
smv-morph : Working with Cadence SMV models in Moscow ML

Alma L. Juarez-Dominguez and Nancy A. Day

Cheriton School of Computer Science

University of Waterloo, Canada

{aljuarez,nday}@uwaterloo.ca

Technical Report CS-2012-24

December 10, 2012

Abstract

We describe smv-morph: a toolkit of functions to manipulate and print SMV models (both Cadence
and NuSMV) in Moscow ML. Our toolkit includes the ability to read Cadence SMV models and coun-
terexamples produced by both SMV model checkers. In this report, we concentrate our explanations on
functionality related to Cadence SMV.

1 Introduction

This report serves as a tutorial for smv-morph, which allows us to manipulate SMV models, and counterex-
amples generated from the verification of such models using functions in Moscow ML [8].

Moscow ML is an implementation of Standard ML. ML stands for metalanguage and is a general-purpose
functional programming language. SMV is a symbolic model checking tool with which one can verify
temporal logic [5] properties of finite systems. If a model does not satisfy a property describing a desired
behaviour, a model checker produces a counterexample, which is a path of the model’s behaviour that
fails the property. Our toolkit can manipulate both Cadence SMV [6] models and its counterexamples.
Although smv-morph has the ability to print SMV models with NuSMV [1] syntax, this report concentrates
on the functionality related to Cadence SMV because smv-morph cannot yet parse NuSMV models to be
manipulated. Our toolkit supports a large subset of the SMV language, as shown in in Appendix A.

The files included in the package for manipulations are:

• smv-lexer.lex, smv-lexer.sml (Lexical analyzer)

• smv-parser.grm, smv-parser.sml, smv-parser-main.sml (Parser generator)

• smv.sml, smv-manipulations.sml (Manipulation functions)

These files, as well as the necessary libraries to use smv-morph are called in setup-smv-morph.sml.
The lexical analyzer and parser generator capture the structure of a Cadence SMV model or SMV

counterexample, and create an abstract syntax tree (AST) from which an output can be generated, such as
a modified SMV model. The AST can be modified by using manipulation functions that can create, test or
access the structure of the corresponding SMV model or counterexample. The structure of an SMV model
can contain modules, statements, expressions, types and properties. The structure of a counterexample is a
series of steps, where each step is a collection of variable assignments at that point in the execution of the

1

model. Examples of .smv files (Cadence SMV models) and .out files (counterexamples) are contained in the
package within the directory parse-tests. The Cadence SMV production rules are shown in Appendix A.

We have used the smv-morph package extensively during the automatic analysis of systems, where a
model is modified given the information from a counterexample generated previously during the analysis [4].
We will briefly describe this process at the end of this report. Also, Faghih and Day have used the smv-morph
in a translator from big-step modelling languages (BSML) to SMV [3].

2 Setting up smv-morph

Moscow ML (mosml) needs to be installed. The toolkit functions can be copy-pasted into a running mosml
interactive session, or mosml can be run through emacs. To invoke the interactive system, type mosml at
the shell prompt (within the smv-morph directory), where expressions and functions can be entered and
evaluated:

$ mosml

Moscow ML version 2.01 (January 2004)

Enter ‘quit();’ to quit.

-

As indicated, the interactive system can be terminated with ‘quit();’.
Once mosml is running, the following statements load the necessary libraries and functions to work with

Cadence SMV models (as described in test-parser.sml, where comments are delimited by ‘(*’ and ‘*)’):

(* Load necessary libraries and files to manipulate SMV models.

We assume that mosml is run within the smv-morph directory.

Otherwise, use loadPath to indicate the paths of the smv-morph

directory. *)

use "setup-smv-morph.sml";

Then, to create the AST of an SMV model, call the function parse cad (for Cadence SMV) with the
name of an .smv file as parameter. The mosml keyword val binds a variable (in this example the Cadence
SMV model simple model) to a value (in this example the AST of an SMV model):

(* Parse file "parse-tests/simple.smv", loading structure simple_model *)

val (simple_model:smv.smv_model) = parse_cad "parse-tests/simple.smv";

Note that the elements of the AST structure, as well as the SMV manipulations functions related to this
AST structure are all included in the smv.sml package file and they must be prefixed by ‘smv.’, as it will
be seen used throughout this report (unless one uses open smv; to access the SMV structure directly). The
function parse cad is part of the parser generator, which is not part of the manipulation functions related to
the SMV AST structure. Therefore, parse cad does not need to be prefixed by ‘smv.’. Also, the functions
that are defined in this report to illustrate the toolkit’s functionality use smv-morph functions but are not
part of the toolkit.

To display an SMV model on the screen with Cadence SMV syntax, use the following commands (also
included in test-parser.sml), where simple model contains the AST representation of the SMV model:

2

(* Print parsed file "simple.smv" to screen - Cadence SMV syntax *)

smv.print_cadence simple_model;

The printed model is close to the original, except for some extra parenthesis to help illustrate relationships
and priorities among elements in the model, spaces and tabs added for formatting, and potentially re-ordering
of some model elements to preserve good modelling principles (for instance, gather and print together all
variable declarations).

Finally, whether an SMV model has been modified or not, the function print to file cadence or
print to file nusmv prints an SMV model, whose first parameter is the variable that contains the AST of
an SMV model (in this example simple model), and whose second parameter is a file name:

(* Print parsed file "simple.smv" to file - Cadence SMV syntax *)

smv.print_to_file_cadence simple_model "parse-tests/simple_cadence.smv";

The next sections describe how to use the manipulations functions to create, test or access the different
parts of a Cadence SMV module, followed by the manipulation functions for a counterexample. To illustrate
the parts that an SMV model contains, consider the design of a bit adder in Figure 1 (which is composed
of two half-adders).

half_adder

half_adder

OR

cout1

cout2sum1

in1 in2

cin

sum

cout

Figure 1: Design of a bit adder, composed of two half-adders

The Cadence SMV model of the adder is shown in Figure 2, which also labels the parts of the SMV

model in terms of the elements that smv-morph can manipulate (i.e., modules, statements, expressions,
types and properties). An SMV model can contain multiple modules (i.e., module half adder and module
main in adder.smv of Figure 2), but it should contain at least one module with the name main. An SMV

module typically contains:

• Declarations. The variables are declared in lines 13-17 of Figure 2. Declarations are statements, and
their creation involves types.

• Assignments. The functions for outputs cout and sum of the main module are defined in lines 20-
21 of Figure 2. Assignments are statements, which in turn can be formed from other statements or
expressions.

• Properties. The properties to prove are specified in lines 23-24 of Figure 2. Properties can be invari-
ants, assertions and specifications. The later can be used in assume and using..prove declarations.

3

The following sections provide more information about manipulating different parts of the Cadence SMV

model: Section 3 talks about modules, Section 4 and Section 5 discuss statements and expressions that form
assignments, Section 6 describes types related to declarations, and Section 7 refers to properties. Finally,
Section 8 explains manipulations of counterexamples, and Section 9 includes some frequently asked questions.

1 MODULE half_adder(a, b, cout, sum)

2 {

3 INPUT a, b : boolean;

4 OUTPUT cout, sum : boolean;

5

6 -- combinational

7 sum := (a & ~b) | (~a & b);

8 cout := a & b;

9 }

10

11 MODULE main()

12 {

13 INPUT in1, in2, cin: boolean;

14 OUTPUT sum, cout: boolean;

15 cout1,cout2,sum1,sum2: boolean;

16 bit0 : half_adder(in1, in2, cout1, sum1);

17 bit1 : half_adder(sum1, cin, cout2, sum2);

18

19 -- unit delay

20 next(cout) := cout1 | cout2;

21 next(sum) := sum2;

22

23 prop1: assert G(in1 & ~in2 & ~cin -> X sum);

24 prop2: assert G(~a & ~b & ~cin -> X ~sum);

25

26 }

m
o

d
e
l

m
o

d
u

le
m

o
d

u
le

statements
+

expressions

properties

types

Figure 2: Cadence SMV model adder.smv[2] for the bit adder design shown in Figure 1

All the basic manipulation functions are included in smv.sml. To give a better initial intuition on the
use of these manipulation functions, consider their naming convention:

• test : functions have as prefix “is ”. For instance, function smv.is type int return true if the
datatype has been declared as integer.

• create: functions have as prefix “mk ”. For instance, function smv.mk type bool creates a Boolean
datatype.

• access : functions’ names refer to the type of information they access. For instance, the function
smv.vals of type enum returns the values of a enumerated datatype.

4

3 Manipulating Modules

To illustrate the manipulation of modules, consider the model prio.smv borrowed from the Cadence SMV

Tutorial [7] and shown in Figure 3, which only contains a main module. All the manipulations to model
prio.smv described in this report are also included in test-parser.sml.

1 module main(req1,req2,ack1,ack2)

2 {

3 input req1,req2 : boolean;

4 output ack1,ack2 : boolean;

5

6 ack1 := req1;

7 ack2 := req2 & ˜req1;

8

9 mutex : assert ˜(ack1 & ack2);

10 serve : assert (req1 | req2) -> (ack1 | ack2);

11 waste1 : assert ack1 -> req1;

12 waste2 : assert ack2 -> req2;

13 }

Figure 3: SMV model prio.smv (borrowed from the Cadence SMV Tutorial) [7]

As explained in the Cadence SMV Tutorial, the module main of model prio.smv contains:

• Declarations. The variables req1, req2, ack1 and ack2 are declared to be of type Boolean.

• Assignments. The functions for outputs ack1 and ack2 in terms of inputs req1 and req2.

• Properties. The properties to be proved, in this case, assertions such as mutex and serve.

To manipulate the Cadence SMV model prio.smv, first we need to create the AST of the SMV model
with parse cad and assign it to a variable (for instance m). To do so, use:

(* Parse file "parse-tests/prio.smv", creating structure m *)

val (m:smv.smv_model) = parse_cad "parse-tests/prio.smv";

The first manipulation one can perform is to access the modules of an SMV model1. Because we are
normally going to use the parts of the model that we are accessing, it is better to assign the accessed parts
of the model to variables (using the mosml keyword val) as:

(* Access the modules of model prio.smv *)

val modules = smv.modules_of_model m;

Note that the result of this function returns a list of modules because, as explained before, an SMV model
can contain multiple modules with the module main being one of them. Modules in this list can appear in
any order, and the main module can be filtered out by its name. In this case, the list contains only the main
module, which can be assigned to variable mod main by the ML function hd for further manipulations:

(* Assign module main to variable mod_main *)

val mod_main = hd modules;

1In the rest of the report, we often use ‘SMV model’ to mean the AST of the corresponding SMV model.

5

Let’s observe the module of model prio.smv in Figure 3: it has a name (main) and it also has four
parameters: req1, req2, ack1 and ack2. The first two parameters are inputs and the last two are outputs.
We can access the name and parameters of the module using:

(* Access the name of module main (in variable mod_main) *)

val name_module = smv.name_of_module mod_main;

(* Access the parameters of module main (in variable mod_main) *)

val params_module = smv.params_of_module mod_main;

A more general way to access the name of module main would be to access the name of all the modules,
using the mosml functions map and fn to go through all the elements of the list of modules (which has been
assigned to the variable modules):

(* Access to all the names of all the modules (in variable modules) *)

val name_all_modules = map (fn x => smv.name_of_module x) modules;

To illustrate manipulation functions related to the creation of modules, consider the addition of a pa-
rameter, say ack3, to the main module of prio.smv. In smv-morph, a module is created with the function
smv.mk module by providing four inputs: name, parameters, statements and invariants. We have chosen
these elements as input for module creation because they are the most common elements of an SMV module.
Note that other elements, such as assertion properties, are added later, and the details will be discussed in
Section 7. In our current example, we only want to modify the parameters by adding ack3 to the list of
parameter names. Therefore, to leave the name, statements, and invariants of the main module unchanged,
we would basically access them and use the information returned to perform the creation of the new module
as follows:

(* Access the statements of module main (in variable mod_main) *)

val stmts_module = smv.stmts_of_module mod_main;

(* Access the invariants of module main (in variable mod_main) *)

val invars_module = smv.inv_of_module mod_main;

(* Access the assertions of module main (in variable mod_main) *)

val asserts_module = smv.asserts_of_module mod_main;

(* OPTION 1: Creation of main module adding parameter ack3, *)

(* with parameters: name, parameters, statements and invariant, *)

(* chosen as these are the most common elements of an SMV module *)

(* Other elements, such as assertion properties, are added later *)

(* This is the more general method, using the toolkit’s accessor *)

(* functions directly *)

val main_mod1 = smv.mk_module

(smv.name_of_module mod_main)

((smv.params_of_module mod_main)@["ack3"])

(smv.stmts_of_module mod_main)

(smv.inv_of_module mod_main);

6

(* OPTION 2: Creation of main module adding parameter ack3, *)

(* with parameters: name, parameters, statements and invariant *)

(* This is a more specific method, using the variables assigned so far *)

val main_mod2 = smv.mk_module

name_module (params_module@["ack3"]) stmts_module invars_module;

Then, we can create the new model (using smv.mk model) and display its content to the screen (with
smv.print cadence). In smv-morph, a model is created by providing two parameters: a list of modules
(where main is one of them and in this example, it is the only module) and a list of SMV fairness constraints
(although there are none in prio.smv, represented in the AST m). We remind the reader that the function
print to file cadence or print to file nusmv would print an SMV model to a file.

(* Create NEW prio.smv model with the modified main module; *)

(* A model includes a list of modules and a list of fairness *)

(* Print modified "prio.smv" to screen - Cadence SMV syntax *)

smv.print_cadence (smv.mk_model ([main_mod1]) (smv.fairness_of_model m));

This simple example shows how to modify the elements of a module in a Cadence SMV model by using
the manipulation functions that access and create the structure of the model represented in an AST.

4 Manipulating Statements

Now we turn to the manipulation of statements of a module, where the function smv.stmts of module returns
a list of statements. The Cadence SMV statements supported by smv-morph are: variable declarations
(regular, input and output variable declarations), conditional statements (i.e., if-then, if-then-else and
switch statements), init and next statements (to denote a sequence of values of a variable), combinational
assignments and macro statements.

To be able to modify statements, we first need to test the statement being analyzed to be able to
access its information depending on the type of statement. To illustrate this point, we create the function
print stmt type2 to test a statement given as input and print its type on the screen. Then, we call the
function print stmt type with the first statement in the list stmts module, which is the list of statements
returned by smv.stmts of module (from module main in prio.smv).

(* Function that tests and prints the type of the statement given as input *)

fun print_stmt_type (stmt) =

if (smv.is_var_decl (stmt)) then print "variable_declaration" else

if (smv.is_init (stmt)) then print "init" else

if (smv.is_stmt_next (stmt)) then print "next" else

if (smv.is_macro (stmt)) then print "macro" else

if (smv.is_comb_assign (stmt)) then print "combinational_assignment" else

if (smv.is_stmt_if_then (stmt)) then print "if-then" else

if (smv.is_stmt_ite (stmt)) then print "if-then-else" else

if (smv.is_stmt_switch (stmt)) then print "switch" else print "other";

(* Test and print type of first statement of module main (in variable stmts_module) *)

print_stmt_type(hd stmts_module);

2Note again that the functions shown in this report to illustrate the functionality of the toolkit, such as print stmt type

and change var name stmts in this section, are not part of smv-morph.

7

To illustrate manipulation functions related to access and creation of statements, consider that we want
to modify any assignment of req1 to ack1, so that the value is assigned to ack3 instead. The most gen-
eral solution is to write a function that tests all statements in the list, and changes a variable name in the
left-hand side of a statement to another name given as parameter. To perform this renaming, we need to
use manipulation functions to access a variable’s name (in the left-hand side of a statement), and if it is
the one to be changed (in this case, the first parameter given to the function), then a modified statement
is created by using the new name (given as a second parameter to the function). All other assignments
(e.g., conditional statements) are left unchanged. These manipulations are illustrated next by the function
change var name stmts.

(* Function that tests all statements in the list, and modifies the assignment

whose left-hand-side’s variable name is indicated as first parameter, giving

it the name of the second parameter. Leave other statements unchanged. *)

fun change_var_name_stmts (var_name, new_name, stmts) =

let

fun mk_str_from_id id =

let

val last_id = List.last id

val all_but_last_id = List.take(id,List.length(id)-1)

in

(concat(map (fn x => xˆ".") all_but_last_id))ˆlast_id

end

fun mk_id_from_str str =

String.tokens Char.isPunct str

fun str_eq(str1,str2) =

if (String.compare(str1,str2)=EQUAL) then true

else false

fun change_var_name_stmt (var_name, new_name, stmt) =

if (smv.is_var_decl (stmt)) andalso

(str_eq(var_name,(mk_str_from_id(smv.name_of_var_decl stmt)))) then

smv.mk_var_decl (mk_id_from_str(new_name)) (smv.type_of_var_decl stmt)

else if (smv.is_comb_assign (stmt)) andalso

(str_eq(var_name,(mk_str_from_id(smv.lhs_of stmt)))) then

smv.mk_comb_assign (mk_id_from_str(new_name)) (smv.rhs_of stmt)

else if (smv.is_init (stmt)) andalso

(str_eq(var_name,(mk_str_from_id(smv.lhs_of stmt)))) then

smv.mk_init (mk_id_from_str(new_name)) (smv.rhs_of stmt)

else if (smv.is_stmt_next (stmt)) andalso

(str_eq(var_name,(mk_str_from_id(smv.lhs_of stmt)))) then

smv.mk_stmt_next (mk_id_from_str(new_name)) (smv.rhs_of stmt)

else if (smv.is_macro (stmt)) andalso

(str_eq(var_name,(mk_str_from_id(smv.lhs_of stmt)))) then

smv.mk_macro (mk_id_from_str(new_name)) (smv.rhs_of stmt)

(* conditional statements are unchanged (if-then, if-then-else, switch) *)

else stmt

in

map (fn x => change_var_name_stmt (var_name, new_name, x)) stmts

end;

8

(* Test, access and modify assignment to ack1, so it assigns to ack3 instead *)

val new_stmts = change_var_name_stmts ("ack1", "ack3", stmts_module);

As in the previous section, we create the model with the modified information to display its content to
the screen (with smv.print cadence using Cadence SMV syntax):

(* Creation of main module adding parameter ack3, and new list of statements *)

val main_mod3 = smv.mk_module

name_module (params_module@["ack3"]) new_stmts invars_module;

(* Create NEW prio.smv model with the modified main module; *)

(* A model includes a list of modules and a list of fairness *)

(* Print modified "prio.smv" to screen - Cadence SMV syntax *)

smv.print_cadence (smv.mk_model ([main_mod3]) (smv.fairness_of_model m));

5 Manipulating Expressions

Because smv-morph accessor functions decompose statements into other statements and expressions, this
section discusses functions that manipulate expressions (test, access and creation). The expressions supported
by smv-morph are: Booleans true and false, integer, identifier, range, enumerated set, integer set, boolean
set, logical (and, or, not), equality, inequality, less than, greater than, less or equal than, greater or equal
than, negation, addition, subtraction, multiplication, division, if-then, if-then-else, case, switch, and next.

To illustrate manipulation functions to access and creation of expressions, consider that we want to modify
any assignment statement that has a conjunction on the right-hand side, creating a disjunction instead of a
conjunction, leaving the expressions that were conjuncted unchanged. One way to perform this task would
be writing a function similar to change var name stmts, shown in the previous section, but modifying the
right-hand side of the statements. Here we follow a different approach for illustration purposes.

First, we start by dividing the list of statements (from module main in prio.smv) into the ones that are
variable declarations (which we do not want to modify as they are not assignments with conjunctions) and
the ones that are not variables declarations.

(* Filter statements that are variable declarations into var_dec_stmts *)

val var_dec_stmts = List.filter (fn x => smv.is_var_decl x) new_stmts;

(* Filter statements that are NOT variable declarations into non_var_dec_stmts *)

val non_var_dec_stmts = List.filter (fn x => not(smv.is_var_decl x)) new_stmts;

The assignments that we want to modify are not variable declarations in prio.smv, which are the
statements in the mosml variable non var dec stmts. In particular, we want to modify the right-hand
side of the assignments, so that if the expression is a conjunction, then we create a new expression that
is the disjunction of the expressions that the conjunction had as operands. To do so, we write function
mk conj into disj stmts that calls auxiliary functions to tests the type of statement and to perform the
modification of conjunction into disjunction. Function mk conj into disj stmts and its auxiliary functions,
use test, access and creation manipulation functions to generate a new set of statements when a conjunction
is found, or leaving a statement the same otherwise (e.g., conditional statements).

(* Function that creates new statements, making each statement that is an assignment

to an expression that is a conjunction into an expression that is a disjunction

9

by calling the auxiliary function mk_conj_to_disj_expr with the right-hand side

of the statement. *)

fun mk_conj_into_disj_stmts (stmts) =

let

fun mk_conj_to_disj_expr (expr) =

if smv.is_and expr then

(smv.mk_or (smv.fst_arg_of expr) (smv.snd_arg_of expr))

else expr

fun mk_conj_into_disj_stmt (stmt) =

if (smv.is_init (stmt)) then

smv.mk_init (smv.lhs_of stmt) (mk_conj_to_disj_expr (smv.rhs_of stmt))

else if (smv.is_stmt_next (stmt)) then

smv.mk_stmt_next (smv.lhs_of stmt) (mk_conj_to_disj_expr (smv.rhs_of stmt))

else if (smv.is_macro (stmt)) then

smv.mk_macro (smv.lhs_of stmt) (mk_conj_to_disj_expr (smv.rhs_of stmt))

else if (smv.is_comb_assign (stmt)) then

smv.mk_comb_assign (smv.lhs_of stmt) (mk_conj_to_disj_expr (smv.rhs_of stmt))

else stmt

in

map (fn x => mk_conj_into_disj_stmt x) stmts

end;

(* Test, access and create new statements, making an expression that is a

conjunction into an expression that is a disjunction. The function is

called with the statements that are not variable declarations *)

val new_non_var_dec_stmts = mk_conj_into_disj_stmts (non_var_dec_stmts);

The new set of statements is the union of the original variable declarations (i.e., var dec stmt) with the
modified statements result from mk conj into disj stmts (i.e., new non var dec stmts) since the order of
statements in SMV does not matter. We create the model with all the modified information generated so
far to display its content to the screen:

(* Creation of main module adding parameter ack3, and a newer list of statements

from previously modified statements *)

val main_mod4 = smv.mk_module

name_module (params_module@["ack3"])

(var_dec_stmts@new_non_var_dec_stmts) invars_module;

(* Create NEW prio.smv model with the modified main module; *)

(* A model includes a list of modules and a list of fairness *)

(* Print modified "prio.smv" to screen - Cadence SMV syntax *)

smv.print_cadence (smv.mk_model ([main_mod4]) (smv.fairness_of_model m));

6 Manipulating Types

Let us consider the manipulations performed to variable declarations, which are statements that relate types
to variables. The variable types supported by smv-morph are: Booleans, integers, ranges of integer values,
enumerated lists, module identifier and module declaration.

10

To illustrate these manipulation functions, consider variable ack1, now declared as Boolean, to be made
into an integer declaration. Function change type to int stmts follows a similar process to those described
previously in this report: from the statements that are variable declarations, find the one whose variable
name is ack1 using accessor functions, and then, create its declaration to be of type integer. If variable name
given as parameter to the function is already of type integer, nothing is done. Other variable declaration
statements are left unchanged. Also, other variables declared along with the variable which is first parameter
of the function, in this case ack1, are left as originally declared (e.g., ack2 of type Boolean).

(* Function that tests all variable declaration statements in the list,

and modifies the type of the statement whose name is indicated as first

parameter to make it an integer type (unless it is already of that type).

Leave other statements unchanged, including other variables that

were declared along with var_name (first function parameter). *)

fun change_type_to_int_stmts (var_name, stmts) =

let

fun str_eq(str1,str2) =

if (String.compare(str1,str2)=EQUAL) then true

else false

fun is_var_in_list (var, l) =

List.exists (fn x => str_eq(var,x)) l

fun filter_var_from_list (var, l) =

List.filter (fn x => not(str_eq(var,x))) l

fun change_type_to_int (fnc, var_name, stmt) =

let

val other_vars = filter_var_from_list(var_name,(smv.name_of_var_decl stmt))

in

[fnc (other_vars) (smv.type_of_var_decl stmt),

fnc ([var_name]) (smv.mk_type_int)]

end

fun change_type_to_int_stmt (var_name, stmt) =

if (smv.is_type_int(smv.type_of_var_decl stmt)) then [stmt]

else

(if (smv.is_inp_var_decl (stmt)) andalso

(is_var_in_list(var_name, (smv.name_of_var_decl stmt))) then

change_type_to_int (smv.mk_inp_var_decl, var_name, stmt)

else if (smv.is_out_var_decl (stmt)) andalso

(is_var_in_list(var_name, (smv.name_of_var_decl stmt))) then

change_type_to_int (smv.mk_out_var_decl, var_name, stmt)

else if (smv.is_var_decl (stmt)) andalso

(is_var_in_list(var_name, (smv.name_of_var_decl stmt))) then

change_type_to_int (smv.mk_var_decl, var_name, stmt)

else [stmt])

in

(* Need to flatten the list, as changing type for a variable passed as

parameter creates more than one statement: one statement for the

variable with type integer, and another statement for other variables

with type of the original declaration *)

flat(map (fn x => change_type_to_int_stmt (var_name, x)) stmts)

end;

11

(* Test, access and create new variable declaration statements.

The function is called with the statements that are variable

declarations (in var_dec_stmts) and the name of the variable

to modify *)

val new_var_dec_stmts = change_type_to_int_stmts ("ack1", var_dec_stmts);

As in the previous sections, we create the model with all the modified information generated so far to
display its content to the screen (with smv.print cadence using Cadence SMV syntax):

(* Creation of main module adding parameter ack3, and a newer list of

statements from previously modified statements (both variable

declarations and non variable declarations) *)

val main_mod5 = smv.mk_module

name_module (params_module@["ack3"])

(new_var_dec_stmts@new_non_var_dec_stmts) invars_module;

(* Create NEW prio.smv model with the modified main module; *)

(* A model includes a list of modules and a list of fairness *)

(* Print modified "prio.smv" to screen - Cadence SMV syntax *)

smv.print_cadence (smv.mk_model ([main_mod5]) (smv.fairness_of_model m));

7 Manipulating Properties

Properties are part of a module, and they can be proved or assumed. The kind of properties that can be
proved and that are supported by smv-morph are: assertions (LTL properties) and specifications (CTL
properties). When any these properties are part of a module, they can be accessed by the functions
smv.asserts of module and smv.specs of module respectively. For instance, to access the assertions that
are part of the main module of model prio.smv, use:

(* Access the assertions of module main (in variable mod_main) *)

val asserts_module = smv.asserts_of_module mod_main;

However, as described in Section 3, a module is created by providing the module name, module param-
eters, list of statements and a list of invariants. Then, properties can be added to a module that already
exists, using the manipulation functions smv.add assert, smv.add assert with comment, smv.add spec,
and smv.add spec with comment.

To illustrate the addition of properties to a module, consider the function add multiple asserts to add
the properties in the variable asserts module to the main module of model prio.smv, printing the result
of this manipulation to the screen (using Cadence SMV syntax):

(* Function that adds multiple assertions to a module, where each assertion

is composed of a name ‘n‘, an LTL property ‘p‘, and a comment ‘c‘ *)

fun add_multiple_asserts (mm, []) = mm

| add_multiple_asserts (mm, (n,p,c)::rest) =

add_multiple_asserts((smv.add_assert n p mm), rest);

12

(* Add assertion properties to main module "mod_main" of model prio.smv *)

val main_mod6 = add_multiple_asserts (mod_main,asserts_module);

(* Print modified "prio.smv" to screen - Cadence SMV syntax *)

smv.print_cadence (smv.mk_model ([main_mod6]) (smv.fairness_of_model m));

As another example, one can add the assertion properties in the variable asserts module to a newly
created module, which also requires a new parameter ack3 to be added:

(* Optionally, creation of main module adding parameter ack3, *)

(* to which some assertion properties are added *)

val main_mod7 =

let

val mm = smv.mk_module

name_module (params_module@["ack3"]) stmts_module invars_module;

in

add_multiple_asserts (mm,asserts_module)

end;

(* Print modified "prio.smv" to screen - Cadence SMV syntax *)

smv.print_cadence (smv.mk_model ([main_mod7]) (smv.fairness_of_model m));

A similar process is followed to add specifications if they already exist. In the case that properties do not
exist, but they need to be added to a module, smv-morph support functions for the creation of properties.
To create assertions, the following functions can be used:

ltl atomic ltl not

ltl and ltl multi and

ltl or ltl multi or

ltl implies ltl iff

ltl X ltl U

ltl F ltl G

To create specifications, the following functions can be used:

ctl atomic ctl not

ctl and ctl multi and

ctl or ctl multi or

ctl implies ctl iff

ctl EX ltl EU

ctl EF ctl EG

ctl AX ltl AU

ctl AF ctl AG

To illustrate the process of property creation, let us add an assertion proposed by the Cadence SMV
tutorial, which would check for avoidance of “starvation” as

no starve: assert G F (˜req2 | ack2)

This property is created in smv-morph by creating each of the parts of the assertion incrementally as follows:

13

(* Creation of property no_starve: assert G F (˜req2 | ack2); *)

val no_starve_prop = smv.ltl_G (smv.ltl_F

(smv.ltl_or

(smv.ltl_not(smv.ltl_atomic "req2"))

(smv.ltl_atomic "ack2")));

Once the properties are created, one can test and access their elements, in an analogous way as it is done
for other elements of a module. To continue with the example, we add property no starve prop to the main
module of model prio.smv and display the resulting model to the screen using:

(* Add new assertion property no_starve_prop main module *)

val main_mod8 = smv.add_assert "no_starve" no_starve_prop main_mod6;

(* Print modified "prio.smv" to screen - Cadence SMV syntax *)

smv.print_cadence (smv.mk_model ([main_mod8]) (smv.fairness_of_model m));

Finally, smv-morph also supports assume and using..prove declarations. To illustrate this point, consider
assuming the property no starve, and using it to prove mutex, which can be done using the following
manipulation functions:

(* Assume property no_starve in the main module of model prio.smv *)

val main_mod9 = smv.add_assume ["no_starve"] main_mod8;

(* Use property no_starve to prove property mutex in the same main module *)

val new_main_mod = smv.add_using_prove (["no_starve"],["mutex"]) main_mod9;

(* Print modified "prio.smv" to screen - Cadence SMV syntax *)

smv.print_cadence (smv.mk_model ([new_main_mod]) (smv.fairness_of_model m));

8 Manipulating Counterexamples

Given an SMV model with extension .smv, the results of verifying the properties that are included in such
model are in a file with the same name but with extension .out. This .out file is the one that can be parsed
and manipulated by smv-morph, so that the information from a counterexample can be obtained, analyzed
and used as described in this section.

Because SMV has the ability to verify all the properties that are part of a model, an .out file has a
particular structure, with a block of information for each property verified.

• When a property is true, there is a block of information that includes the attribute ‘truth value’ equal
to 1 (but most other information is empty). Therefore, if all the properties in a model are true, the
.out file would have as many blocks of information as properties in the model.

• When a property is false, SMV produces a counterexample. Therefore, the .out file would have a
block of information that includes the attribute ‘truth value’ equal to 0, as well as a path that shows
how the property fails. Note that SMV stops the verification process when it finds the first property
that is false, but the the .out file could still contain the blocks of information of properties that were
satisfied along with the block information of the property that failed.

14

To illustrate the manipulation of counterexamples, consider the output from the verification of prio2.smv,
which is similar to the model in Figure 3, except that variable ack1 in line 6 has been changed to be:

ack1 := req1 & ˜req2;

This change is suggested in the Cadence SMV tutorial, so that the property serve is false. Note that when
verifying the properties of prio.smv, they are all true.

To manipulate a counterexample from the verification of an SMV model, first we need to create the AST
of the .out file (which contains the output from the verification of the corresponding .smv file) and assign
it to a variable (for instance ce out).

(* Parse output file "parse-tests/prio2.out", creating structure ce_out *)

val (ce_out:smv.smv_ce_out) = parse_ce "parse-tests/prio2.out";

The first manipulation one can perform is to obtain the list of blocks of information from the verification
output3 contained in the .out file that was assigned to variable ce out. To access this information, we use
the manipulation function smv.elems of ce out and assign it to the variable ce list.

(* Obtain list of blocks of information from ce_out *)

val ce_list = smv.elems_of_ce_out ce_out;

As discussed above, the verification output might not contain a counterexample in the case that all the
properties in the model are true. To check if a counterexample exists in the list of blocks of information
contained in the .out file, we can create the function exist ce, which checks that a block of information
has attribute ’truth value’ equal to 0, using the manipulation function smv.val of ce as follows:

(* Function that returns true if a counterexample exists, thus *)

(* checking if there is a block of information with attribute *)

(* ’truth value’ equal to 0 (from the list in ce_list) *)

fun exist_ce (l) =

List.exists (fn x => (smv.val_of_int_ce(smv.val_of_ce(x))=0)) l;

(* Checking if a counterexample exists in the result of verification *)

(* of prio2.smv with function exist_ce, which returns true since the *)

(* property "serve" failed -- as described above *)

exist_ce (ce_list);

Once we are certain that a counterexample exists in the verification output (checked with function
exist ce), the next step is to filter out the block of information corresponding to the counterexample (i.e.,
the one that contains the attribute ‘truth value’ equal to 0).

(* Filter out the block of information that contains the counterexample *)

val ce_fail = hd(List.filter (fn x => (smv.val_of_int_ce(smv.val_of_ce(x))=0)) ce_list);

Then, once a counterexample information has been filtered out, one can access the list of steps (or
“states”) of the counterexample using the function smv.states of ce. One can think of these steps as
the path that shows, from the initial state, how the property failed. The variables and values in the
counterexample obtained from the .out file usually contain the extra character ‘\’, which we eliminate with
the function remove extra char.

3In the rest of the report, we often use ‘verification output’ to mean the AST of its corresponding output information

contained in the .out file.

15

(* Access the states of counterexample from prio2.out *)

val states_ce = remove_extra_char(smv.states_of_ce(ce_fail));

Each of the counterexample’s steps or states is a list of equality expressions, with the left-hand side of
the equality being a variable name and the right-hand side being its value at that particular point in the
execution of the model. To access the operands of an equality expression, use the manipulation functions
lhs of eq ce and rhs of eq ce to access the left-hand side and right-hand side respectively. Once the
operands of the equality expression has been accessed, one can also access the information of the operands.
However, we have to first test the kind of operand before accessing its information. However, there are only
two kinds of expressions that the operands can have:

1. Integer expression: The manipulation function is int ce is used to test, the function val of int ce
is used to access, while the function mk int ce can create an integer expression.

2. Identifier expression: The manipulation function is id ce is used to test, and the function name of id ce
is used to access, while the function mk id ce can create an identifier expression.

To illustrate the use of these manipulation functions for expressions in a counterexample, consider the
function print ce info, which first tests and then accesses the information in a counterexample to print
to the screen. The information of the counterexample, as a list of states (each containing a list of equality
expressions) is in the mosml variable states ce.

(* Function takes as input a list of states (each state contains a list of *)

(* equality expressions), and test/access the information printing it to the *)

(* screen. Auxiliary functions: make integer to string and identifier to string *)

fun print_ce_info (states_list) =

let

fun mk_str_from_int i =

if (i >= 0) then Int.toString i

else ("-")ˆ(Int.toString (abs i))

fun mk_str_from_id id =

let

val last_id = List.last id

val all_but_last_id = List.take(id,List.length(id)-1)

in

(concat(map (fn x => xˆ".") all_but_last_id))ˆlast_id

end

fun mk_str_from_expr_ce (expr_ce) =

if (smv.is_int_ce(expr_ce)) then

mk_str_from_int(smv.val_of_int_ce(expr_ce))

else (* is_id_ce *)

mk_str_from_id(smv.name_of_id_ce(expr_ce))

fun print_expr_ce (expr_ce) =

let

val lhs_expr = smv.lhs_of_eq_ce expr_ce

val rhs_expr = smv.rhs_of_eq_ce expr_ce

val lhs_str = mk_str_from_expr_ce(lhs_expr)

val rhs_str = mk_str_from_expr_ce(rhs_expr)

in

16

print (lhs_strˆ" = "ˆrhs_strˆ"\n")

end

in

(* First map accesses all the states in states_list *)

(* Second map accesses all the expressions in a state *)

map (fn x => map (fn y => print_expr_ce y) x) states_list

end;

(* Print information of counterexample from prio2.smv. Note that *)

(* the information of each state is not separated from the info *)

(* of other states, although c/e from prio2.smv has only one state *)

print_ce_info (states_ce);

In related work [4], we have used these manipulation functions to gather information from a counterex-
ample just generated and then create a new property using this information. Then, we re-run the model
checker Cadence SMV (with the new property and the added to the original model) from within a mosml
session, repeating the process until no more counterexamples are generated. Section 9 briefly explains how
to run Cadence SMV from within mosml.

9 Frequently Asked Questions

Q: What functions are part of the toolkit that are not accessor functions?

A: Some auxiliary functions are particularly relevant to the ability to print models in NuSMV syntax are:

• create nusmv model: Converts a Cadence SMV model into one with NuSMV syntax, particularly,
performing if-lifting since NuSMV does not support if-then or if-then-else statements (only supports
them as expressions). This function is included in smv-manipulations.sml.

• smv.sort stmts: Performs sorting of statements for NuSMV printing, which allows the model to be
printed with certain structure, thus promoting good form.

Other auxiliary functions that are included in smv-manipulations.sml for convenience of the user are
described in the following list. These functions do not require the ‘smv.’ prefix.

• List manipulations: Functions such as flat and remove duplicate, both taking as input a list with
elements of any kind.

• String manipulations: Functions such as mk str from id and remove extra char, the later ex-
plained in Section 8.

Q: How can one run SMV from mosml?

A: Use the function Process.system with parameter a string, which contains the name of the command to
run (in this case, “smv” for Cadence SMV), as well as the required flags, file name and directory where the
.smv file exists (if not in the same directory where mosml is running). For instance, in our analysis in related
work [4], we used the following function call:
Process.system ("smv -r -sift -f "ˆname dirˆ"/"ˆname file)

Q: How can one catch the result of a process run by mosml?

A: It is possible to catch and check the results of a process initiated by the function Process.system. The
simplest way is to assign the result of the function call to a variable, such as run file:
val run file = Process.system ("smv -r -sift -f "ˆname dirˆ"/"ˆname file)

17

Then, one can check if the successful termination of a process by comparing variable run file with
the function Process.success, or check that an error occurred during the execution of a process with
Process.failure. Note that a process spawned with Process.system can be wrapped in a shell script.

References

[1] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model verifier. In
International Conference on Computer-Aided Verification, number 1633 in LNCS, pages 495–499, 1999.

[2] N. A. Day. CS745/ECE725 Computer-Aided Verification (Course notes, Topic 4: Temporal Logic and
Model Checking), Fall 2009.

[3] F. Faghih and N. Day. Mapping Big-Step Modeling Languages to SMV. Technical Report CS-2011-29,
University of Waterloo, 2011.

[4] A. L. Juarez Dominguez. Detection of Feature Interactions for Automatic Active Safety Features. PhD
Thesis, University of Waterloo, 2012.

[5] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, 1st edition, 1992.

[6] K. L. McMillan. Symbolic model checking. Kluwer Academic, 1993.

[7] K. L. McMillan. Getting started with SMV (Tutorial). Cadence Berkeley Labs, 1998.

[8] S. Romanenko, C. Russo, and P. Sestoft. Moscow ML language overview. Version 2.0, June 2000.

18

A Appendix - Cadence SMV Production Rules

The supported subset of the SMV language is shown in regular font, while the unsupported elements are
grayed out.

A.1 Identifiers

digit:

one of 0 1 2 3 4 5 6 7 8 9

number:

digit

| number digit

character:

one of A-Z a-z

simple_id:

character

| simple_id character

| simple_id digit

| simple_id _

id:

simple_id

| id . simple_id

| id . [expr]

A.2 Types

typ_cad:

boolean

| int

| expr .. expr

| { expr_list }
| array expr .. expr of typ_cad

| simple_id (expr_list) -- module type with arguments

| atom_list -- module type without arguments

atom_list:

simple_id

| atom_list , simple_id

A.3 Expressions

expr_list:

expr

| expr_list , expr

expr:

19

switch (expr) { cblk_expr }
| case { cblk_expr }
| number

| { expr_list }
| (expr)

| [expr_list]

| [expr_list : = expr ..]

| bin (expr , expr)

| - expr

| ˜ expr

| + expr -- unary expression

| * expr -- unary expression

| & expr -- unary expression

| | expr -- unary expression

| ˆ expr -- unary expression

| expr - expr

| expr :: expr

| expr ** expr

| expr * expr

| expr \ expr

| expr << expr

| expr >> expr

| expr + expr

| expr mod expr

| expr in expr

| expr union expr

| expr = expr

| expr ˜= expr

| expr < expr

| expr <= expr

| expr > expr

| expr >= expr

| expr & expr

| expr | expr

| expr ˆ expr

| expr <-> expr

| expr -> expr

| expr .. expr

| next (expr)

| expr ? expr : expr -- if-then-else expression

| expr ? expr -- if-then expression

| id

| default

cblk_expr:

expr : expr ;

| cblk_expr expr : expr ;

20

A.4 Statements

bracket_block:

{ stmt_list }

stmt_list:

stmt

| stmt_list stmt

stmt:

matched

| unmatched

unmatched:

if (expr) unmatched

| if (expr) matched else unmatched

| if (expr) bracket_block else unmatched

matched:

if (expr) matched else matched

| if (expr) bracket_block else matched

| if (expr) matched else bracket_block

| if (expr) bracket_block else bracket_block

| other

other:

input atom_list : typ_cad ;

| output atom_list : typ_cad ;

| atom_list : typ_cad ;

| define id := expr ;

| id := expr ;

| next (id) := expr ;

| init (id) := expr ;

| id <- expr ;

| next (id) <- expr ;

| init (id) <- expr ;

| case { cblk }
| switch (expr) { cblk }
| for (simple_id = expr ; expr ; simple_id =) inside

| chain (simple_id = expr ; expr ; simple_id =) inside

inside:

stmt

| bracket_block

cblk:

expr : inside

| cblk expr : inside

21

A.5 Modules

module_list_cad:

module_cad

| module_list_cad module_cad

module_cad:

module simple_id () { contents_list }
| module simple_id (param_list) { contents_list }

param_list:

simple_id

| param_list , simple_id

bracket_block:

{ stmt_list }

contents_list:

contents_cad

| contents_list contents_cad

contents_cad:

stmt

| invar expr ;

| assume atom_list ;

| using atom_list prove atom_list ;

| atom_list : assert assert ;

| atom_list : spec spec ;

assert:

(assert)

| prop

| F assert

| G assert

| X assert

| ˜ assert

| assert U assert

| assert & assert

| assert | assert

| assert -> assert

| assert <-> assert

spec:

(spec)

| prop

| A F spec

| A G spec

| A X spec

| E F spec

| E G spec

22

| E X spec

| ˜ spec

| A spec U spec

| E spec U spec

| spec & spec

| spec | spec

| spec -> spec

| spec <-> spec

prop:

id

| number

| - number

| prop + prop

| prop - prop

| prop * prop

| prop / prop

| prop = prop

| prop ˜= prop

| prop < prop

| prop <= prop

| prop > prop

| prop >= prop

A.6 Model

smv_parser_cad: module_list_cad

23

