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Abstract

One of the crucial building blocks for Information Centric Networking (ICN) is a name based routing scheme
that can route directly on content names instead of IP addresses. However, moving the address space from
IP addresses to content names brings scalability issues to a whole new level, due to two reasons. First, name
aggregation is not as trivial a task as the IP address aggregation in BGP routing. Second, the number of
addressable contents in the Internet is several orders of magnitude higher than the number of IP addresses.
With the current size of the Internet, name based, anycast routing is very challenging specially when routing
efficiency is of prime importance. We propose a novel name-based routing scheme (aRoute) for ICN that offers
efficient bandwidth usage, guaranteed content lookup and scalable routing table size. aRoute consists of two
components: an alphanumeric Distributed Hash Table (DHT) and an overlay to underlay (Internet topology)
mapping algorithm. Simulation results show that aRoute performs significantly better than Content Centric
Network (CCN) [1] in terms of network bandwidth usage, lookup latency and load balancing.

1 Introduction

Information Centric Networking (ICN) has recently received significant attention in the research community. ICN
philosophy prioritizes a content (“what”) over its location (“where”). To realize this separation of a content from its
location, a name based routing mechanism is essential. However, a number of crucial issues and challenges related
to name based routing are yet to be addressed in order to successfully realize a content oriented networking model
for the future Internet.

Today’s Internet exists as an interconnection of thousands of Autonomous Systems (ASs) from around the globe. The
biggest Internet routing table contains around 4 x 10° Border Gateway Protocol (BGP) [2] routes for covering about
3.8x 10% IPv4 addresses and 6 x 10® hosts . This 10* scaling factor between IPv4 addresses and BGP routes is achieved
by prefix based routing and route aggregation. However, the number of addressable ICN contents is expected to be
several orders of magnitude higher. Number of “data pieces” including sensor data, etc., is approximately on the
order of 106 [3], while Google has indexed approximately 1012 URLs [4], which would impose 7 orders of magnitude
scalability requirement on a routing scheme similar to BGP.

The routing scalability issue in ICN is related to how contents are named and how inter-AS and intra-AS routing
protocols process these names. Even if a BGP like inter-AS ICN routing protocol covers only the top-level domains as
prefixes, it will need to carry approximately 2 x 108 unique prefix routes [5], as no aggregation is possible at this level.
So, the crux of the problem lies in the fact that ICN requires Internet routers to maintain a Brobdingnagian amount
of routing state, which does not seem to be possible with existing technology. However, in reality the scalability



requirement will be much higher for the following reasons: (i) content names are not as aggregatable as IP addresses,
(ii) names with same prefixes may not be advertised from nearby network locations, (iii) routing cannot depend on
topological prefix binding as content retrieval should be location independent, (iv) restricting the content name to
some form of specialized format limits the usability of the system, and finally, (v) supporting content replication,
caching, and mobility reduces the degree of route aggregation that can be applied, as multiple routes for the same
content need to be maintained in the routing table.

In this paper we address the routing scalability issue for ICN. This paper has three major contributions. First, we
identify the key requirements for designing an ICN routing mechanism (Section 2). Second, we propose a name-based
overlay routing scheme named «Route, which is scalable and offers content lookup guarantee (Section 3). Both the
routing table size and the number of hops for content lookup in aRoute are logarithmically bounded by network
size. Third, for Internet inter-domain routing using aRoute, we propose a distributed overlay-to-underlay mapping
scheme that enables near shortest path routing in underlay (AS-network) by preserving the adjacency relations in
the overlay graph (Section 4).

We also provide mathematical bounds on the routing scalability of aRoute and the operating range of any mapping
scheme (Section 5). We provide a brief review of the existing approaches for ICN routing in Section 6. Finally, we
conclude and present future research directions in Section 7.

2 Design Considerations

We identify the following key requirements for an inter-domain ICN routing mechanism: 1) name-based, any-cast
routing : directly forward a query to a valid copy of the requested content, unlike the contemporary, two-step process
of URL-to-IP lookup followed by IP-to-host routing; 2) bandwidth efficiency : routing should follow the shortest
possible path adhering to AS level policy agreements and should be able to accommodate with large number of ASs;
3) lookup guarantee : ensure discovery of an existing content regardless of its popularity and conserve bandwidth
spent in non-existing content lookups; 4) index placement freedom : ASs should have the freedom of choosing the
content they will be indexing; 5) in-network caching : content should be cached in routers and served from a copy,
closest to a requester; 6) routing scalability : routing table size should grow sub-linearly with network size.

The design implications to satisfy these requirements may conflict with each other. For example, index placement
freedom can be achieved by allowing any content to be placed anywhere, which mandates the routing table to grow
linearly with content population in order to provide content lookup guarantee and bandwidth efficiency. Thus, it is
difficult to develop a routing scheme that simultaneously satisfies all of these requirements. Instead, our aim is to
develop a routing scheme that satisfies each of these performance requirements as closely as possible.

In a DHT-based structured overlay network, we can achieve all of the requirements for ICN routing except index
placement freedom and one-step (or direct) name-based content lookup. Any DHT algorithm assigns unique identifier
to each node (network location) and places a content’s index at a designated indexing node. This guarantees content
lookup within a limited number of overlay hops and a small routing table size, both logarithmically bounded by the
network size. As a result a DHT cannot offer index placement freedom. In addition, a DHT requires two-step routing
for content access: first, route to an indexing node to obtain content’s index and then, route to the content’s location.
By adopting proper caching strategies we can achieve index placement freedom and one-step content routing to some
extent. We explain these strategies in Section 4.4.

The most difficult part of using a DHT for inter-domain routing is to map the overlay graph to the AS-topology
while preserving adjacency relations. This mapping problem is know to be NP-Complete [6, 7]. In the following two
sections, we first provide a name-based DHT mechanism and then present our mapping scheme.

3 «aRoute: A Name-based DHT

A DHT essentially maps a key to a value in a distributed manner. A DHT design involves two steps: a) partitioning
: segregating the entire key-space into partitions and assign each partition to a node and b) routing: a mechanism
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Figure 1: An example partitioning tree
for locating any key in a bounded number of hops.

3.1 Partitioning

Our partitioning policy has three desirable properties: first, it places similar names in same partition, second, it
provides control over the number of partitions and third, it creates non-overlapping partitions.

We explain the partitioning process with the example presented in Fig. 1. First, we create some partitioning sets
(S;s) using the 36 alphanumeric English characters (lower case alphabet and digits). For example, in Fig. 1, we have
three partitioning sets: S = {r,c}, So = {e} and S3 = {k,t}, respectively. We can classify any string to one of the
215l partitions based on the presence or absence of the characters in S;. Here, |S;| represents the cardinality of S;.
Continuing the example in Fig. 1, we can create four partitions (2/°1/ = 4) based on Sy, namely, r¢c, r¢, 7c and 7. All
strings having both r and c are classified to the rc partition. Strings that contain r but do not contain ¢ are classified
to partition r¢, and so on. Now we construct a logical partitioning tree where each node corresponds to a partition.
The root node classifies all strings in a single partition. Nodes at level 1 correspond to the 2!t partitions based
on S7. In general, a node at level i corresponds to the strings containing (or not containing) the characters along
the path from that node to the root. For example, the shaded node in Fig. 1 classifies the strings corresponding to
Fc — € — kt, i.e., all the strings containing characters ¢ and k, and not containing characters r, e and t.

Now we consider the logic of classifying a string, say “www.rocket.com”, using the partitioning tree in Fig. 1. First,
we ignore the character order and multiple occurrences to get an unordered character set {w,r,0,c, k,e,t,c,m}.
Since, this set contains characters r, ¢, e, k and ¢, the string will be classified to the left-most leaf node rc — e — kt
in Fig.1.

We generate S;s in a three step process: (i) a large corpus of content names are parsed to compute character
frequencies, (ii) all possible combinations of characters upto a fixed length (4 in our experiments) are generated, and
(iii) the combination that produces the most balanced branching is selected. For example, let us assume that the
tree is grown upto height 2 with the characters r, ¢, and e. Now, when we want to extend the tree height, we first
compute the character frequency of the content names that are partitioned under the 8 nodes at height 2. Then we
generate all possible character combinations (leaving out 7, ¢, and e) of length at most 4 and select the combination
that produces the most balanced branching at height 3, which is {k,¢} in Fig. 1.

S;s influence the distribution of published names over the partitions and the indexing load across the network, since
we assign each leaf node (and selective internal nodes) to ASs. We ensure proper load balancing while constructing
S;s. If we use a fairly large corpus, then the character frequency distribution and the resulting S;s are highly unlikely
to change over time. Alternatively, we can control the load at a leaf node by adjusting its height, since the proportion
of strings classified by a leaf node holds inverse relation with its height.

Non-English characters in a string may be handled in two alternative ways. First, if we limit ourselves to the 36
English characters, then non-English characters can be mapped to English characters using some predefined rules.
Alternatively, we can incorporate non-English characters in the partitioning process, which may increase routing
overhead. It is worth noting that we can accommodate around 64 billion nodes using a partitioning tree of 36



alpha-numeric characters.

3.2 Routing

Our routing mechanism has two components: routing table and message forwarding mechanism. Ideally the routing
table should be logarithmic on network size, while the forwarding mechanism should ensure shortest path routing
using local information only. In this section we present an overlay routing architecture which achieves both of these
goals. In the next section we will present a mapping algorithm to achieve these goals in an underlay network as
closely as possible.

Routing table: Each partition in the aforementioned partitioning tree can be identified by a pattern syss...sp
where, s; is a character presence combination over the characters of S; and h is the height of the partitioning tree.
For example if S; = {r,c} then s; can be any of rc¢, r¢, 7c or 7c. We define a prefiz of a pattern as a leftmost
sub-pattern of any length, e.g., s152...5s,, where p < h.

Now we describe the routing table entries for the node responsible for partition sisz...s;...s,. For some level 1,
a node’s routing table will have 2/l — 1 routing links corresponding to the partitions siss...t; ... sp, where t; is a
character presence combination over the characters of S; and ¢; # s;. In general, the routing table at a node will
have 3P (21%1 — 1) entries.

We can better describe the routing table entries with an example. Consider the shaded node in Fig. 1 with prefix
7c — € — kt. This node will have a total of 7(= (2% — 1) + (2! — 1) + (22 — 1)) routing links to the nodes marked with
numbers 1 to 7 in Fig. 1. The first three routing links are computed by taking the character presence combination
over the characters in S; = {r,c}, which gives us rc — & — ki, r¢ — & — kt and 7¢ — & — kt. Note that for the first
and the third links, the tree has not been fully expanded to level 3, so the links will be pointing to nodes rc — & and
7¢ — €, respectively. For computing link 4, prefix characters corresponding to S; and S3 will remain unchanged, while
the character(s) in Se will be complemented and so on. Slightly different situation can arise if a node has a shorter
prefix than other nodes, e.q., the node with prefix rc — €; its first routing entry would be r¢ — €, which is an internal
node. Here any node with prefix r¢ — € can be considered as the first link for rc — e.

Message forwarding : We can define a simple message forwarding mechanism based on the above described routing
table. A lookup string is converted to a set of characters corresponding to the partitioning set, S;. The lookup request
will be forwarded to the node responsible for the queried characters in a multi-hop path. This path is obtained by
gradually transforming the prefix of the current node to the lookup pattern. Following the previous example in Fig 1,
suppose the dark shaded node is looking for the node responsible for string “www.rectangle.ca”, which is mapped
to the node with prefix rc — e — kt. At the first step, node 7c — € — kt will forward the query to node rc — € using
routing link 1. The 2" routing link of rc — & will have the prefix of any node, say rc — e — kt, under node rc — e.
Thus the query will be forwarded to r¢ — e — kt, which will finally forward the query to rc — e — kt.

It is worth noting that the partition tree, as in the example of Fig. 1, does not exist in terms of network links because
only the leaf nodes and a few selective internal node (explained in the next section) are assigned to ASs. Rather,
the tree exists logically at each indexing ASs as prefix strings to the root. The overlay network is composed of the
routing links (dashed lines in Fig. 1) between the indexing nodes.

3.3 Join protocol

To join the network a new node (i.e., AS), say X, has to know an existing AS in the system, say M. X will query
M for the neighbor, say M, with shortest prefix. Next, X will query M; for the neighbor with shortest prefix. In
this way X will crawl the network and find a local minima, i.e., a node with shorter prefix than all of its neighbors.
In case of a tie, X will choose the node storing higher number of index records. Once the local minima, say Y is
found, X will request Y to increase its prefix by one step. If prefix of Y is s1s2...s, and Y has 21%»| siblings in level
p then Y will increase its prefix to s1s2...5,41 and X will become a new sibling of Y, otherwise X will become a
sibling of Y™ at level p. Accordingly, X has to populate its routing table using the routing information at Y. It can
be trivially proven that all the neighbors of X will be within 2 hops from Y.



4 From Overlay to Underlay

To perform inter-domain routing, we have to map the nodes in aRoute overlay graph to the AS topology. In this
section we first explain the impact of Internet topology on the mapping process (Section 4.1), then we present the
mapping algorithm (Section 4.2) followed by the lookup (Section 4.3) and caching (Section 4.4) mechanisms.

4.1 Topology Considerations for Mapping

The inter-domain AS network is based on BGP, while each AS controls its intra-domain routing protocol inde-
pendently. Hence, it will be inappropriate to use aRoute for both inter- and intra-domain routing in the future
information centric Internet. Instead, following the current tradition, we assume that ASs will collaborate using
aRoute for inter-domain routing, while for intra-domain routing an AS may extend its own aRoute prefix or it may
use a separate routing protocol.

Tier-3

O Logical node 0
. Indexing AS

Figure 2: Mapping a partitioning tree to AS-topology

Node degree distribution at the overlay (aRoute) and underlay (AS-topology) graphs has profound impact on the
mapping process. According to Fig. 1, each indexing node of a uniformly grown partitioning tree should have similar
number of routing links. In other words, the overlay graph is a nearly regular graph. On the contrary, it has been
reported in [8] that the node degree distribution in the AS-topology exhibits a power law relationship with the
number of ASs. We exploit this dissimilarity in node degree distribution during the mapping process.

Algorithm 1 PERFORMNEIGHBORMAPPING(E, p)

Require: neighbor set £, and own prefix p.
Ensure: neighbors in £ are mapped to an extension of p
1: Spatterns < set of all unmapped patterns starting with p
2: while There are unmapped neighbors do
3: nbr <— neighbor with the highest number of mapped
neighbors from &

4 nbr.pattern < select a pattern from Spgtterns that
minimizes the Hamming distance between nbr
and its neighbors

5: Remove nbr.pattern from Spatterns

6: Mark nbr as mapped

7: end while

Recent studies [9] on Internet topology revealed that a small number (around 12 to 16) of high-degree ASs form an



almost completely connected core. The rest of the ASs have multiple physical links to the core, which results into
many triangles in the AS graph. It is also reported [10] that the inter-connect graph between the non-core ASs is
sparse. For the mapping process, we treat the core ASs as Tier-1 AS, while the ASs directly connected to at least
one Tier-1 AS are treated as Tier-2 ASs and so on. Hence, a Tier-2 AS, directly connected to multiple Tier-1 ASs,
can route a lookup request to a core AS with an appropriate prefix, or it may use its peering links with other Tier-2
or lower tier ASs. This process recurs for the lower tier ASs as well.

Fig. 2 depicts a conceptual overview of aRoute prefix distribution over the ASs. To exploit the heterogeneous inter-
AS connectivity, we assign short prefixes to the highly connected top tier ASs. A lower tier AS, on the other hand,
extends a prefix of an upper tier AS. In contrast to the partitioning tree introduced in Fig. 1, selected logical nodes
(partitions) at different levels are assigned to highly connected upper tier ASs. In addition to having the regular
aRoute links (as presented by dashed arrows in Fig. 2), an upper tier AS will have physical links to the lower tier
ASs that extend its prefix.

4.2 Mapping Algorithm

The mapping procedure is initiated by a centralized entity referred to as the Name Assignment Authority (NAA).
The NAA chooses a set of prefixes and assigns them to the Tier-1 ASs. The prefixes are selected in such a way that
the expected name resolution related processing load on each Tier-1 AS is distributed proportionally to its capacity.
In the next step, each Tier-1 AS executes Algorithm 1 to assign prefixes to Tier-2 ASs. Each Tier-1 AS extends
its own prefix to generate a set of patterns Spatterns that are not yet mapped and starts with the same pattern as
its own, e.g., if a Tier-1 AS is assigned prefix r¢ then its Spqtterns Set contains all unmapped patterns starting with
rc. Next, the AS finds a neighbor (nbr) that has the highest number of mapped neighbors. nbr is then assigned a
prefix in such a way that its Hamming distance from all its neighbors is minimized and the process goes on until all
neighbors are mapped. After the Tier-1 ASs have executed this mapping process, the already mapped Tier-2 ASs
map their neighbors using the same Algorithm. The process goes on in a recursive manner until each AS is mapped.

In terms of mapping an edge (or logical link) in overlay graph to the underlay network, this mapping strategy can
produce three scenarios : equal, compression and ezrpansion. In most of the cases, a logical link will be mapped to
a physical link, resulting into an equal or one-to-one mapping. Recall that, if two logical nodes in the overlay space
have more than one mismatch (Hamming distance) between their prefixes, it results in a multi hop path between
them in the overlay routing space. Therefore, when two physical neighbors have more than one mismatch in their
assigned prefixes, a logical path between them in the overlay space is mapped with the physical link between them. In
this case, traversing the physical link is equivalent to a jump in the overlay space while routing. This will essentially
results into a compression of an overlay path into a physical link. Finally for a few cases, adjacent overlay nodes
will be more than one hop away in the underlay, which will degrade the mapping performance due to the expansion
of a logical link to a physical path in underlay AS-topology. In the experimental results section, we will provide
quantitative measures for these three cases.

4.3 Content lookup

To lookup a content, we first create a pattern depending on the presence or absence of the letters in the given name
(or keywords) matching the partitioning strings (.S;s). Then we can use aRoute to route the lookup request to the
AS indexing the names matching this pattern. At the indexing AS, we will find one or more index records of the
form < N, P, >, which indicates that the content with name NV; is stored at AS with pattern P;. Now we use aRoute
to reach the AS responsible for pattern P;.

Each AS has to maintain a routing table (as explained in Section 4.1) for routing messages to an AS responsible
for any given pattern. For each logical routing link Lj (corresponding to the dashed lines in Fig 1 and Fig 2), the
routing table will contain an entry like < Ly, I, hy >. Here, I} is the inter-AS link that should be used for routing
to the AS responsible for pattern Ly and hj is the number of ASs to be traversed for reaching L. With a good
mapping algorithm, h; will be 1 for most of the cases. In addition to the logical links, an AS will keep separate
routing entries like < Py, I, 1 > for each physical neighbor. Here, Py is the pattern of the neighbor AS reachable
through the inter-AS link [y.



Similar to BGP, aRoute supports policy-based routing. aRoute can be augmented with different policies during the
route selection process. In the current implementation we adhere to the following policy. If a lookup request can
be resolved using a peering link (usually free of cost) we route using that link. Otherwise, the request has to be
forwarded to a provider AS, which usually incurs cost to the requesting AS.

4.4 Indexing and Caching

Strict index placement restriction is a major disadvantage for any DHT approach. To enable efficient content lookup
we have to place a content’s index at a specific network location. It also results into two step routing: first, route to
an index and then route to the content. We can mitigate both of these problems (i.e., index placement freedom and
two-step lookup) by intelligently caching indexes and contents. Moreover, such caching policies will reduce expensive
inter-AS traffic.

Index caching : ASs may not agree to store any content’s index for several reasons, including legal implications
and high query traffic for a popular content. If the content is illegal or access restricted then this behaviour of an AS
is appropriate. But, for a popular content, such behaviour can decrease the content’s reachability. To minimize the
volume of lookup traffic for a popular content, each AS can cache the indexes returned by outgoing lookup requests
for resolving future lookup requests. This index caching strategy will effectively reduce the popular content lookup
traffic at the rendezvous indexing AS.

Content caching: As previously reported in [11] and [12], content popularity in the Internet and hence lookup rate
follows power law distribution. We can use this property to improve response time by caching popular contents at
the AS storing the content’s index. This will allow us to access a content in one DHT lookup. However, we may face
two barriers while deploying this strategy. First, a content owner may not allow the indexing AS to cache and serve
its content due to financial, privacy or legal reasons. Second, an AS may be overloaded if the distribution of popular
contents over the ASs is not uniform. The second obstacle can be reduced if ASs cache a popular, permitted content
and update content’s index by adding a link to the cached copy. In the later strategy, a user can lookup the indexing
AS to find a list of ASs caching the desired content and access the content from a nearby AS. This approach can be
more effective while accessing large contents.

5 Analysis

5.1 Bounds on aRoute

Routing table size (RTs;..) and the number of hops required to reach a target node in the overlay from any given
node are the most important performance measures for aRoute. Here we define loose upper bounds for both of these
quantities. Consider a network of N routing nodes. Assume that there are ¢ partitioning sets in the overlay graph,
and the minimum and maximum sizes for the partitioning sets are by and bo, respectively. Evidently, b‘i]_l < N and

(< }ggév + 1. Hence, we can compute an upper-bound on RT%;.. as follows:

log N
log by
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Now we find the bound for hop-distance between any pair of nodes in the overlay. We can observe that at each routing
hop the search space is reduced by ‘S—ll and the route converges when there is only one node in the search-space.

Hence, we can bound the routing hops, say g, as follows:

N —
[T, 280

1 1
= —logy, N < g < —logy N
bo b1



From the above inequalities we claim that both RT%;.. and routing hops (g) in cRoute are logarithmically bounded
by network size N. In addition, we can trade off RTj;.. for routing hops (g); increasing the cardinality of partitioning
sets (]S;|) will result in a shorter, fatter tree with shorter overlay paths but increased RT; ...

5.2 Bounds on Mapping

The effectiveness of our mapping strategy is inversely proportional to the number of path expansions, i.e., the cases
where an overlay edge is mapped to a multi-hop underlay path. We use ezpansion ratio (1) to measure this quantity.
Suppose a mapping algorithm .# maps an overlay path P,, to an underlay path .#(P,,), where .#(P,,) is the
concatenation of the underlay paths corresponding to the edges along P,,. Let |P| denote the length of path P.
Hence, we can define 7 4 as follows:

na = B[] 1)

Lemma 1 The expansion ratio (n.4) of a mapping strateqy, say A , that tries to preserve the adjacency relations
in overlay graph will not be greater than the expansion ratio (ng) of a mapping strategy, say %, that maps overlay
nodes to randomly chosen underlay nodes without considering the adjacency relations in overlay graph.

Proof 1 Suppose, Z maps the overlay nodes x, y and z to underlay nodes x’', y' and z’, respectively, such that the
followings hold: (a) x and y are neighbours, (b) ' and 2’ are neighbours, and (c) none of the adjacency relations
are preserved for y and z. If M takes the adjacency relation into consideration, and remaps y to 2’ and z to y', then
path expansion will decrease for one edge (as x — y mapped to ©' — z') and 1,4 will become smaller than ne. By
repeating this process, mapping M can reduce 1.4 for every instance of x, y and z. If no such x, y and z exist then
Na will remain equal to 1.

From Lemma 1, we can say that ng will serve as an upper bound for the expansion ratio (7.4) of our mapping
algorithm, since our mapping is based on overlay adjacency relations. Evidently, for &, the mapped path length
|%(P,y)| does not depend on overlay path length |P,,|. Hence, we can write:

_ B[] o)
]

Now, we compute E [|%(POU)|] , for the random mapping strategy Z. Since, Z does not try to preserve the adjacency
relations in overlay, we can say that two adjacent nodes in the overlay will be mapped to two arbitrary nodes in
the underlay and their distance will be the expected underlay path length, F [\Punﬂ Thus, we can compute the
expected underlay path length for any overlay path as follows:

B|1#Pa)l| = E[|Pul] x B||Punl] 3)

Hence, we can compute 74 for mapping Z by combining Equations 2 and 3 as: ng = E [\quﬂ

Now, to compute FE [|Pun\], we use the fact that the underlay, i.e., the Internet AS-topology, is a power law graph.

In a power law graph, the number of vertices of degree d is proportional to 1/d? for some exponent 3. It has
been reported in [13] that the range of 8 is 2 < 8 < 3 for the Internet AS-topology, and for this range of 8 the
average distance between two nodes in a power law graph, and hence ng (an upper bound for 7. 4), can be derived
as follows [13]:
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where € << 1.

We can also define a loose lower bound for the expansion ratio. Let us consider some mapping strategy </ and a
routing scheme .7 with the following property. If & maps overlay nodes = and y to some nodes z’ and 3/, respectively
in the underlay, then .7 can route messages between =’ and ¥’ in shortest path in the underlay network, regardless
of the path length and the intermediate nodes between z and y in overlay. Thus we can write

|¢<Pov>|} Bl
|Pou| 1 E[IPOU\]

—|—COU<|M(POU)\ 1 ) (5)

v =B L
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If o is an adjacency preserving mapping then the covariance between |.<7 ( Py, )| and | Pp,| ! will be positive, otherwise

for a random mapping it will be zero. In addition, the expected underlay shortest path (E {L@f (Pov)q) between the

mapped endpoints of P,, is basically the expected underlay distance E [|Pun|}7 since the distance between any pair

of nodes in the underlay is calculated along a shortest path. Thus, we get from Equation 5 the following:

B||Punl|

Q{SE“R,U@ (6)

We can get E [|Pun\} from Equation 4. For computing F [|PDU\] we exploit the fact that the overlay is a nearly

regular graph. We can calculate the expected distance between any two overlay nodes as follows:

K

BlIPol] = 3 Pr(Pul) x |Pul ™)

| Pow|=1

Here, Pr(|P,y,|) denotes the probability that P,, has length |P,,| and K is the overlay graph diameter. According
to the Moore bound [14, 15] (p. 180), the diameter K of a d-regular graph (d > 2) with N,, nodes can be derived
as follows:

log Noy (d—2)42

K T v

Since, the overlay graph is a regular graph, every node has d paths of length 1 and there are N,, such nodes. So, the
number of paths of length 1 is N,,d/2. Again, from every node, we can reach d nodes, and from those d nodes, we can
reach another (d — 1) nodes without considering the overlaps. So, the number of paths of length 2 is N,,d(d —1)/2.
Similarly, the number of paths of length |P,,| is Ny,d(d — 1)(Feel=1) /2 for 1 < |P,,| < K. So,

Noud(d — 1)IPor=1) /2

Pr(‘Povl) = e
> Nowd(d — 1)(1Feel=1) /2
[Pou|=1
(d—2)(d— 1)(|Pov|—1)
d—DF -1 ©)

From Equation 7 and 9 we can derive that
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In Section 7?7, we compare the expansion ratio for our mapping strategy against the above computed bounds.

6 Related Work

The last few years have witnessed a significant number of research efforts in the field of ICN. Several of these research
works address content naming and routing as key research challenges in ICN and have proposed different solutions
for these problems. There is a clear contrast between the different routing mechanisms proposed for ICN. DONA [16]
provides a hierarchical name resolution infrastructure including new network entities named Resolution Handlers
(RH), which stores routing information of the domain it is attached with. The storage and computational load on
RHs increase as we go up the RH hierarchy. The root RH needs to maintain routing information for all content in
the network, which severely confines the scalability of this mechanism.

NetInf [17] adopts a hierarchical DHT [18] based approach for routing. The topmost level in the DHT hierarchy in
NetInf, called REX, needs to store index for all the contents in the network, which results in a performance bottleneck
and a scalability issue. LANES [19, 20] proposes a multi-layered routing architecture for ICN. The topmost layer,
named the rendezvous layer is responsible for inter-domain routing, which is maintained by a hierarchical DHT.

CCN [1], CURLING [21] and TRIAD [22] use gossip based routing protocols, which incur significant management
and control overheads. CCN also suffers from a scalability issue since the routing table size grows with the number of
contents, which is several orders of magnitude higher than the current BGP routing tables. CURLING proposes to
remove the DNS and assigns a new entity, “Content Resolution Servers (CRS)”, with each ISP to maintain routing
information. Content publish and request resolutions are performed using a gossip based hop by hop protocol
maintaining the business relationships between the ISPs. CURLING also provides a mechanism for publishing and
routing content requests in a non-global scope. Routing in CBCB [23] is based on controlled flooding of attribute-
value pairs. Interest for a particular content is issued by creating logical disjunctions of conjunctions of elementary
constraints over the values of possible attributes. CBCB includes: a broadcast protocol, which ensures loop-free
paths; and a content based routing protocol, which avoids sending content to uninterested receivers by pruning
branches of the broadcast tree. The size of routing table in a CBCB router is expected to be exponential in the
number of attributes, and network wide flooding is required to forward a request with any unknown attributes, which
incurs significant network overhead.

DMap [24] proposes a global name resolution service for mobility and efficient content delivery in the Internet. The
flat ID (GUID) assigned to a content is hashed to obtain a list of IP addresses and the content’s original location
is indexed at these IP addresses. These indices are updated when a content is moved to a different location. DMap
requires a collaboration of the ASs to store the content to location index of other ASs, and every network entity needs
to have a global knowledge of the IP prefix advertisements from all the ASs. Moreover, the routers in the Internet
have to store extra index along with the BGP routing table that they are already maintaining, which imposes a
significant storage overhead. The CONET [25] project proposes a name based routing technique similar to CCN.
The routers have a fixed number of rows in the name based routing table. When a router misses routing info for
a name based routing request, it looks it up in a DNS like name-system and updates its name based routing table
using some cache replacement policy.

7 Conclusion and Future Work

In this paper, we proposed a novel name based overlay routing scheme aRoute and an effective strategy for mapping
an overlay network to the Internet AS-topology. aRoute guarantees content lookup while ensuring efficient bandwidth
usage and small routing table size. The proposed mapping strategy, on the other hand, produces small expansion
in routing path; according to the simulation results one overlay hop is mapped to 1.26 underlay hops on average.
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Compared to the existing routing techniques, our approach has a number of advantages. First, routing can be done
on names without sacrificing efficiency or completeness. Second, in contrast to hierarchical routing mechanisms,
there is no bottleneck node in the proposed system. A capacity proportional load distribution can be achieved by
placing the ASs at different levels in the partitioning tree based on capacity. Third, we can conveniently select
the cardinalities of the partitioning sets (].S;|), to tune the depth of the tree. This will allow us to easily decrease
routing hops by increasing the number of routing table size, and vice versa. However, the proposed partitioning
algorithm for constructing S;s has a shortcoming. We currently select S;s off-line in such a way that the sample
names are uniformly distributed over the leafs of the tree. For a fairly large sample size, offline computation should
give nearly uniform distribution of names over the resolution nodes. But, we intend to investigate other techniques
for online computation of .S;s for adaptive load balancing over a long period of time. In addition, the performance of
aRoute can be greatly improved by adopting the caching strategies proposed in Section 4.4. We intend to investigate
aRoute’s performance in presence of indexing and content caching and experiment in a large scale testbed.
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