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ABSTRACT

The goal of runtime verification is to inspect the well-being
of a system by employing a monitor during its execution.
Such monitoring imposes costs in terms of resource utiliza-
tion. Memory usage and predictability of the monitor invo-
cations are among the indicators of the quality of a moni-
toring solution, especially in the context of embedded sys-
tems. In this paper, we propose a novel control-theoretic
approach for coordinating time predictability and memory
utilization in runtime monitoring of real-time embedded sys-
tems. In particular, we design a PID controller and four
fuzzy controllers with different optimization control objec-
tives. Our approach controls the frequency of when the mon-
itor should be invoked by incorporating a bounded memory
buffer that stores events that need to be monitored. The
controllers attempt to improve time predictability and max-
imize memory utilization, while ensuring the soundness of
the monitor simultaneously. Unlike the existing approaches
based on static analysis, our approach is highly scalable and
well-suited for reactive systems that are required to react to
stimuli from the environment in a timely fashion. Our thor-
ough experiments using two case studies (a laser beam stabi-
lizer for aircraft tracking, and a Bluetooth mobile payment
system) demonstrate the advantages of using controllers to
achieve low variation in the frequency of monitor invoca-
tions, while maintaining maximum memory utilization in
highly non-linear environments.
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1. INTRODUCTION

Given the complexity of today’s computing systems, ver-
ification techniques such as model checking and theorem
proving may not be able to analyze the system’s correctness
exhaustively. Testing is a best-effort established method to
examine correctness. However, testing scrutinizes only a
subset of behaviors of the system. Runtime verification [4,
15, 11] (RV) is a complementary technique, where a monitor
checks at run time whether or not the execution of a system
under inspection satisfies a given correctness property. If
the monitor observes that the system is about to violate a
property, it can trigger a steering method, so the system is
led to a safe behavior. The ability of a monitor to evaluate
the system’s properties at run time and take all the system
dynamics as well as environment stimuli into account has
made RV an excellent technique to ensure the well-being of
computing systems, especially in the domain of embedded
safety /mission-critical systems.

The inherent cost of RV is runtime overhead. In the con-
text of embedded systems, this cost by itself is not the
main obstacle in augmenting a system with RV technol-
ogy. The more significant problem is the fact that if events
that would potentially invoke the monitor do not occur in
a time-predictable manner (e.g., periodic), monitoring tasks
can severely intervene the normal system execution, thereby,
causing deadline misses and unscheduled resource utiliza-
tion. To tackle this problem, there has recently been an
emerging trend on designing time-triggered monitors. Such a
monitor is invoked within fixed time intervals, while ensuring
soundness. The existing methods incorporate static analysis
techniques to ensure minimum instrumentation [2] and exe-
cution path-aware adjustment of monitor invocation [14] to
decrease the overhead. However, deep static analysis tech-
niques suffer from two drawbacks: they (1) may not scale,
and (2) are completely blind to system dynamics and envi-
ronment actions at run time, especially in reactive systems.
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Figure 1: Outline of the proposed controller design.

With this motivation, in this paper, we focus on designing
an RV technique, where the monitor should react to system
dynamics and environment actions, while taking resource
limitations into account. We, in particular, target reactive
embedded real-time systems, where time-predictability plays
an important role and memory usage is limited by physical
constraints. To this end, we require the following:

1. The monitor is not invoked by occurrence of each event
that may change the valuation of properties and rather
invoked within time intervals, called the polling pe-
riod. In order to enforce property violation detection
latency, the polling period cannot be greater than some
value given as a system parameter. The monitor is also
required to maintain minimum jitter in changing the
polling period.

2. The monitor must be sound; i.e., false-positives and
false-negatives are not acceptable.

3. Since the monitor is invoked within time intervals, mul-
tiple events of interest may happen between two mon-
itor invocations. Thus, the program under inspection
must be instrumented such that the events of inter-
est between the two invocations are buffered. We as-
sume that the program under inspection provides only
a bounded-size buffer. This buffer is required to be
filled with mazimum utilization.

In order to achieve the above requirements and make the
polling period resilient to non-uniform environment actions,
the monitor must be able to learn, predict, and adapt to the
environment stimuli at run time. To design such a moni-
tor, we utilize the rich literature of control theory to enforce
the three aforementioned requirements. The controller (see
Figure 1) executes within the monitor thread. With every
invocation of the monitor, the controller determines when
the next invocation should occur to satisfy the memory uti-
lization and time predictability objectives. In order to main-
tain soundness, no events should be dropped from the buffer.
Thus, when the buffer is full, the monitor invocation is au-
tomatically triggered ahead of its scheduled invocation. We
design five controllers:

e A PID feedback controller with variable sampling pe-
riod for systems in which events of interest are ex-
pected to occur linearly. This controller aims at max-
imizing memory utilization.

e Four fuzzy controllers for handling systems where events
of interest occur in a non-linear fashion. Moreover,
each controller targets achieving a different objective
with respect to our problem:

— The first fuzzy controller attempts to maximize
memory utilization, similar to the PID controller.

— The second fuzzy controller targets both mem-
ory utilization and time predictability. The con-
troller attempts to balance between (1) polling
periods that would minimize the empty spaces in
the buffer, and (2) choosing intervals as close as
possible to the mean of all previous intervals.

— Fuzzy controllers 3 and 4 attempt to maintain an
upper bound on the variance of intervals. Their
difference is in their internal decision process.

We conduct two thorough case studies. The first case
study is on a Bluetooth mobile payment system. This sys-
tem is highly non-linear and our experiments clearly demon-
strate the advantages of using our controllers to achieve low
variation in the monitor polling period, while maintaining
maximum memory utilization in highly non-linear environ-
ments. The second case study is on a laser beam stabilizer
(LBS) used for aircraft tracking. The RV system for LSB
aims at monitoring the location of the laser beam, where
aircraft movements are the environment actions. The laser
beam control software works periodically and although air-
craft movements happen non-linearly, the buffer gets filled
up within periods uniformly. This characteristic may un-
necessecitate a monitor controller. However, we conduct
this experiment to demonstrate that the controlled monitor
performs as well as the uncontrolled monitor. That is, our
controller introduces negligible disturbance to the system.

Organization. The rest of the paper is organized as fol-
lows. In Section 2, we formally state the monitoring objec-
tives. Section 3 recaps the basic concepts on PID and fuzzy
controllers. Our controller design choices are explained in
Section 4. We present our case studies and experimental re-
sults in Section 5. Related work is discussed in Section 6. Fi-
nally, we make concluding remarks and discuss future work
in Section 7.

2. PROBLEM DESCRIPTION

Expressing logical properties of a system normally involves
a set of program variables whose value may change over time.
We call such change of value an event. Monitoring an event
involves invoking a process (called the monitor) that evalu-
ates the properties associated with that event at run time.
This paper is concerned with the problem of runtime verifi-
cation of reactive systems, where the monitor is required to
exhibit the following features simultaneously:

Soundness For verification to be sound, all events should
be monitored.

Time predictability Since invocation of the monitor in-
terrupts the program execution, we require that these



interruptions are predictable with respect to time. This
requirement assists in achieving more accurate system-
wide scheduling.

Resource utilization The monitor may use bounded mem-
ory space to buffer events. We require maximum uti-
lization of this buffer.

We now formulate the above constraints. Let R be a re-
active system with limited memory under inspection and ¢
be a set of logical properties (e.g., in LTL), where R is ex-
pected to satisfy ®. Since, system R has limited memory,
we assume that the number of events that it can buffer for
monitoring has an upper bound B.

Let E = ejes---e, be a given finite sequence of events
that can change the valuation of ® and T, = tc te, - - - te,,
be the finite sequence of timestamps of occurrence of the
events, where n € N. Also, let M = mimz---my be the
output finite sequence of monitor invocations and T, =
tmitms - - tm, be the finite sequence of timestamps of mon-
itor invocations, where k € N. We note that k is a variable
to be controlled, meaning that depending upon the monitor-
ing policy, £ may change. We denote the start time of the
monitor by mo. Thus, we extend Tr, as timglmytms =+ tmy, -

Let function between(71,72) be a function that returns all
the events that occur between time 71 and 72:

between(r1,72) ={ei | 71 <te, < T2} (1)

Based on the above description, we say that the monitor is
sound iff:

Vi €{l---k}: ’between (tmi7tmi—1)’ <B (2)

which implies that at no point in time incoming events will
overflow the buffer.

We formalize maximization of memory utilization as the
following objective:

k
1 ’between (tm“tm,-,l)|
i {k 5 . ®

=1

Thus, the objective is to maximize the average memory uti-
lization across the complete run of the monitor.
Let X = {X; |1 <4<k} be the set, where

Xi=1tm; —tm;_,

i.e., each X; is the amount of time elapsed between moni-
tor invocations m; and m;_1. Thus, we characterize time
predictability by the following objective:

min {V(X) | for all possible sets of X} (4)

where V(X)) is the variance of X. In other words, by min-
imizing the variance of all possible X’s, we achieve pre-
dictability in the invocation of the monitor.

Observe that the best case minimum variance is zero,
which means that for all 4, t;,; — ¢, , remains constant.
However, if a monitor adopts a constant monitoring fre-
quency, it may be possible to lose soundness in a reactive
system, as the rate of occurrence of events depends upon
external stimuli, such as environment actions. Furthermore,
for memory utilization, the best case is 100% average uti-
lization. However, such a constraint conflicts with the time
predictability requirement, since invoking the monitor when-
ever the buffer is full will result in a variance that is totally
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Figure 2: PID controller.

controlled by external actions. This discussion clearly illit-
erates that memory utilization and time-predictability are
conflicting requirements.

Since the sequence of events to be monitored is not given
a priori, an optimal monitoring policy that satisfies sound-
ness, time predictability, and high memory utilization can-
not be designed before system deployment. In other words,
the times and frequency of monitor invocations have to be
dynamically adjusted based on the conditions of the system
under inspection. Consequently, our goal is to design a run-
time control mechanism that enforces our objectives (i.e.,
Equations 2, 3, and 4) simultaneously through identifying
T (i-e., time of monitor invocations and, hence, k) in a
best-effort fashion.

3. BASIC CONTROL THEORY

Since our approach is based on controller design in this
section, we recap the concepts of PID controllers in Subsec-
tion 3.1 and Fuzzy controllers in Subsection 3.2.

3.1 PID Controllers

A PID feedback controller [16] consist of (1) a propor-
tional, (2) an integral, and (3) a derivative component. An
error signal e(t) is sampled within fixed time intervals called
the sampling period. The three components are then applied
collectively to e(t) as follows:

u(t) = Kpe(t)+ K; / e(t)dt + Kp%e(t) (5)

where Kp is the proportional gain, K is the integral gain,
and Kp is the differential gain. Figure 2(a) demonstrates
the structure of a PID controller.

PID controllers are often used to control linear systems.
One approach to using PIDs is to model the system accu-
rately, so as to deduce ideal gains that ensure controllable
behavior. Another method is using experience to configure
these controllers; often engineers on site can come up with
an initial configuration for PID controllers using well known
methods. In this paper, we use the popular Zeigler-Nichols
method [20] to tune Kp, K1, and Kp. We begin by disabling
K; and Kp, and increasing Kp gradually until oscillation
begins with a constant amplitude (see Figure 2(b)), where

e = SetPoint — Feedback Reading

SetPoint is the desirable set point and Feedback Reading is
output of the plant. The gain at which oscillation begins is
called the ultimate gain Ky. Using Ky and the oscillation
period Ty, we can determine the values of Kp, Kr, and Kp
by substituting in the Zeigler-Nichols rules.

The main drawback of PID controllers is that their per-
formance in non-linear systems is variable, as they are inher-
ently linear. The engineer is, hence, faced with the trade-off



of decreasing overshoot versus decreasing settling time.

3.2 Fuzzy Controller

A fuzzy controller is often considered as a real-time ex-
pert system that relies in part on the system operator’s ex-
pertise in the form of situation/action rules [7]. This dif-
fers from PID controllers in that fuzzy controllers mainly
describe what the system’s operator would do in different
situations based on a set of fuzzy conditions, which resem-
bles our human perception of conditions/actions such as the
control we employ while driving. This fundamental basis
enables fuzzy controllers to outperform PID controllers in
non-linear systems.

3.2.1 Fuzzy Logic

The first function of a fuzzy controller is to transform
a discrete measured value (called a crisp value) to a fuzzy
value. We first define fuzzy sets as sets, whose elements have
degrees of membership to that set. For a universe U, each
fuzzy set is associated with a membership function, which
maps each value u € U to a value within the interval [0, 1].
value That is

welUd —0,1]

An if-then implication rule is generally of the form “if X
is A then Y is B”, where X is a fuzzy variable, A is an an-
tecedent fuzzy set, Y is an output fuzzy variable and B is a
consequent fuzzy set. In fuzzy logic, there are many methods
with which we can perform inference based on this implica-
tion. We use scaled inference, which has the advantage of
preserving the shape of the membership function. In scaled
inference, an implication is represented by scaling the conse-
quent membership function with the degree of membership
of the crisp value in the antecedent function. Thus, for an
if-then rule, scaled inference S is calculated as follows:

ps(x,y) = pa(z) - pe(y)

where z is the the measured crisp value of the fuzzy variable
X and y is the output crisp value of fuzzy variable Y. This
process of evaluating the above equation is called firing.

Applying scaled inference to support multiple rules is our
goal in fuzzy controllers, since we need to control the system
using a set of rules that account for the expert’s response
in different situations. There are two ways to apply scaled
inference to multiple rules: (1) composition-based inference,
and (2) individual-rule-based inference. The difference be-
tween these two methods is that in individual-rule-based in-
ference, each rule is fired individually and then a union is
calculated for all rules. Composition-based inference calcu-
lates the union first and then fires the resulting set. The
output for both methods is the same when using scaled in-
ference. Thus, for a given u € U, the result of firing the set
of rules using individual rule-based inference is obtained by
the following equation:

pur (u) = max {p 0 () - ppo (u)} (6)

where k is the enumerator over the set of rules, and z is the
crisp input.

3.2.2  Structure of a Fuzzy Controller

Figure 3 shows the structure of a typical fuzzy controller [7].

A fuzzy controller consists of the following components:
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Figure 3: Structure of a Fuzzy Controller [7].
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Fuzzification When a fuzzy controller receives a measured
value from the system, this value must be fuzzified, so
that its membership to the associated fuzzy sets could
be determined. As mentioned earlier, in this paper, we
use scaled inference for fuzzification.

Knowledge base This component consists of a rulebase
and a database. The rulebase contains the set of rules
including the antecedents and consequents. The
database contains the membership functions of fuzzy
sets. In common practice there are five fuzzy sets for
each fuzzy variable: LargeNeg, MedNeg, Small, Med-
Pos, and LargePos. The membership functions for
these sets are lambda-type functions, with the excep-
tion of LargeNeg and LargePos, which are Z-type and
S-type respectively [17]. An example of these functions
is shown in Figure 4.

Inference engine The inference engine employs either
composition-based inference or individual-rule-based
inference, described above. The latter is more widely
used in fuzzy control since it is computationally more
efficient and uses less memory.

Defuzzification This component transforms the output of
the inference engine into one single point-wise value.
This value is then applied to the system to complete
the control loop. The most widely used method for de-
fuzzification is gravity defuzzification, which calculates
the center of gravity for pr (u) in Equation 6. The
output crisp value u* is calculated as follows:

Foo
U*_/oou-,uz(u)du -

/+oo,u1 (u) du

—o0

4. MONITOR CONTROLLER DESIGN

This section presents in detail the design of our controllers
based on the objectives in Equations 2, 3, and 4. As dis-
cussed in the introduction (see Figure 1), the program under
inspection can be multi-threaded running on a single-core
machine. We instrument the program, so that it enqueues
the events in a bounded-size buffer whenever they are modi-
fied. The monitor is a separate thread within the program’s



process, that executes at a higher priority than the program
threads. It is idle for a period of time while events are be-
ing enqueued in the buffer, and once invoked, it preempts
the program threads due to having a higher priority. The
monitor then reads all events and verifies a set of prede-
fined logical properties. Once the verification is complete,
the monitor enters idle mode again, and awaits the refilling
of the event buffer.

The controller (see Figure 1) executes within the moni-
tor thread. With every invocation of the monitor, the con-
troller determines when the next invocation should occur
to satisfy Equations 3 and 4. In order to maintain sound-
ness, no events should be dropped from the buffer. Thus,
when the buffer is full, the monitor invocation is automat-
ically triggered ahead of its scheduled invocation to ensure
soundness. This is called a buffer-triggered invocation. Sub-
sections 4.1-4.5, describe the design of our PID and four
fuzzy controllers.

4.1 PID Controller

Since we deal with reactive systems, overshoots are in-
evitable. In the context of our problem, an overshoot refers
to the event that the buffer overflows before the monitor is
invoked. Our design supports a safety threshold for buffer
utilization. For instance, a controller with an 80% safety
threshold will attempt to keep the buffer 80% utilized in
every monitor invocation.

e Input. In order to achieve maximum memory
utilization (Equation 3), the controller should target
maintaining a completely full buffer up to the safety
threshold at every invocation of the monitor. Thus,
the input error signal to the controller is the num-
ber of empty locations in the buffer at the moment
the monitor is invoked. The safety threshold is also
a configuration parameter of the controller that can
be altered depending upon the system requirements.
Hence, the input error signal is formally the following:

e(tm;) =B xS — |between (tmi,tmi71)|

where B is the buffer size, S is the safety threshold
percentage, ty,, is the timestamp of the current invoca-
tion of the monitor, t,,,_, is the timestamp of the last
invocation of the monitor, and between (tml, by 1) is
the set of events received between the two timestamps
(defined in Equation 1).

e Output. Initially the controller schedules the mon-
itor to run after a predefined idle period. The goal of
the controller is to change this initial period dynam-
ically to maintain zero error. We refer to this period
as the polling period, i.e. the period with which the
monitor polls the application for new events. Thus,
the output of the controller is the offset (positive or
negative) with which to change the polling period to
maintain zero error.

e Tuning. The controller is tuned using the Ziegler-
Nichols method. The proportional, integral and deriva-
tive gains are 0.6K,, 2K,/T., and K,T,/8, respec-
tively, where T, is the period of constant oscillation
and K, is the proportional gain at which oscillation
occurs (see Figure 2(b)).

The controller updates are not periodic due to the fact
that the period depends on the output of the controller it-
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Figure 5: Membership functions of the error fuzzy
sets.

self, and also due to buffer triggered invocations. Thus, the
integral component is calculated as in a wvariable sampling
period PID [9].

4.2 Fuzzy Controller 1

The first fuzzy controller attempts to maximize memory
utilization, similar to the PID controller.

e Input. The input to the controller is the fuzzy
variable Ep representing the number of empty loca-
tions in the buffer. The crisp value for this variable is
calculated the same way e(t) is calculated in the PID
controller:

Ep = B x S — |between (tm,,tm,_,)|

There are 5 fuzzy sets for the error variable based
on lambda-type functions as shown in Figure 5. The
Small set has a peak at zero error, with the left x-
intercept at # and the right z-intercept at BTXS.
The reason these points are not symmetric is that the
largest positive error that could be reached is B x S,
which denotes that the buffer is completely empty.
However, the largest negative error is —B(1 —.5), since
buffer triggering will prevent the error from exceeding
that value.

e Output. The output of the controller is the offset
value from the current polling period, which we de-
note as A x. The membership functions for the output
variable are standard lambda-type functions similar to
those in Figure 4, with centers at —1, —0.5, 0, 0.5, and
1, respectively. The output is multiplied by a factor
depending on the nature of the system.

e If-then rules.
are as follows:

The if-then rules for the controller

— if Ep is LargeNeg, Ax is LargeNeg
— if Ep is MedNeg, Ax is MedNeg

— if Ep is Small, Ax is Small

— if Ep is MedPos, Ax is MedPos

— if Ep is LargePos, Ax is LargePos

e Fuzzification, inference, and defuzzification. The
fuzzification module uses scaled inference and the in-
ference engine uses individual rule based firing. The
defuzzification module uses the center of gravity
method to calculate the output value. The calcula-
tions involved in applying these methods are minimal,
with the advantage that most of the calculations can
be precomputed before the system executes, thus de-
creasing the processing overhead of the controller in
run time.
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4.3 Fuzzy Controller 2

Fuzzy controller 2 targets both memory utilization and
time predictability. The approach of this controller is to
balance between choosing a polling period that would mini-
mize the error in the buffer, and choosing a polling period of
a value as close as possible to the mean of all previous polling
periods. The second condition ensures that the variance of
the polling period is minimized.

e Input. In addition to Ep, we introduce a new fuzzy
variable E'; to control the polling period variance. Ex
represents the difference between the current polling
period and the mean of all previous polling periods.
The crisp values of Ex is calculated as follows:

X_x .
where X is the current polling period and X is the
mean of all previous polling periods. Fx is a percent-
age so as to make the controller computations indepen-
dent of the time scale at which the system operates.
The membership functions for this variable are stan-
dard lambda-type, as shown in Figure 6. These values
are configuration parameters and can be changed ac-
cording to the user requirement. The choice of the
range —30% to 30% produces low variation in polling
periods, and consequently high time predictability.

Ex =

e Output. The output of the controller is the same as
Fuzzy 1 (i.e., the offset value from the current polling
period).

e If-then rules. Since the controller is now targeting
two simultaneous goals involving two fuzzy variables
(E and Ex), with 5 fuzzy sets each, there are 25
possible if-then rules. Table 1 shows the consequent
fuzzy set of each rule based on the combination of the
two antecedent fuzzy sets, where the columns are Ex
fuzzy sets, the rows are Ep fuzzy sets, and LN, MN,
S, MP, and LP are abbreviations of LargeNeg, Med-
Neg, Small, MedPos, and LargePos, respectively. The
mapping above is symmetric, meaning that no vari-
able has a more significant effect on the output than
the other.This mapping is a configuration parameter
and could be changed according to the system require-
ments.

4.4 Fuzzy Controller 3

Instead of minimizing the variance, fuzzy controller 3 at-
tempts to maintain an upper bound on the variance. Thus,
this controller adds a configuration parameter to fix that
upper bound. However, since the mean of polling period is
not known a priori and changes during the program’s execu-
tion, the value that the user chooses as an upper bound on

E g Fuzzy sets

LN MN S MP LP

LN S MN LN LN LN

Ep MN | MP S MN LN LN

Fuzzy S LP MP S MN LN

sets MP | LP LP MP S MN
LP LP LP LP MP S

Table 1: Symmetric mapping of input variables in
if-then rules.

the variance does not represent the actual variation in the
polling period. For instance, a variance of 10 for a polling
period mean of 1000 is an indicator for very high predictabil-
ity and low variation. However, the same variance when the
mean is 10 shows very high variation in polling times. This
has led to using the coefficient of variation as the metric
that has an upper bound. The coefficient of variation is cal-
culated as ¢, = ox/ X , where ox is the standard deviation
of all previous polling periods, and X is the mean. Since
the polling period mean will never be zero, ¢, is a safe met-
ric. The coefficient of variation enables the user to dictate
the required shape of the distribution of polling periods; i.e.
whether to have a broad or narrow curve around the mean.

Fuzzy controller 3 adopts a fuzzy variable E., which is
simply the last polling period of the controller. Let all
polling periods since the start of execution be the sequence
X = X1 X2X3--- Xn, where Xy is the last polling period.
Since the upper bound of ¢, is fixed by a constant k, the con-
troller needs to determine the best Xny1 that guarantees k
as the coefficient of variation. We expand the coefficient of
variation formula, so that we can obtain the value of Xn41.
This led to deriving a quadratic equation whose roots are
the values for Xn41 that produce ¢, = k. To simplify the
equation, we define v as the following quantity:

_ <N+1+k2N>

N (N +1)° ©)

where N is the number of polling periods in the sequence
X. The quadratic equation to calculate Xy 41 is as follows:

N
1
(N - ’Y) XX41 — (Q’YZXz) XN41+

1 N - N
<NZX3—WZXi>_O (10)
i=1 1=1

If Equation 10 has complex roots, then it is not possible for
X n+1 to lower the coefficient of variation down to k. In this
case, fuzzy controller 3 falls back to Fuzzy 2, attempting
to minimize the variance all together. This will continue
until the coefficient of variation is low enough that it can be
controlled within the upper bound.

If the two roots of Equation 10 are real values, the mean
is a number between these two roots. The membership func-
tions for E., are designed in such a way that it tries to keep
the polling period between the two roots, with preference
to the mean. Figure 7 shows how these functions are de-
fined, where r1 and r2 are the roots of Equation 10. The
Small membership function has a peak at the mean p, has
a left z-intercept at r1, and a right z-intercept at r2. Medi-
umNeg and MediumPos are centered around r; and r2 with
intercepts at half the distance between the mean and the
roots. This maintains fairness in treating the polling period
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regardless of which root it is closer to.

The mapping in the if-then rules in this controller is sim-
ilar to the mapping in Fuzzy 2 as shown in Table 1, which
maintains a balanced trade-off between memory utilization
and time predictability.

4.5 Fuzzy Controller 4

Fuzzy controller 4 is essentially the same as Fuzzy 3, with
the exception of the mapping for the if-then rules. In this
controller, the mapping gives preference to controlling mem-
ory utilization when Ep is a large negative value, even if
that contradicts with the time predictability requirement.
Table 2 shows the modified mapping. This mapping en-
ables Fuzzy 4 to react faster to large overshoots in the error,
thereby maintaining stability and giving room for the con-
troller to work on a balanced trade-off.

S. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

In order to analyze the performance of our controllers, we
have conducted two case studies: (1) a Bluetooth mobile
payment, and (2) a Laser beam stabilizer for aircraft track-
ing. Each case study involves using different controllers with
different configurations.

Our experiments are designed based on three factors:

1. Controller type. We incorporate seven controllers
in our experiments: PID, Fuzzy 1, Fuzzy 2, Fuzzy 3
with target coefficient of variation ¢, = 0.4, Fuzzy 3
with ¢, = 0.2, Fuzzy 4 with ¢, = 0.4, and Fuzzy 4 with
¢y, = 0.2,

2. Buffer size (B). We experiment with three different
buffer sizes: 20, 40, and 60 events.

3. Safety threshold (S). We experiment with two safety
thresholds: 80%, and 90%.

Hence, there is a total of 42 configurations to test all differ-

ent combinations of the above three factors. For both case

studies, we carried out multiple runs with randomization to

provide statistical confidence and remove any hidden effects.
The five measurement metrics that we observe are:

E., Fuzzy sets
| LN MN S MP LP
LN [ MN LN LN LN LN
Ep MN S MN MN LN LN
Fuzzy S LP MP S MN LN
sets MP LP LP MP S MN
LP LP LP LP MP S

Table 2: Asymmetric mapping of input variables in
if-then rules.

1. Error mean. This is the mean number of empty
buffer locations at every invocation of the monitor.
This value is a measure of the memory utilization of
the monitor, i.e. the lower the value, the more utilized
the memory.

2. Polling period coefficient of variation (C,). This
value is a measure of time predictability, i.e. the lower
the value, the closer polling periods are to their mean,
and hence, more time predictability.

3. Context switches. This is the number of invocations
of the monitor during a run of an experiment. This
value is a measure of the overhead introduced by the
monitor.

4. Buffer triggers. This is the number of buffer-
triggered monitor invocations. This value is a mea-
sure of the quality of the controller in the sense that
a well designed controller should not overshoot fre-
quently causing many buffer triggers.

5.1 Bluetooth Mobile Payment (BTP)

Mobile payment is becoming increasingly popular and gain-
ing assurance about the soundness of such a system is an
essential requirement. Whether payment is through WiFi,
Bluetooth, or NFC, the process relies on a payment hub that
communicates with smartphones to process payments, which
includes establishing a connection with devices. The hub es-
tablishes a connection with these devices and sends/receives
messages. We monitor these messages at the operating sys-
tem level to ensure that every message gets a response and
no error.

Our experimental platform is single core machines run-
ning under the QNX real-time operating system hosting a
Bluetooth 2.1 adapter. Our implementation follows the out-
line in Figure 1, with the exception that there is a single
program thread responsible for extracting events using the
QNX TraceEvent API and queuing them into the buffer.
We use an experimental dataset that has been collected in
a shopping mall [10]. It includes Bluetooth contact traces
from employee devices around the cashier area of a certain
store. To provide statistical confidence in the results, we run
9 replicates of a trial, where each trial consists of running
all 42 possible combinations of the experimental factors.

5.1.1 Analysis of Time Predictability

Figure 8 shows the average polling period coefficient of
variation C, across all 9 replicates for buffer sizes 20, 40, and
60. As can be seen, Fuzzy 2 exhibits the lowest C,, since
it is designed to control the polling period within +15%
of the mean (see Section 4.3). Fuzzy 3 targets C, = 0.2
(denoted F3-0.2 in the figure) and Fuzzy 4-0.2 show low C,
due to having an aggressive C, = 0.2 goal. In Figure 8(a),
Fuzzy 3-0.2 and Fuzzy 4-0.2 fail to meet their goals, scoring
a Cy, of 0.32 and 0.37. This is due to the 0.2 goal being
too aggressive to reach in a buffer of size 20. Note that
at higher buffer sizes, these controllers meet their goals, as
shown in Figures 8(b) and 8(c)). However, Fuzzy 3-0.4 and
Fuzzy 4-0.4 consistently meet their goal (C, = 0.4) across
all configurations. Since Fuzzy 1 and PID do not attempt
to control C,, they have the highest values.

An interesting observation is that for a purely buffer trig-
gered implementation, where no control is involved, the C,
is almost always higher than any controller across all config-
urations (shown as a horizontal line in all three graphs). In
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Figure 8: Polling period coefficient of variation ver-
sus error mean for all 7 controllers and both safety
threshold values for BTP.

fact, for Fuzzy 2, C, is less than a third of pure buffer trig-
gered for buffer size 40. This shows the advantage of using
controllers to improve time predictability of the monitoring
system.

Figure 9 shows the box-plots of the polling periods for dif-
ferent controllers for buffer size B = 20 and safety threshold
S = 80. The figure shows that a purely buffer triggered
implementation exhibits the highest variability. This is ex-
pected since this implementation responds transparently to
the non-linearity of the system. The second highest vari-
ability is present in the PID controller, explained by the
inability of the PID to adapt to a non-linear system. Again,
it can be seen that using Fuzzy 1, which has the same goal
as the PID, can drastically improve the stability of the con-
troller. The lowest variability is - as expected - due to Fuzzy
2, Fuzzy 3-0.2, and Fuzzy 4-0.2.
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Figure 9: Box-plot of polling periods for different
controllers of BTP.

5.1.2  Memory Utilization

Figure 8 shows the mean number of empty buffer locations
(error) across all 9 replicates for buffer sizes 20, 40, and
60. The 95% confidence intervals for the error mean are
also shown. As can be seen, the PID controller consistently
has the lowest error mean, and thus provides the highest
memory utilization. The error mean for Fuzzy 1 is also low,
and comparable to that of the PID when the buffer size
increases (see Figures 8(b) and 8(c)). Fuzzy 2 exhibits a
consistently high error mean. This is due to the fact that
Fuzzy 2 is designed to be aggressive in maintaining a low
polling period C',, which comes at the cost of error. This also
applies to Fuzzy 3 aggressively targeting C,, = 0.2 (denoted
F3-0.2) and Fuzzy 4 targeting C, = 0.2. However, Fuzzy 3-
0.4 and Fuzzy 4-0.4 perform comparably to PID and Fuzzy
1, especially with increased buffer size. This stems from the
fact that these controllers have a relaxed goal (i.e., C, =
0.4) and are thus more capable of maintaining a low error
mean. The error mean of a 90% safety threshold controller
is consistently higher than that of 80% simply due to having
more space to control in the buffer.

The error mean trend is further clarified in Figure 10.
This figure shows the number of buffer triggers occurred for
every controller. It appears that the reason PID has such
a low error mean is because it consistently has the highest
number of buffer triggers. This is an indication that the
PID controller is unable to adapt to the non-linear nature
of the system, and as a result is overshooting considerably
more than any other controller. This also shows that Fuzzy
1, although having a slightly higher error mean, is more
capable of adapting to the change in the system without
frequently overshooting. The other fuzzy controllers have
a low number of buffer triggers due to their tendency to
remain stable.

5.1.3 Execution Time

We next study the effect of using different controllers on
the execution time of the program. The execution time in-
cludes the CPU time, time of kernel calls, CPU time by
child processes, and time of kernel calls made by child pro-
cesses. We compare this time to the execution time of the
program without any monitoring functionality. Note that for
this comparison, there is no verification overhead included
in the calculation. We assume that the verification overhead
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Figure 10: Number of buffer triggers vs. number
of context switches for 7 controllers and both safety
threshold values for BTP

can be offloaded to a seperate processing unit.

Since execution time results are subject to many factors
affecting variability, we attempt to estimate the worst case
overhead introduced by our controllers based on the maxi-
mum execution time of the program with our controllers rel-
ative to the minimum execution time of the program without
any monitoring. This comparison shows that in the worst
case, PID and F1 introduce a 19% increase in execution
time. However, other fuzzy controllers average around 10%.

5.1.4 Additional Observations

e Thread context switching. A high number of
buffer triggers indicates that the system is overshoot-
ing frequently and, thus, is more frequently filling the
buffer completely. This results in a lower number of
context switching. Figure 10 illustrates the number
of context switches and a trend that is related to the
number of buffer triggers. The figure also shows a hor-

izontal line denoting the number of context switches
performed by a purely buffer triggered solution, which
is expected to be the lower than any controller-based
approach.

e Time-predictability vs. memory utilization.
The trend of polling period coefficient of variation C,
versus error mean magnifies the trade-off between time
predictability and memory utilization. The results show
that Fuzzy 3-0.4 and Fuzzy 4-0.4 exhibit the best bal-
ance between the two goals consistently across config-
urations.

e Resilience to overshoots.  Figure 10 shows that
all fuzzy 4 controllers present an advantage over fuzzy
3 in terms of number of buffer triggers. Since these
controllers are designed to be more aggressive when
an overshoot occurs or is about to occur, their behav-
ior demonstrates a more conservative approach with
respect to buffer triggers.

5.2 Laser Beam Stabilization (LBS)

LBS technology is used in aircraft targeting, surveillance
and laser-based communication systems. A control system
stabilizing a laser beam is required to maintain safety prop-
erties, such as ensuring that the offset of the laser from the
target should not exceed a certain value. In this case study,
we use the Quanser laser beam stabilization system with
a mounted motor that produces undesirable vibrations af-
fecting the stability of the laser. When the photodetector
registers the laser at an offset larger than 0.01lmm, an event
is queued into the buffer. Our experiments are based on 9
replicates and we target C, = 0.6 for Fuzzy 3 and 4 con-
trollers. This demonstrates how a more relaxed constraint
affects the response of the controller.

5.2.1 Time predictability

Figure 11 shows the results of the experiments on buffer
size of 40. The trend of C, for polling period versus error
mean in Figure 11(a) is similar to that of the Bluetooth ex-
periment. Fuzzy 3-0.2 scores a much higher C, than its goal
(0.6 vs. a goal of 0.2). However, Fuzzy 4-0.2 is closer to its
goal, achieving C, = 0.3. This is due to the periodic nature
of the oscillations introduced by the motor, which coupled
with the aggressiveness of Fuzzy 4 at high errors, enables it
more quickly to reach low error and focus on controlling the
coefficient of variation. An interesting observation is that
Cy of a purely buffer triggered implementation is on aver-
age 0.59, which is less than all controllers except for Fuzzy
4-0.2 and Fuzzy 2. This is due to the periodic nature of
the events, which enables a purely buffer-triggered solution
to naturally produce a lower C,. Fuzzy 2 and fuzzy 4-0.2,
however, are more aggressive in maintaining a low C, and,
thus, they outperform pure buffer triggered.

5.2.2  Memory Utilization

Figure 11(a) shows that low C, comes at the cost of the
error mean. This is contrasted with the number of buffer
triggers in Figure 11(b), which shows that PID has the high-
est number.

5.2.3 Additional Observations

e Tuning cost. In Figure 11(b), the difference be-
tween the number of buffer triggers for PID when safety
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Figure 11: Results of all 7 controllers at buffer size
40 and both safety threshold values for LBS

is 80% versus 90% is large. This is due to the sensitiv-
ity of PID controllers to tuning. Compared to Fuzzy
1 which attempts the same objective, Fuzzy 1 appears
to be more consistent. This is further supported by
our results for different buffer sizes not shown here.

e Controller instability. In Figure 11(a), the trend
of C,, for 80% versus 90% safety thresholds is reversed
for PID. This is due to the instability of the PID,
causing it to revert more to buffer triggers (see Fig-
ure 11(b)). This causes it to actually produce a lower
C, at 90% because, in that case, it is closer to a pure
buffer triggered controller. This is why the resulting
C, is almost the same as that of pure buffer triggered.

6. RELATED WORK

The main focus of classic event-based runtime verifica-
tion [13, 3, 18] is to reduce the monitoring overhead through
improved instrumentation [8, 5|, static analysis [1], and ef-
ficient monitor generation [6]. Huang, et al. [12] propose
a control-theoretic based software monitoring technique. In
this work, cascaded PID controllers are used to temporar-
ily disable monitors in order to keep monitoring overhead
below a user-defined threshold. This results in an unsound
monitor, since events are being dropped when a particular
monitor is disabled. To tackle this problem, Bartocci et
al. [19] augment the method presented in [12] with a hidden
Morkov model (HMM) to fill in the gaps in event sequences.
However, both these methods require tuning of PID con-
trollers and training of HMM in [19]. While the context of
our work is different, our approach utilizes fuzzy controllers
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that are more suited to non-linear systems and require less
efforts in tuning.

In the context of time-predictability, in time-triggered run-
time verification [2] a monitor periodically samples the sys-
tem state and verifies critical properties of the system. The
time-triggered approach involves the problem of finding an
optimal sampling period (equivalent to polling rate in this
paper) to minimize the size of auxiliary memory required,
so that the monitor can correctly reconstruct the sequence
of program state changes. [14] uses symbolic execution to
compute the sampling period at run time. However, static
analysis is impractical to use in large systems, and the tech-
nique is inapplicable in reactive non-linear systems, which
are the focus of our work.

7. CONCLUSION

Gaining assurance about the correctness of embedded sys-
tems has always been an active and challenging area of re-
search in computing technology. In this paper, we concen-
trated on designing a scalable approach for runtime verifi-
cation of reactive embedded systems with three objectives:
soundness, minimum jitter in monitor invocation frequency,
and maximum memory utilization. To this end, we lever-
aged the rich literature of control theory. In particular, we
designed a PID and four different fuzzy controllers, each
targeting a different set of objectives. Our experiments on
two embedded systems (a laser beam stabilizer and a Blue-
tooth payment system) show that our controller-based ap-
proach is quite effective and scalable with minimal runtime
overhead. In particular, we observed that for reactive sys-
tems, where the environment stimuli occur non-linearly, a
fuzzy controller reacts the best with respect to achieving
time-predictability in monitor invocations. Moreover, the
fuzzy controller that attempts to maintain an upper bound
on the variance monitor invocation frequency, in most cases
provides the best balance between time-predictability and
memory utilization. In addition, the runtime overhead of
our approach is on average 10%, which is highly reasonable.

For future work, we are planning to investigate employ-
ing static analysis techniques such as symbolic execution, so
our controllers are also aware of the structure of the system
under inspection. Another interesting research direction is
to design controllers for monitoring distributed embedded
systems.
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