinite paths. A path of an EFSM
is a sequence of configurations. Each configuration consists of a control state,
a set of assignments from variables to values in each variable’s type, and the
name of the transition taken to reach the control state in the configuration. A
transition moves the model from one configuration to the next along a path. A
transition is taken when the model is in a configuration consisting of the source
control state of the transition and the values of the variables satisfy the guard
of the transition. For example, for the model in Figure 2, transition t1 is taken
when the model is in source control state A and the input variables p and q

both are true. When a transition is taken, the model moves to a configuration
containing the destination state and the effects of executing the assignments

5



to the variables. Any output variable that is not assigned a value keeps its
previous value. Input variables can change arbitrarily between configurations.
Continuing the example, the execution of transition t1 causes the model to move
to control state B, changing the value of the controlled variable r to 1.

Semantically, every control state implicitly has a single self-looping transi-
tion, which is taken when no guard on any other transition exiting the state
is satisfied. We call these transitions non-progressing, and use the transition
name tn for them. There are no actions associated with non-progressing transi-
tions so the values of the output variables do not change, but input changes may
occur. A self-looping transition in T with no guard or actions implicitly has the
guard true, unlike a non-progressing transition, whose guard is implicitly the
conjunction of the negation of the guards of any other transitions exiting the
state. Non-progressing transitions ensure that at every configuration there is a
next configuration.

We can describe the meaning of an EFSM in a Kripke structure (KS) for
model checking. In a KS, the control states of an EFSM are typically modelled
as a variable with the control state names as values. The other EFSM variables
are modelled as KS variables of appropriate types. A KS representing an EFSM
will have many KS states with the same control state and many KS transitions
related to one transition in the EFSM. The control states of the EFSM are
abstractions created by the modeller to group together a set of past behaviours
that have the same set of possible future behaviours. The KS representation
of an EFSM will include KS transitions for non-progressing EFSM transitions
(tn).

4 Levels of Counterexample Equivalence Classes

In this section, we define our levels of equivalence classes for the counterexamples
of an EFSM. The intuition for our grouping into equivalence classes is that
counterexamples that follow the same path in the EFSM with different data
values should be considered equivalent because they do not add to the modeller’s
understanding of the error. For each equivalence class, the user sees an actual
counterexample including the sequence of data values that lead to the error as
a representative of the class.

A counterexample is an infinite path of the model that contains a config-
uration that fails the invariant, and its representation returned by the model
checker is a finite sequence of configurations (part of which may represent a
cycle at the end of the path). We call the set of all counterexamples CE . The
first step in our definitions is to create a representation of CE, which we call
FIPaths (failed invariant paths)1, which takes care of obvious reductions in
how we view a counterexample. Some model checkers automatically do some of

1Because the set of configurations is finite (given that the number of states and transitions
is finite plus the domains from which the variables can take values are also finite), and the
elements of FIPaths are finite sequences of non-repeating configurations (paths contain no
configuration loops), the set FIPaths must be finite.
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these reductions before presenting the counterexample to the user, but for gen-
erality, we start from a counterexample as an infinite path with no reductions.
The set FIPaths is defined as:

FIPaths = {q | ∃c ∈ CE •
q = reduce vals(reduce init config

(reduce config loops(trunc(progress(c))))}
where:
• progress(c): Removes all non-progressing transitions from c to avoid stut-
tering, except for a constant loop of non-progressing transitions that might
appear at the end of the path if the model reaches a final control state2. The
inputs in the last configuration of a sequence of non-progressing transitions
are the only ones that might cause the error and these are copied back to
the configuration with the progressing transition just before the sequence
begins.

• trunc(c): Creates the subpath of c that ends in the first configuration that
fails the invariant as this finite prefix can identify the cause of violation of
the invariant.

• reduce config loops(c): Removes copies of a configuration loop from c. A
configuration loop is one that reaches the same configuration more than
once in c. These loops are unnecessary because the path without these loops
has all the steps that cause the error.

• reduce init config(c): Removes from c a loop that starts at an initial config-
uration and reaches another initial configuration. An initial configuration
is one that contains a control state in InitCS and assignments to variables
in InitV. This loop contains excessive information because the bug can be
reached without traversing this loop.

• reduce vals(q): Removes from c: (1) the value of the transition name in the
first configuration and (2) the input variables in the final configuration of the
path. These values do not contribute to the error because (1) the transition
name in the first configuration is irrelevant and (2) the inputs to the model
in the final configuration are used to calculate the next configuration (not
the current configuration).

Two elements of CE that map to the same element of FIPaths fairly obvi-
ously should be considered equivalent. To illustrate the use of the definition of
FIPaths, consider the following counterexample for model AC in Figure 1:

〈(OFF, tn, e=enter, t=15, pt=0),
(IDLE, t1, e=enter, t=18, pt=15),
(IDLE, tn, e=enter, t=22, pt=18),
(IDLE, tn, e=enter, t=24, pt=22),
(ON, t4, e=exit, t=26, pt=24),
(OFF, t6, e=enter, t=23, pt=26), · · · 〉

with (a) a loop of non-progressing transitions indicated by a bar at the left,
eliminated by progress, (b) the configuration that fails the invariant in bold, with

2It might appear easier to swap functions trunc and progress in the definition to avoid
dealing with loops at the end. However, as it will be seen in Section 5, this order is more
convenient for implementation.
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Level 1 Level 2 Level 3 Level 4
[〈t1, t4〉] – 18

[t4] – 30 [OFF,ON] – 30 [ON] – 30
[〈t3, t5, t4〉] – 12
[〈t3, t5〉] – 9

[t5] – 15 [OFF,IDLE] – 15 [IDLE] – 15
[〈t1, t4, t5〉] – 6

Table 1: Levels of counterexample equivalence classes for reduced variable value
model AC in Figure 1

any configuration after that one truncated by trunc, and (c) the application of
reduce vals to the resulting subpath, therefore generating the following element
of FIPaths (where reduce config loops and reduce init config have no effect on
this path):

〈(OFF, e=enter, t=15, pt=0),
(IDLE, t1, e=enter, t=24, pt=15),
(ON, t4, pt=24)〉.

Next, we present, in order from the most detailed to the least detailed, our
levels of equivalence classes, which define distinct counterexamples. We chose
these levels of equivalence classes based on what is deemed as relevant and useful
in our case studies and in the literature. Table 1 shows the equivalence classes
created by each of our levels for the example model AC in Figure 1. To show the
reduction achieved by our method, we wanted to show how many elements of
FIPaths are contained within each equivalence class, however, even for a small
example such as AC, we found the set FIPaths is too large to generate easily
because of the ranges of the variable values. Thus, we could only generate the
elements of FIPaths for a variant of model AC with t (temperature) and pt (pre-
vious temperature) ranging over 0..2 (instead of 0..40). There are 45 elements of
FIPaths for this variant of model AC. The number beside an equivalence class
in Table 1 indicates the number of elements of FIPaths in each class for this
reduced AC model.

We use the following notation to describe our levels:
• FICS: The set of control states that are in a reachable configuration in which
the invariant fails.

• FIT : The set of transitions that are in a reachable configuration in which
the invariant fails. These are the transitions that lead to a state in FICS.

• fst cs(p): The control state of the first configuration in path p.
• lst cs(p): The control state of the last configuration in path p.
• lst tr(p): The last transition taken in path p.
• tr seq(p): The finite sequence of transitions in path p.
• all but last(p): The finite sequence of configurations in path p except for the
last one.

• reduceEFSM(p): Removes EFSM loops from path p. An EFSM loop is a
sequence of configurations within p that begins and ends in the same control
state.
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We use the notation [x] for the equivalence class of x, which consists of the
set of equivalent elements of FIPaths in the class x. x may be a control state,
a path, or a transition, etc.

Level 1: Distinct Paths -Our definition groups paths with multiple iterations
of an EFSM loop together because from the user’s perspective iterating the
EFSM loop does not add information about the cause of the error. For example,
the path of the model AC in Figure 1, with ON in FICS

〈OFF-t1-IDLE-t2-OFF-t1-IDLE-t4-ON〉

identifies the same bug, from the modeller’s perspective, as the EFSM path

〈OFF-t1-IDLE-t2-OFF-t1-IDLE-t2-OFF-t1-IDLE-t4-ON〉

and also the same information regarding the error as the path without EFSM
loops

〈OFF-t1-IDLE-t4-ON〉.

The modeller would rather see another path that shows a different kind of error!
Thus, we consider all paths with iterations of an EFSM loop to be equivalent
to one without such loops, using reduceEFSM in the definition of Level 1.

However, EFSM loops that end in the configuration that fails the invariant
cannot be eliminated without losing too much information because the actions
on the transition leading to the failed configuration are the immediate source
of the failure. Therefore, we make Level 1 differentiate paths by their last
transition. The immediate cause of the failure (although not necessarily the
bug in the model) can then be found by analyzing the guard or the actions
of this transition. The small example of Figure 3 shows why counterexamples
should be differentiated by their last transition, otherwise, path 〈t1, t2, t2〉 and
path 〈t1, t3, t3〉 would both be reduced to 〈t1〉 by reduceEFSM with respect to
C and considered equivalent. Instead, Level 1 generates the equivalence classes
[〈t1, t2〉] and [〈t1, t3〉].

A
1t

C inv ≣ (x=10)

/ x=1

2t : z / x++

3t : y / x++

Figure 3: Small example for Level 1

Level 1 considers as equivalent all the counterexamples that end in the same
transition and that have the same sequence of transitions after removing EFSM
loops in the rest of the path3. The counterexample presented to the user shows
one instantiation of the EFSM path, thus, even though EFSM loops are removed
to define the equivalence class, if an EFSM loop is needed to fail the invariant
(because of data changes, such as a loop for a counter as in Figure 3), this loop
will be present in the counterexample the user sees.

Level 1: ∀p ∈ FIPaths • [p] =
{q ∈ FIPaths | (lst tr(q) = lst tr(p))

3For Levels 1-2, the counterexample path must be of length at least one.
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∧ (tr seq(reduceEFSM(all but last(p))) =
tr seq(reduceEFSM(all but last(q))))}

There are four equivalence classes at Level 1 for the EFSM in Figure 1. For ex-
ample, the data variations of the path 〈t1, t4, t5, t4〉 are all part of the equivalence
class [〈t1, t4〉] after removing the EFSM loop with respect to control state IDLE.
Four distinct counterexamples can represent these four equivalence classes. Two
of them were shown in Section 2 (c1 and c4). The third counterexample is an
instance of the EFSM path 〈OFF-t3-ON-t5-IDLE〉. The fourth one is an instance
of the EFSM path 〈OFF-t3-ON-t5-IDLE-t4-ON〉.

Level 2: Distinct Last Transitions - In Level 2, all counterexamples that
have the same last transition are considered equivalent. The rationale for this
level is that it distinguishes bugs where the error is in the transition immediately
before the invariant fails.

Level 2: ∀t ∈ FIT • [t] = {p ∈ FIPaths | lst tr(p) = t}

There are two equivalence classes at Level 2 for the EFSM in Figure 1. For
example, the path 〈t1, t4, t5, t4〉 is part of the equivalence class [t4].

Groce and Visser consider a variation of this level to be appropriate for
debugging Java programs, as they believe that all counterexamples that pass
through the same control location to reach the same error (and thus, having the
same suffix) match the programmer’s understanding of equivalent counterexam-
ples [14].

Level 3: Distinct Initial and Final States - In Level 3, all counterexamples
that have the same initial control state and final control state are considered
equivalent.

Level 3: ∀i ∈ InitCS, ∀s ∈ FICS • [i, s] =
{p ∈ FIPaths | fst cs(p) = i ∧ lst cs(p) = s}

In this definition, an equivalence class is empty if an initial control state is not
the first state on a path that leads to a control state in FICS. There are two non-
empty equivalence classes at Level 3 for the EFSM in Figure 1. For example,
the path 〈t1, t4, t5, t4〉 is part of the equivalence class [OFF,ON].

Level 3 can be a useful preliminary check to examine conditions on the initial
control states and variable values that lead to an error in order to find bugs in
the specification of possible initial values.

Level 4: Distinct Final States - In Level 4, all counterexamples that lead
to the same final control state are considered equivalent.

Level 4: ∀s ∈ FICS • [s] = {p ∈ FIPaths | lst cs(p) = s}
There are two equivalence classes at Level 4 for the EFSM in Figure 1. For
example, the path 〈t1, t4, t5, t4〉 is part of the equivalence class [ON].

Chechik and Gurfinkel say that a level like this one is important to quickly
find errors in initial states when the very first state fails the invariant [7]. For
other cases, this level might be useful in choosing a resolution: e.g., a sink/error
state could be added to the model from these states.
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5 On-the-fly LTL Counterexample Grouping

We have created a method and tool, both called calledAlfie4, to produce a set of
diverse counterexamples to an invariant of an EFSM based on our definitions in
Section 4 of equivalent counterexamples. Alfie automatically iterates the model
checking process, modifying the property in each iteration to rule out on-the-fly
the generation of any counterexample equivalent to those already produced. At
the end of the process, the user will receive one counterexample per equivalence
class. Alfie uses the Cadence SMV model checker [28] as the model checking
component, but any LTL model checker could be used. In our method, by ruling
out all equivalent counterexamples on-the-fly, there is no need to generate all
counterexamples, which substantially reduces the number of iterations of the
model checker compared to related work [10], where all counterexamples are
generated and then grouped into equivalence classes.

SMV

level

if (c/e)

if ¬(c/e)
• progress
• inv

model 

model +
new_property

Alfie
Create

equiv. class
for c/e

c/e's in the model
Multiple diverse  

one representative 
c/e per equiv. class  

⬋CErep⬊

Figure 4: On-the-fly grouping level process

Our on-the-fly grouping method and tool Alfie is illustrated in Figure 4.
Macro inv specifies the invariant (a property that must be true at every reachable
configuration of the model). Our tool Alfie iteratively (1) asks SMV to generate
a counterexample, (2) deduces the equivalence class of the counterexample for
the desired level, (3) represents this equivalence class as an LTL expression,
(4) creates a new property that is the disjunction of this LTL expression with
the invariant and the LTL expressions representing previously generated coun-
terexamples, and (5) repeats the process by re-running the model checker on
the same model with the new property. By disjuncting an LTL expression of
the equivalence class with the property, Alfie disallows the generation of any
more counterexamples in that equivalence class. Alfie produces as output one
representative counterexample per equivalence class, and runs iteratively until
no more equivalence classes of counterexamples are found. We call this set of
representative counterexamples CErep . Our method does not rely on the order
in which the counterexamples are generated (such as generation of the shortest
one first). Our process terminates because the set of FIPaths is finite and a
different element is generated at each iteration of our method.

Our method uses the following LTL operators:
• Globally (G ψ): ψ must hold at every configuration on the path.
• Next (X ψ): ψ must hold at the next configuration on the path.
• Strong Until (ψ U φ): φ must hold at the current or a future configuration
on the path, and ψ has to hold until that position. From there on, ψ does
not need to hold.

4The name Alfie is derived from All Failed Invariants.
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• ¬, ∧, ∨ and →: negation, conjunction, disjunction and logical implication
respectively.
To generate the property representing the equivalence class of a counterex-

ample, c, our method first calculates the element of FIPaths, q, associated with
c. By incorporating part of the definition of FIPaths into the LTL property to
be checked, we can limit the model checking exploration. Therefore, for every
level of equivalence classes, our method begins by running the model checker
with the property

prop: G(progress) → G(inv)

to generate the first counterexample, c. The macro progress implements the def-
inition of the function progress in Section 4, ensuring that the counterexample c
only contains progressing transitions. The macro progress is defined as (¬(X(tn))
∨ finalCS ) meaning the last transition taken (from the second step of the path
onwards) does not have the label tn or the path has reached a final control state,
from which there are only non-progressing transitions.

From the counterexample, c, returned, our method applies to c the rest of
the definition of FIPaths, described in Section 4, thus generating the element
q. First, the function trunc creates a subpath of c ending in the first config-
uration that fails the invariant, followed by the application of the functions
reduce config loops, reduce init config and reduce vals to the subpath returned
by trunc. For the element q of FIPaths, Alfie creates an LTL expression L[q]

according to the desired level that is added to the invariant as a disjunction,
creating the property to check next,

prop L: G(progress) → ((G(inv)) ∨ L[q1] ∨...∨ L[qi]).

In each iteration of our process, for the i-th counterexample, ci, an LTL expres-
sion L[qi] is added as a new disjunction to the consequent.

Because of the temporal operators used in L[q] for some levels, the prop-
erty prop L may no longer be just an invariant. However, our definition of
FIPaths works for both counterexamples that are a finite prefix of an infinite
path (those produced by safety properties) and counterexamples that include
a loop at the end (those produced by liveness properties). Figure 5 illustrates
the relationship between counterexamples (CE ), FIPaths, and LTL expressions
representing equivalence classes.

FIPaths Equivalence LTL 

q1

q
j

qi

qk

...
... ...

...

CE

c1

ci

cj

ck

...
...

...

ci+1

ck+1...

cn...

Classes
(per Level)

Expressions
(per Level)

[q1]

[qi]

L[q1]

L[qi]

Figure 5: Relationship between CE, FIPaths and LTL properties representing
equivalence classes
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Next, we explain in order from the least complex to the most complex (re-
verse order of Section 4) the LTL expression that represents an equivalence
class of counterexamples according to the desired level. The LTL expression
checked after one iteration of our process for each level is shown in Table 2 for a
counterexample from model AC in Figure 1. For simplicity in the presentation
of properties, we use the control state name to mean that the configuration
includes this control state, and we use the transition label to mean that the
configuration includes this transition as the last transition taken.

Level LTL property

4 (G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ ON)) )

3 (G (progress)) → ((G (inv)) ∨ (OFF ∧ (inv U (¬inv ∧ ON))) )

2 (G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ t4)) )

1 (G (progress)) → ((G (inv)) ∨ (OFF ∧ (inv U (t1 ∧ (inv U (¬inv ∧ t4))))) )

Table 2: LTL property per level for counterexample 〈OFF-t1-IDLE-t4-ON〉 from
the model AC of Figure 1

The number of iterations of our process is equal to the number of equivalence
classes. The loop invariant that holds after each iteration is:

Theorem 1 ∀p ∈ CE • (p |= prop L ⇔ ∃c ∈ CErep • p ∈ [c])

meaning that prop L exactly covers the equivalence classes for the counterex-
amples in CErep seen so far in the process. The justification of Theorem 1
is given for Level 4 below, while the justification for the rest of the levels can
be found in [20]. The process terminates when no more counterexamples are
produced.

Level 4: Distinct Final States - For a path q ∈ FIPaths, in Level 4 Alfie
adds to the property a disjunction with an LTL expression, L[q], that uses the
value of the control state in the last configuration of q (which is an element of
FICS ), generating the following property with each L[q] highlighted:

prop L4: (G (progress)) → ((G (inv))

∨ (inv U (¬inv ∧ lst cs(q)) .

At each iteration, prop L4 forces the model checker to find a counterexample
in which the first control state to fail inv is different from any lst cs(qi) in the
counterexample of CERep. The process concludes when all control states in
FICS have been discovered.

Expression L[qi] in prop L4 includes ¬inv as a conjunction with lst cs(qi)
because another counterexample may have a prefix with lst cs(qi) in it, but the
invariant does not fail in that instance of lst cs(qi), and this counterexample is
in a distinct equivalence class, as illustrated by Figure 6.
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〈(OFF, e=enter, t=22, pt=0),
(IDLE, t1, e=enter, t=24, pt=22),
(ON, t4, pt=24)〉

〈(OFF, e=enter, t=23, pt=0),
(IDLE, t1, e=enter, t=25, pt=23),
(ON, t4, e=enter, t=26, pt=25),
(IDLE, t5, pt=26)〉

Does not fail inv

q1 (from c1) q2 (from c4)

Figure 6: Counterexample c4 for AC of Figure 1 missed by prop L4 if ¬inv is
excluded

The justification of Theorem 1 with respect to property prop L4 for Level
4 is as follows:

(⇒) ∀p ∈ CE • (p |= prop L4 ⇒ ∃c ∈ CErep • p ∈ [c])

For Level 4, property prop L4 has the form
((G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ S1))

· · ·
∨ (inv U (¬inv ∧ Sk)))

where {S1,· · · ,Sk} =

{lst cs(FIPaths(c1)),· · · ,lst cs(FIPaths(ck)) | c1,..,ck ∈ CErep}.

A path p that satisfies prop L must be of one of two forms:

... ...

inv

¬ inv ⋀ S

... ...

inv

(a)

(b)

or

For case (a), p is not in CE, so Theorem 1 does not apply to this case. For
case (b), path p has as the first control state that fails the invariant an
element S, returned by lst cs(FIPaths(c)), for some c ∈ CErep. Therefore,
p ∈ [c] by Definition 4 . ✷

(⇐) ∀p ∈ CE • ((∃c ∈ CErep • p ∈ [c]) ⇒ p |= prop L4)

Let path p be a member of an equivalence class of c in CErep. When
c was generated by the model checker, property prop L4 included the
LTL expression (inv U (¬inv ∧ lst cs(FIPaths(c)))), disjuncted with the
invariant. If p ∈ [c], p must have the form:

¬ inv ⋀ 

lst_cs(FIPaths(c))

... ...

inv

Therefore, path p satisfies prop L4. ✷
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Level 3: Distinct Initial and Final States - For a path q ∈ FIPaths, in
Level 3 Alfie adds to the property a disjunction with an LTL expression, L[q],
describing the initial control state of q (which must be an element of InitCS ),
and the last control state in q (which must be an element of FICS ), generating
the following property with L[q] highlighted:

prop L3: (G (progress)) → ((G (inv)) ∨

(fst cs(q) ∧ (inv U (¬inv ∧ lst cs(q)))) ).

prop L3 forces the model checker to search for a counterexample that either
starts with the same initial control state, but ends at a different control state
that fails the invariant, or starts with a different initial control state and ends at
a control state where the invariant fails. For brevity of the LTL expression over
multiple paths, all final control states are grouped with the same initial control
state together in a disjunction with the invariant. The process concludes when
all combinations of initial control states in InitCS that reach a final control
state in FICS have been discovered.

Level 2: Distinct Last Transitions - For a path q ∈ FIPaths, in Level 2 Alfie
adds to the property a disjunction with an LTL expression L[q] that uses the
value of the last transition taken in q (which must lead to a control state in FICS
and be part of FIT ), generating the following property with L[q] highlighted:

prop L2: (G (progress)) → ((G (inv)) ∨

(inv U (¬inv ∧ lst trans(q))) ).

prop L2 forces the model checker to find a counterexample in which the transi-
tion that leads to the first control state that fails the invariant is different from
the one described by lst trans(q). The process concludes when all transitions in
the set FIT are discovered.

Level 1: Distinct Paths - For a path q ∈ FIPaths, in Level 1 Alfie adds to
the property a disjunction with an LTL expression L[q] that accepts any path
with the same sequence of transitions as q, and all EFSM looping variations
of the path before the last transition of q. A looping variant is any path that
reaches that same control state two or more times in the path as illustrated in
Figure 7. By including the looping variations, the model checker will not report
them as distinct counterexamples. The EFSM loops in the looping variations
of a path must not contain states that fail the invariant.

A B C
1 2t t

D
3

t

all_but_last(p)

Figure 7: Looping variations of path 〈t1, t2, t3〉

Level 1 was the most difficult level to express correctly in LTL. For illus-
tration, consider q1 = 〈t1, t4〉, which is the element of FIPaths derived from
counterexample c1 for model AC. The most natural LTL expression to describe
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the sequence of transitions in q1, including looping variants, is (where OFF is
the initial control state in the path):

OFF ∧ (F (t1 ∧ (F t4))) (a)

However, expression (a) allows looping variants of path q1 that contain config-
urations that fail the invariant to be part of the same equivalence class, which
is incorrect. Through the use of the Until operator, our LTL expression only
includes paths with EFSM loops whose states all satisfy the invariant. The
correct LTL expression for q1 is:

OFF ∧ (inv U (t1 ∧ (inv U (¬inv ∧ t4)))) (b)

and the LTL expression for c4 (shown in Section 2) is:

OFF ∧ (inv U (t1 ∧ (inv U (t4 ∧ (inv U (¬inv ∧ t5)))))) (c)

This LTL expression includes the condition indicating that the invariant does
not hold when taking the transition to the configuration that fails the invariant,
which is the last transition of the path (t4 in q1). Thus, paths that pass through
t4, but do not fail the invariant at t4, do not satisfy the property (and are not
in its equivalence class).

Level
Equiv. BDD

Time
Classes Nodes

4 2 5264 2.32s
3 2 5282 2.34s
2 2 5327 2.32s
1 4 16012 2.79s

Table 3: Statistics for the analysis of model AC in Figure 1

Table 3 shows the number of equivalence classes per level, the maximum
BDD size for all iterations of the model checker, and the total time for all
iterations of the analysis of AC in Figure 1 (full range of data values). The
equivalence classes in Table 3 match those of Table 1 because the full data
range model and the reduced data range model both contain the same errors.
The model checking verification runs in this paper were performed on a 2.8GHz
AMD Opteron CPU with 32GB of RAM.

6 Case Studies

In this section, we show how our method produces diverse counterexamples to
help find distinct bugs in an EFSM model of a more complex air conditioning
system, an audio player system, and in four automotive feature models. The
choice of level depends on how much the user wants to differentiate amongst
counterexamples. We seeded the bugs in our case studies. Because all our case
studies have only one initial state, our discussions refer only to Levels 1, 2 and
4. Level 4 (distinct final control states) and Level 3 (distinct initial and final
control states) both generate the same equivalence classes. Level 1 provides the
greatest confidence of finding a set of counterexamples that reveals information
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about all distinct bugs, however, it can provide more detail than is needed. Our
case studies illustrate this spectrum.

6.1 Air Conditioning System for a Two-story Unit

Consider the air conditioning system (AC2) for a two-story unit shown in Fig-
ure 8. The input variable e can take on the values up (a person enters the
upper floor), down (a person enters the lower floor) and exit (a person leaves
the building), while the input variable t (temperature) and controlled variable
pt (previous temperature) range over the values 0..40.

OFF

IDLE_

UP

ON_

UP

(e=up ∧ t ≤ 24) / 
1
:    t

pt=t

 
9
:    t (e=up ^ t > 24) /

pt=t

 
3
:    t (e=exit) /

pt=t

 
11

:    t (e=up ^ t ≤ 26) /
pt=t

 
4
:    t (e=exit) / pt=t

(e=up ∧ t > 24) / 
2
:    t pt=t

IDLE_

DOWN

ON_

DOWN
 
14

:    t (e=down ^ t ≤ 24) /
pt=t

 
7
:    t (e=exit) /

pt=t

(e=down ∧ t ≤ 24) / 
5
:    t

pt=t

(e=enter ∧ t > 24) / 
6
:    t pt=t

 
8
:    t (e=exit) / pt=t

 
12

:    t (e=down ^ t ≥ 24) /
pt=t

 
10

:    t (e=down ^ t > 24) /
pt=t

 
13

:    t (e=up ^ t ≥ 24) /
pt=t

 
15

:    t (e=down ^ t ≤ 24) /
pt=t

 
16

:    t (e=up ^ t > 24) /
pt=t

Figure 8: EFSM of a more complex air conditioning system (AC2)

We check a similar invariant to the one for AC in Section 2, stating that
model AC2 is either in ON UP or in ON DOWN if and only if the the previous
temperature is greater than 24. The results for analysis of all levels are sum-
marized in Table 4, showing the number of equivalence classes, the maximum
BDD size over all iterations of the model checker and the total time taken to
complete all iterations. In Figure 8, the three actual bugs in AC2 are circled.

Level
Equiv. BDD

Time
Classes Nodes

4 2 12069 2.44s
3 2 12069 2.45s
2 3 11497 2.56s
1 20 6466591 54m32s

Table 4: Statistics for the analysis of model AC2 in Figure 8

For Level 4, considering the distinct final control states found, we can
learn:
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• [(IDLE UP)]: This counterexample shows that AC2 reaches idle, but with the
wrong conditions. The error occurs because the condition on t11 checks (t
≤ 26) instead of (t ≤ 24).

• [(ON DOWN)]: This counterexample shows that AC2 is on when it is meant
to be idle. The error occurs because transition t15 checks (t ≤ 24) when it
should be (t > 24).
However, this level of detail has not isolated all the actual errors in the model.

Level 2 (distinct last transitions) reports 3 distinct counterexamples:
• [t11]: Same error as found for equivalence class [(IDLE UP)] above.
• [t15]: Same error as found for equivalence class [(ON DOWN)] above.
• [t12]: The counterexample representing this equivalence class shows that
AC2 is on by taking transition t12. The error occurs because transition t12
checks (t ≥ 24), but it should be (t > 24). This is a distinct error from those
found by Levels 3 or 4.

Level 1 generates 20 equivalence classes: each diverse counterexample is a
distinct path to a configuration where the invariant fails because the model
contains a number of loops. A close examination of the paths lets us identify
that all 20 paths are caused by the three transitions (the last one in each path)
found by Level 2. In this case, Level 1 did not help to isolate any distinct bugs,
and potentially was not worth the time it took. However, Level 1 does show that
taking one of the transitions reported by Level 2 does not always lead directly
to an error. For example, there are two equivalence classes that end with t12:

[〈t6,t14,t12〉] and [〈t5,t12〉]
indicating that the error is related to t12. But there is an equivalence class
where t12 does not lead directly to an error:

[〈t5,t12,t16,t15〉].
By analyzing these three distinct counterexamples, we obtain more information
to modify easily and correctly the condition in t12.

6.2 Audio Player System

Consider an audio player system (AP)5 shown in Figure 9. When turned on,
the system is able to play one of three different audio sources: radio, tape or
CD. When a tape or a CD is inserted in the system, that source is selected to
play, while when there is no tape or CD, only the radio is available. The input
variable e can take on the values next and back (to switch between four radio
stations, spool the tape forward or backward, or select the previous or next track
of a CD) as well as play (play the tape or the current CD track). The Boolean
input variables power, tape insert, tape eject, cd insert and cd eject correspond
to their descriptions, while input variable n (number of tracks) ranges over the
values 1..20.

The EFSM model for AP is a hierarchical non-concurrent state machine,
represented in the SMV model as one state name variable per hierarchy level.
The constraints on control states are expressed over the values of control states

5Model is partially based on EFSM by Seifert [30].
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Figure 9: EFSM of an audio player system (AP)

at all levels in the hierarchy. No other changes in the definitions of our levels
of counterexample equivalence classes are required. We checked a single large
property that the AP model follows precisely its functional requirements. The
results for analysis of all levels are summarized in Table 5, showing the number
of equivalence classes, the maximum BDD size over all iterations of the model
checker and the total time taken to complete all iterations. Figure 9 shows the
five actual bugs in model AP circled.

Considering the information provided by Level 4, we can learn:
• [(sAP=ON,sON=TUNER PLAY)]: This counterexample shows that AP reaches
the tuner state, but with the wrong conditions. The error occurs because
the condition on t5 checks (¬tapeIn) instead of (tapeIn).

• [(sAP=ON,sON=TAPE PLAY)]: This counterexample shows that AP is in the
tape state when it is meant to be in tuner. The error occurs because tran-
sition t3 checks (tapeIn) when it should be (¬tapeIn).

• [(sAP=ON,sON=CD PLAY)]: This counterexample shows that AP reaches the
CD state with the wrong conditions. The error occurs because transition t8
checks (e=tape insert) when it should be (e=tape eject).
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Level
Equiv. BDD

Time
Classes Nodes

4 3 87498 11.77s
3 3 92338 11.83s
2 5 84742 16.33s
1 10 1450210 4m40s

Table 5: Statistics for the analysis of model AP in Figure 9

Once again, Level 4 has not isolated all the actual errors in the model.
Level 2 reports 5 distinct counterexamples:
• [t5]: Same error as found for equivalence class [(sAP=ON,sON=TUNER PLAY)]
above.

• [t3]: Same error as found for equivalence class [(sAP=ON,sON=TAPE PLAY)]
above.

• [t8]: Same error as found for equivalence class [(sAP=ON,sON=CD PLAY)] above.
• [t30]: The counterexample representing this equivalence class shows that AP
is in the state that plays the tape by taking transition t30. The error occurs
because transition t30 checks (e=next), but it should be (e=play).

• [t35]: The counterexample representing this equivalence class shows that AP
is in the state that plays the CD by taking transition t35. The error occurs
because transition t35 checks (currentTrack ≤ trackCount), but the current
track is out of range.

Level 1 generates 10 equivalence classes: each diverse counterexample is a dis-
tinct path to a configuration where the invariant fails because the model contains
a number of loops. However, all 10 paths are caused by the five transitions (the
last one in each path) found by Level 2 to have errors.

6.3 Active Safety Automotive Features

Next, we considered the analysis of a set of non-proprietary automotive features
designed in MATLAB’s Stateflow [1] that we created previously [21]: Collision
Avoidance (CA), Emergency Vehicle Avoidance (EVA), Parking Space Center-
ing (PSC), and Reversing Assistance (RA). These features are known as “Active
Safety Systems” because they use sensors, cameras, and radar to help the driver
control the vehicle. CA helps to prevent or mitigate collisions when driving for-
ward. EVA pulls the car over when an emergency vehicle needs the road to
be cleared. PSC assists during perpendicular parking. RA helps prevent or
mitigate collisions when reversing. Our automotive features are representative
in type and complexity of models that we have seen developed in industrial
practice6, but do not include concurrency or failure modes (e.g., fail-safe states
for degraded modes of operation).

6Observed during Alma Juarez’s visits to General Motors (GM) Research and Development
as part of the requirements of her NSERC Industrial Postgraduate Scholarship.
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Reachable # # Max. Basic
State Space Trans. Vars. Vars. range Control States

CA 8.24241e+07 26 25 100 9
EVA 1.64848e+08 19 34 100 8
PSC 2.74266e+10 18 34 100 12
RA 6.18181e+07 18 24 100 8

Table 6: Sizes of automotive feature models CA, EVA, PSC and RA

Level
CA EVA

# Equiv. BDD
Time

# Equiv. BDD
Time

Classes Nodes Classes Nodes
4 2 452147 4.4s 2 36053 3.4s
3 2 452147 4.4s 2 36053 3.4s
2 2 453186 4.6s 2 39991 3.5s
1 2 465399 5.1s 2 17857 3.8s

Level
PSC RA

# Equiv. BDD
Time

# Equiv. BDD
Time

Classes Nodes Classes Nodes
4 2 24220 3.4s 2 452178 5.0s
3 2 24220 3.4s 2 452178 5.0s
2 2 39329 3.5s 2 453022 4.5s
1 2 31507 4.6s 2 465797 4.9s

Table 7: Case study results per level of equivalence classes for automotive feature
models

In previous work [22] [23], we created a translator from a subset of Stateflow
to SMV and used it to translate these feature design models to SMV. Stateflow
is used extensively in the automotive and avionics industries. In Stateflow,
features are hierarchical state machines7. Thus, our translation creates one
state name variable per hierarchy level of the EFSM in the SMV model, and
the constraints on control states are expressed over the values of control states
at all levels in the hierarchy. Also, automotive features only have one initial
state, because Stateflow does not allow multiple initial states. Table 6 contains
information on the size of the translated models in SMV.

For CA, EVA, PSC and RA, we checked the property that a feature remains
disengaged when intended, as specified in each feature’s functional requirements.
The results of our analysis are summarized in Table 7, showing the number of
equivalence classes, the maximum BDD nodes used over all iterations of the
model checker and the time taken to complete all iterations of the analysis.

7The features analyzed in this work do not use Stateflow concurrency, although it is sup-
ported by our translator.
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Figure 10: Excerpt of Stateflow design feature CA showing the two bugs
uncovered by Alfie

Figure 10 circles the two actual bugs in CA. Alfie generated two distinct
counterexamples at all levels exactly matching these two bugs. Consider the
information provided by Level 1 (distinct paths):
• [〈t14, t16〉]: This counterexample shows the sequence of transitions leading
CA to become engaged when it should be disengaged. The error occurs
because the condition on t16 is (Speed ≥ 25), although the condition should
be (Speed > 25).

• [〈t14, t36, t37〉]: This counterexample shows the sequence of transitions that
lead CA to be disengaged when it should not be. The error occurs because
transition t36 can be taken regardless of the enabledness of CA. A correction
is to have t37 check if variable CA Enabled is true, which is a necessary
condition for CA to be disengaged.

While all the levels provided the same number of distinct counterexamples in
this case study, Level 1 gives the highest confidence that we have isolated the
distinct bugs in the model. Level 1 is the only level that differentiates errors
that are not in the last transition. For example, for the bug isolated by the
second counterexample above, an alternative correction might be to change t36.
If there were multiple transitions besides t36 entering state OVERRIDE, there
could be multiple distinct bugs to isolate, which would be captured by Level 1.

Overall, our case studies show our method provides a useful representation
of the complete set of counterexamples without having to generate all coun-
terexamples, a process that may not be possible, or if possible, would take a
long time. To illustrate the reduction that we accomplish with our method, we
explain how many data variant paths are represented by the equivalence class
p= [〈t14, t16〉] reported by Level 1 for model CA, and illustrated in Figure 11.
The input variables used as guards in transitions restrict the values that these
variables can take. However, the input variables in CA have very large ranges,
e.g., Speed, ranging from 0 to 100. Therefore, the number of ways the input
values can vary is extremely large, as shown in the numbers on top of the cir-
cles in Figure 11. These numbers denote the data variations allowed at each
step of path p. The total number of data variant counterexample paths for the
equivalence class p is 7.822 × 1021, which does not include looping variants of
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path p. Even though some model checkers are able to detect irrelevant variables
using techniques such as cone of influence reduction [24], having variables such
as Speed as in this example, would still produce a great number of counterex-
amples.

t
14

: (CA_Enabled) t
16

: (Speed>=25 ∧
PRNDL==3)

41,212,040 2,302,800 82,424,080

Figure 11: Data variant paths in equiv. class [〈t14, t16〉]

7 Discussion

Our definitions of equivalent counterexamples may not match exactly the set
of distinct changes that must be made to fix a model. However, as illustrated
in our case studies, we believe our definitions offer a good balance between
reduction and detail in creating a useful set of distinct counterexamples for the
modeller to study. We anticipate that a user is likely to either focus on Level
1 to gain as much information as possible about the complete set of bugs or
incrementally progress through the levels to see if a higher level produces any
additional useful information. Our approach would work well with an approach
that animates counterexamples or extracts a sub-model that contains errors.

In our analysis, we chose to concentrate on the first configuration where the
invariant fails in a path. It might be possible to extend our approach to dis-
tinguish counterexamples that have a second configuration where the invariant
fails, however, it is not clear that it is worth considering these second failures
since the system has already failed the invariant.

So far, because of the reduction achieved by our approach we have not ex-
perienced scalability problems in our case studies. However, a danger with our
approach is that when there are many equivalence classes, the growing size of
the property becomes an inhibiting factor in model checking because LTL model
checking scalability depends on the size of the property as well as the size of
the model [29]. We are investigating promising methods for partitioning the
property to deal with larger size models and alternative model checkers.

8 Related Work

To the best of our knowledge, our approach is the first to generate and summa-
rize the set of all counterexamples on-the-fly by modifying the property. Some
approaches to generating multiple counterexamples use a modified version of
a model checking algorithm to generate all counterexamples. In addition to
SPIN [17], which can generate all counterexamples by continuing the state space
search after the property fails, Copty et al. create a model checking engine that
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generates a BDD representing all counterexamples of a given length, and in a
post-processing step, annotate these counterexamples to help diagnose and fix
a reported failure [10].

Many approaches do not necessarily generate all counterexamples while at-
tempting to isolate the cause of an error. Jin et al. created a model checking
algorithm variation that creates annotated counterexamples with events de-
scribing fate (inevitability towards the error) or free will (attempt to avoid the
error) [19]. Groce and Visser describe an algorithm to find traces that are
data variations of a counterexample for Java programs, then process this set of
traces to find differences between counterexamples and traces with no error [14].
Sharygina and Peled use a testing tool to generate traces that are related to a
counterexample for a software program, where the generated traces or neigh-
bourhood of a counterexample might help understand the cause of the error [31].
The neighbourhood of a counterexample may contain traces with no error as
well as other counterexamples, but no automatic analysis is done to group or
classify counterexamples (if more than one exist). Chechik and Gurfinkel use
a modified model checker that generates multiple counterexamples to a prop-
erty and then in post-processing create a proof-like tree to summarize the data
variations from the counterexamples generated [7]. Beer et al. describe an algo-
rithm to detect a set of causes for the first failure to a property by evaluating
sub-formulas of the property on the given counterexample trace [5].

Ball et al. modify the model by removing the transition in the counterexam-
ple that does not appear in any correct trace so far and then looking for another
counterexample [4]. Their method uses explicit state model checking and makes
the assumption that the cause of a failure is a single transition. Therefore, all
counterexamples that include this transition are in the same equivalence class,
even ones that result in a different error, and the equivalence class of a coun-
terexample is not precisely defined because it depends on the order in which
the traces are explored. By changing the model, they eliminate the possibility
of finding a different counterexample that includes the removed transition.

Our work bares some resemblance to the use of model checking to generate
test cases of a model that satisfy certain coverage criteria (e.g., [3], [16], [11], [18]).
However, in these approaches, one witness (test case) is found for each prop-
erty and then a new property is created to generate another witness until the
coverage criteria is satisfied. Some testing approaches use a structural coverage
criteria for EFSM-based models. For example, Geist, Hartman et al. developed
the tool GOTCHA for state and transition coverage [6], [12], while Gargantini
and Heitmeyer construct properties from an SCR specification for structural
coverage based on guards of a transition [13].

Compared to all these approaches, by focusing on EFSM models, we have
been able to create an automatic method that produces a set of diverse coun-
terexamples on-the-fly to help the modeller isolate the cause of bugs efficiently.
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9 Conclusion

In this paper, we defined a series of levels of equivalence classes that each create
a set of distinct counterexamples to an invariant. This reduced set is easier
to generate and comprehend than the whole set of counterexamples. We have
shown how to represent these equivalence classes on-the-fly as LTL properties
to be used by a model checker so that all counterexamples are never generated.
Our approach can be used with any LTL model checker independent of the
order in which it produces counterexamples. We believe that our definition
of equivalent counterexamples is a very useful one for analysis of EFSM-based
languages because of the fundamental role that control states and transitions
play in how people represent systems in these languages. We demonstrated
the reduction produced by our equivalence classes of counterexamples in the
verification for several case studies including four automotive feature design
models. The weakness of our approach is that the model checker will repeat
work again as it analyzes the model in each iteration of our cycle, however the
number of iterations is often quite small because each of our LTL properties
represents a set of counterexamples.

In this paper, our methodology has been explained for a single EFSM, but we
are working on generalizing it for multiple concurrent EFSMs without flattening
the model. We plan to use our technique for the detection of feature interactions
between automotive features. In this application, it is quite important to have
a comprehensive view of all feature interactions prior to recommending changes
to the features models or creating a manager that resolves interactions at run-
time since a feature interaction is not an error in the model. We anticipate that
these examples will exercise our ability to partition the LTL properties.
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