
Translating the Feature-Oriented Requirements
Modelling Language to Alloy

David Dietrich, Pourya Shaker, Jan Gorzny, Joanne Atlee and Derek Rayside
d4dietri@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario

Tech. Rep. CS-2012-12

1

Contents
1 Introduction 5

2 FORML 5

3 Alloy 7

4 Interactions 10

5 Translation Semantics 11
5.1 Structure of the Alloy output . 11
5.2 Translation of the World Model . 12

5.2.1 Concepts . 13
5.2.2 Associations . 15
5.2.3 Messages . 16
5.2.4 Features . 16
5.2.5 Enumerations and Macros . 17

5.3 Translation of the Behaviour Model . 17
5.3.1 World Change Actions . 17
5.3.2 States . 18
5.3.3 Transitions . 18

6 Analysis 18
6.1 Checking all world states . 20
6.2 Saving the set of world states . 21

7 An Example 22

8 Limitations 23

9 Conclusion 24

A FORML Grammar 26

B Textual FORML Model of the BDS Example 28

C FORML to Alloy Translation Rules 31
C.1 World Model to Alloy . 31

C.1.1 Undefined Types . 31
C.1.2 Enumerations . 31
C.1.3 Concepts . 32
C.1.4 Constraints . 35

C.2 World-Model Expressions to Alloy . 35
C.2.1 Parenthesized Expressions . 35
C.2.2 Set Expressions . 36
C.2.3 Integer Expressions . 37

2

C.2.4 Predicates . 37
C.2.5 @pre . 38

C.3 WCA Types to Alloy . 38
C.3.1 Create Object . 38
C.3.2 Remove Objects . 40
C.3.3 Change Attribute Value . 40

C.4 Assertions . 41

D Partial Generated Alloy Model of the BDS Example 43

3

Abstract

The Feature-Oriented Requirements Modelling Language (FORML) provides explicit
support for modelling Software Product Lines and systems that are composed of features.
However, a problem that developers must be aware of when developing feature oriented
software are interactions between features. The purpose of this project is to provide a
method for analyzing FORML models to detect interactions that may occur. To this end
a translator has been created that will translate FORML models into Alloy models so that
they can be analyzed to show a lack of unwanted interactions. This report discusses the
implementation of this translator, gives several examples of how various structures in the
FORML are translated and discusses the methods of analysis that have been implemented.
A small evaluation is also performed to demonstrate how the translator can be used in
practice.

4

1 Introduction
Feature-oriented software development (FOSD) favours the treatment of features as first-class
entities during all development phases. A major benefit of FOSD is the ability to decompose
a software project into features such that multiple products can be derived from different
combinations of features. A negative side effect of FOSD is that the features may not be
separate concerns: they may conflict over the values of shared variables or may indirectly
interact with each other over their effects on their environments [3].

Researchers at the University of Waterloo are developing the Feature-Oriented Require-
ments Modelling Language (FORML) [10], which is a general-purpose requirements modelling
language designed to support software product lines (SPLs) and feature-oriented software de-
velopment. This report presents a translator from the FORML into Alloy [5] that has been
implemented for the purpose of automatically detecting several kinds of unintended interac-
tions between features in a FORML model. The translator generates assertions that encode
the effects of two features actions executing at the same time – if the actions conflict then the
analyzer produces a world state (i.e., a set of specific values of the model’s variables) in which
the actions conflict.

Something to note is that the analyzer need not be used purely to detect interactions. A
user could write their own assertions to verify other facts about their translated FORML model.
It is also possible to use the analyzer to generate valid world states in order to visualize the
context in which the features are executing.

The rest of this report is organized as follows. Sections 2 and 3 provide brief introductions
to the FORML and Alloy languages – knowledge that the reader needs to understand the rest of
the report. Section 4 introduces the FORML definition of an interaction and our methodology
for detecting interactions. Sections 5 and 6 discuss the semantics of the translation process and
the resulting Alloy output, and provide information about the analysis that is performed to
verify the FORML model. Sections 7, 8 and 9 provide a small example, some limitations of the
translator, and concluding remarks. There are also several appendices included which provide
additional information to supplement this report.

2 FORML
The Feature-Oriented Requirements Modelling Language (FORML) is a general-purpose mod-
elling language that supports software product lines (SPLs) and feature-oriented software de-
velopment (FOSD). The FORML is composed of three models: a world model, a feature model
and a behaviour model. The feature model is a typical feature-oriented domain analysis feature
model [3]; it expresses whether a feature is mandatory or optional, and dependencies between
features, in an SPL product. The rest of this section explains the world and behaviour models
briefly; more can be found in a technical report by Shaker and Atlee [10].

A world model defines all of the world phenomena that are relevant to the requirements
of a particular set of features. In other words, the world model specifies the context in which
the features operate. A world model is very similar to a UML 2.0 [1] domain model. The
example in Figure 1 shows a simple world model. The example model contains an abstract
superclass PhysicalObject that has a position and a shape. Inheriting from a PhysicalObject are

5

Figure 1: A World Model with a single feature

RoadObjects, RoadSegments and Lanes. A RoadSegment contains one or more Lanes, and a
RoadObject is on a single RoadSegment. A RoadObject could be anything on the road (e.g., a
rock or animal). A special type of RoadObject is an AutoSoftCar that is a car that is running
the specified AutoSoft features. An AutoSoftCar has a Driver who is driving the car. The
AutoSoftCar concept specifies attributes that are specific to a car.

You can see in the Figure 1 that there are two additions to the world model that are not
found in regular UML domain models. The first is the AutoSoft concept: this is the SPL
that is being modelled. The composition relation between AutoSoftCar and AutoSoft shows
that an AutoSoftCar is running an instance of the AutoSoft SPL. The second addition is the
BDS feature in the bottom left corner of the model. Each feature type in the world model
specifies any feature-specific data the feature introduces, the input messages to the feature,
and the output messages from the feature (denoted as «inputs» and «outputs», respectively).
A message is a type of communication to or from a feature in an SPL. Dependencies among
features are captured in a FORML feature model (not shown).

The corresponding FORML behaviour model specifies how each feature reacts to input
messages and generates output messages. A FORML behaviour model is expressed as as set
of extended finite-state machines (similar to UML state machines [1]). A behaviour model is
decomposed into separate finite-state machines for each feature. Each feature’s state machines
are referred to as the feature’s module. A feature module can either specify new behaviour or
override the behaviour defined in other feature modules.

An example of a behaviour model for the Basic Driving Service (BDS) feature is shown
in Figure 2. In the top left corner of the figure is a UML note that declares that this model
specifies the behaviour of the BDS feature in the AutoSoft SPL. States and concurrent regions in
a FORML behaviour model are no different than those in UML state machines. Each transition

6

Figure 2: A Behaviour Model for the Basic Driving Service corresponding to the above World
Model

must have a unique identifier (e.g., t1). Transitions have triggers and guard conditions as in
UML state machines. A transition can have a list of actions, called world-change actions
(WCAs). There are four types of WCAs: (1) adding an object to the world, (2) adding a
message to the world, (3) removing an object from the world, and (4) changing an attribute
value of an object in the world. The transitions in the BDS behaviour model in Figure 2 exhibit
only one type of WCA: changes to attribute values. Multiple WCAs on a transition represent
concurrent actions. Lastly, transitions may specify an override: in the BDS state machine in
Figure 2, the override “t4 > t3” states that if transitions t4 and t3 are simultaneously enabled,
then transition t4 has priority and t3 does not execute.

3 Alloy
Alloy is a general-purpose declarative modelling language. In Alloy, users can define the struc-
ture of their model and the Alloy analyzer will automatically create instances that conform to
that structure. Users can also define constraints that must hold on the generated instances.
Properties of the model can be checked automatically and the analyzer will provide feedback.
This section provides a brief introduction to Alloy as some knowledge of the language is re-
quired to understand this report. A running example is used in this section that creates a
simple model of a bird.

The primary structural construct in Alloy is the signature. A signature is denoted in the
Alloy syntax as sig. A signature in Alloy is an atomic element (another way to think of
signatures is as types, similar to classes in UML class models). A signature can have fields (in
the same way that UML classes have attributes). A field can express a relationship between its
signature and other signatures. An example of a signature is:

7

1 s i g Bird {
2 s p e c i e s : SpeciesType
3 f oo t : FootType
4 }

This signature models a bird. A bird has two fields: a species and a foot. The types of
these fields are SpeciesType and FootType, respectively. SpeciesType and FootType are non-
structured types; they are specified as enumerations (i.e., a set of constants). The SpeciesType
and FootType in the Bird signature are represented in Alloy as:

5 enum SpeciesType {goose , penguin , duck}
6 enum FootType {claw , paw , hoof }

The fields of a signature can be much more complex than what is shown above. For instance,
we could create another signature Flock. A flock has a single field: birds : set Bird. This
field states that there is a set of birds (that is, some collection of birds) within a flock. The
user could specify the number of birds in a flock by using a fact.

A fact is an invariant constraint that must hold in all of the instances of a model. Facts
can be used to constrain the structure or kinds of values that instances of a model can have.
Facts are very closely related to OCL invariants [2]. An example of a fact is:

7 f a c t footType {
8 a l l b : Bird | b . f o o t = claw
9 }

This fact states that for all birds in the model, the bird’s foot must be a claw. In general, a
fact is a first-order boolean formula.

A weaker version of facts are predicates. A predicate is a boolean property applied to
designated elements of model instances. For instance, the predicate:

10 pred f l y s (b : Bird) {
11 b . s p e c i e s != penguin
12 }

applies to parameter b – the predicate is true only if b is a Bird but is not a penguin. A
predicate can be left empty, in which case it is always true. A predicate can also refer to other
predicates.

Predicates are used with the run keyword to generate instances of an Alloy model. Running
a model will generate valid instances of the model that adhere to the model’s signatures and
facts. When a predicate is used with the run command, the predicate must also be true of all
the instances that are generated. The Alloy analyzer generates instances by transforming the

8

Alloy model into a set of conjunctive-normal-form formulas that are fed into a back-end SAT
solver, which finds variable assignments for which the formula holds true.

A nice feature of Alloy is the visualizer. The visualizer presents instances of an Alloy model
in a graphical format that is sometimes easier to understand than a textual equation. Figure 3
shows the visualized output from the analyzer for an instance of the command run flys (the
predicate given above). You can see in this figure a Bird object and its associated species and
foot values. This is not the only instance that can be generated; there are several possible valid
instances that conform to the structure of our model. A user can iterate through all of the
possible valid instances using the Alloy visualizer.

Figure 3: An example of an instance of the Bird model. The instance is generated by the
command run flys, the output of the Alloy visualizer shows a model than conforms to the
structure and constraints defined.

In addition to facts and predicates, which are always or sometimes, respectively, forced
to hold in all instances of a model, a modeller can also specify assertions. Alloy assertions
are analogous to programming-language assertions, in that they express assumptions that the
modeller expects to hold of all valid world instances. If there exists a valid model instance
for which the assertion is false, then a counter-example is generated. Consider the following
assertion over our bird model:

13 a s s e r t checkType {
14 a l l b : Bird | f l y s [b] imp l i e s b . s p e c i e s = goose
15 }

This assertion states that for any Bird object, if the flys predicate holds true for that bird, then
the bird’s species must be equal to goose. Intuition would indicate that this is false because
it is also possible for a bird to fly and be a duck. This assertion can be checked by using the
check command (and providing the assertion checkType as an argument). Figure 4 shows the
command and a generated counter-example. This counter-example backs up our intuition by
showing a model instance that includes a bird object whose species is duck. If there is more
than one counter-example then the user can iterate through them in the same way the user can
iterate through instances. After viewing the counter-examples, the user can decide whether to
modify the assertion or the model, so that the assertion is satisfied.

This short introduction should make it possible to read the remainder of the report without

9

Figure 4: The output from the checkType assertion. The checkType assertion is checked using
the command check checkType. A counterexample is generated and visualized on the right.

any additional information about Alloy. However, this has hardly been an exhaustive intro-
duction to the language. Much more information on Alloy can be found in the book: Software
Abstractions by Jackson [5].

4 Interactions
In the FORML, a feature interaction occurs when two transitions from different features attempt
to change the same part of the world at the same time. This definition also applies to transitions
executing in concurrent regions within the same feature. In this work, we have extended the
notion of an interaction to also include checking the actions of a single transition. For example,
an interaction occurs when the actions of two concurrently executing transitions change the
same attribute value of the same world object; the result is an inconsistency if the two new
values of the attribute conflict.

Simultaneous changes to an attribute value is an obvious interaction, but non-obvious inter-
actions may also occur. When a transition’s actions remove an object from the world, this can
indirectly cause the removal of several objects from the world (e.g., removing an object that is
composed of other objects will remove the component objects as well). An interaction can also
occur when the result of two transitions’ actions violate a constraint on the world. We are most
interested in detecting these kinds of non-obvious interactions. As will be seen, the definition
of an interaction has been generalized, so it is not necessary to identify all of the possible types
of interactions that may occur.

It is possible for a single transition to result in an inconsistent state, either because a
transition’s multiple actions interact, or because the action violates some world state constraint
(e.g., adding an object to an association that violates a cardinality constraint).

The goal of the analysis is to provide early feedback to developers of FORML models so
that they can take corrective actions to resolve these interactions at the requirements stage.
An interaction can be resolved in several possible ways: changing a transition’s actions, giving
one transition priority over another, or specifying that a pair of features can not be included in
the same SPL product, and so on. However, resolution of interactions is outside the scope of
this report.

10

Figure 5: An overview of how the translation from FORML to Alloy takes place

5 Translation Semantics
An overview of the translation process is given in Figure 5. The input to the translator is a
FORML model expressed in textual syntax (the syntax definition of FORML’s textual syntax
is given in Appendix A). An example of a textual FORML model (including a world model
and behaviour model) is provided in Appendix B. The translator expects the input model to
be complete and correct. If this is not the case, the translation may fail due to missing infor-
mation, or the translation may complete but the generated Alloy model will be incorrect. The
translation between FORML and Alloy is one way: information is lost during the translation
making it impossible to reverse engineer an Alloy model and get back the original FORML
model.

The translator is written in the Turing eXtender Language (TXL) [6]. This is a text-based
pattern-matching language that is useful for creating model-to-model translators. It is not as
powerful as a compiler, but is sufficient for this translation problem.

The rest of this section describes the translation by way of examples. All of the exam-
ples follow the convention of showing the FORML graphical representation, the corresponding
FORML textual representation, and the translated Alloy output. Precise definitions of the
translation rules are given in Appendix C.

5.1 Structure of the Alloy output

The structure of the Alloy output from the translator follows a strict ordering:

1. Type signatures

2. World state (WS) definition

3. World-state constraints predicate

11

4. World-state-transition constraints predicate

5. Enumerations

6. World-change actions

7. Transitions

8. Interaction assertions

The type signatures define types for all of the concepts that exist in a FORML world model.
The world state is defined as a large type signature. This type signature includes sets of

all the concepts in the world model, as well as their attributes and the relationships between
concepts. An instance of the world state is a single instance of a concrete world state for the
corresponding FORML model. The purpose of defining world states this way is to collect all of
the information about world states in a single Alloy type signature. This eases the translation
of constraints on the world model and keeps the interaction analysis as simple as possible.

The world-state constraints (WSC) predicate contains constraints on a single world state
such as cardinality constraints and constraints related to entity values. The world-state-
transition constraints (WSTC) predicate specifies constraints on how a world state can change;
they are constraints over consecutive world states. The WSC and WSTC are specified as a sin-
gle predicate to make it easier to explicitly check if a transition (or pair of transitions) violates
the constraints when they execute.

Enumerations are translated directly from a FORML model into Alloy.
Each world change action (WCA) is modelled as a predicate that expresses the post condi-

tions for that action. There are four kinds of world change actions that are possible in FORML:
(1) adding an object to the world state, (2) adding a message to the world state, (3) removing
an object from the world state, and (4) changing an attribute of an object in the world state.
These four actions can occur for almost every concept in the world (with a few constraints [10]).
Thus, this section of the generated Alloy model may contain hundreds (or even thousands on
larger models) of predicates. A majority of these may never be used, but their presence does
not affect the performance of the analyzer.

The transitions section of the Alloy model contains a predicate for every transition in a
FORML behaviour model. A transition predicate is the conjunction of WCA predicates of the
FORML transition’s actions.

The final section lists the interaction assertions. These are the assertions that are created
to test for interactions that may occur when transitions execute. These and the transitions are
explained in greater detail in Section 6.

5.2 Translation of the World Model

The entire world model of a FORML model is translated into Alloy. This is done because actions
on transitions can affect any concept in the system’s world, so every concept is a potential site
of interactions.

12

concept RoadObject

s i g Phys ica lObject {}
ab s t r a c t s i g WS {

RoadObjects : s e t RoadObject
}

Figure 6: An example translation from a concept in the world model. Top left is the FORML
Graphical Model, top right is the FORML plain text model and on the bottom is the Alloy
translation.

5.2.1 Concepts

Individual concepts in a FORML world model are declared as Alloy signatures. For each concept
signature, a set of elements of that signature is defined in the world-state signature, to represent
the set of concrete elements in a concrete world state. An example of concept translation is
given in Figure 6, which translates a concept called RoadObject into Alloy.

Inheritance of concepts is supported. This is expressed in the FORML textual syntax by
saying that one concept extends another. Constraints are added to the WSC predicate to
ensure that if there are subtype elements in a world state, they must be members of the set
of the super-type. If the super-type is abstract, then another constraint stating that it can
not be instantiated is also added to the WSC predicate. A limitation of this approach is that
only single inheritance is supported in the translator [5, 7]. An example of concept-inheritance
translation is given in Figure 7, which translates the RoadObject from the previous example
and its abstract super-type PhysicalObject into Alloy.

Attributes on concepts are represented in Alloy as relations that relate objects to values
of the attribute’s signature. A unique name is created for the attribute by concatenating the
concept name and attribute name (e.g., concept_attribute). Attributes have a multiplicity
associated with them. In the FORML graphical syntax, if an attribute’s cardinality is not spec-
ified, it is treated as unspecified. However, in a textual FORML model, attribute cardinalities
must be made explicit to generate a correct Alloy model. An attribute’s cardinality is mod-
elled in Alloy as a fact, to reflect that cardinalities are inviolable. In contrast, the constraints
expressed in the WSC are to be upheld by the system being modelled and we want to detect
when a feature violates such constraints. An example of an attribute translation is given in
Figure 8, which translates an attribute speed on the RoadObject concept.

The type of an attribute may be undefined. In this case, a new signature is added to the
Alloy type-signatures section that acts as a placeholder for that type. For example, if the speed
attribute used in the example above were instead an undefined type T, then a sig T {} would
have been added at the beginning of the Alloy model and the relation RoadObject_speed would
have been RoadObjects -> T.

13

abs t r a c t concept Phys ica lObject
concept RoadObject extends Phys ica lObject

s i g Phys ica lObject {}
s i g RoadObject {}
ab s t r a c t s i g WS {

Phys i ca lObjec t s : s e t Phys ica lObject ,
RoadObject : s e t RoadObject

}
pred WSC (ws : WS) {

(ws . RoadObjects = ws . Phys i ca lObjec t s & RoadObject)
(ws . Phys i ca lObjec t s = ws . RoadObjects)

}

Figure 7: The example translation from a concept with inheritance to Alloy. Top left is the
FORML Graphical Model, top right is the FORML plain text model and on the bottom is the
Alloy translation.

concept RoadObject
a t t r i b u t e speed [1] : Int

s i g RoadObject {}
ab s t r a c t s i g WS {

RoadObjects : s e t RoadObject ,
RoadObject_speed : RoadObjects −> Int

} {
a l l o : RoadObjects | #(o . RoadObject_speed) = 1

}

Figure 8: An example translation from a concept with attributes into Alloy. Top left is the
FORML Graphical Model, top right is the FORML plain text model and on the bottom is the
Alloy translation.

14

concept Car
concept Driver
aggregat i on Drives

whole r o l e car [1] : Car
part r o l e d r i v e r [1] : Dr iver

s i g Car {}
s i g Dr iver {}
s i g Drives {}
ab s t r a c t s i g WS {

Cars : s e t Car ,
Dr ive r s : s e t Driver ,
Dr ive s s : s e t Drives ,
Drives_car : Dr ives −> Car ,
Dr ives_dr iver : Dr ives −> Driver

}
pred WSC (ws : WS) {

(a l l car : ws . Cars | #((((ws . Drives_car) . car)) . (ws . Drives_car)) = 1)
(a l l d r i v e r : ws . Dr ive r s | #((((ws . Dr ives_dr iver) . d r i v e r)) . (ws .

Dr ives_dr iver)) = 1)
(a l l o : ws . Dr ives s | not o . (ws . Drives_car) = o . (ws . Drives_car))

}

Figure 9: An example translation from an association in the world model to Alloy. Top left
is the FORML Graphical Model, top right is the FORML plain text model and on the bottom
is the Alloy translation.

5.2.2 Associations

Associations, aggregations and compositions have similar representations in Alloy. The roles
on associations are represented as relations in Alloy that relate the associated concepts to each
other. The cardinality constraints on each end of an association are added as constraints to the
WSC predicate. An example of translating a FORML association is given in Figure 9, in which
Car and Driver are concepts that are associated by aggregation (e.g., a Car has a Driver).

As can be seen in Figure 9, associations are modelled the same as concepts are: as signature
types that have instances in the world state. We chose this representation for associations
because it allows associations to have attributes (e.g., association classes). Figure 10 visualizes
an instance of a world state of the Alloy model in Figure 9 in which there is an association
(i.e., a Drives object) with each association role being a relation to a Car and Driver object,
respectively.

Aggregations have an additional constraint added to the WSC predicate that specifies that
an object cannot be a part of itself [9]. Additionally, compositions have a constraint added
to the WSTC predicate that specifies that components (i.e., part roles) of a composition must
belong to the same composite object (i.e., whole role) throughout their lifetime.

15

Figure 10: An example of the Alloy output for a simple associations between a Car and a
Driver. The Drives triangle is the association itself.

5.2.3 Messages

Message types are also modelled as concepts. Similar to other concepts, a message type can
be inherited from by another message type, be abstract, and have attributes. Messages can be
input messages, output messages, or both input and output messages. Depending on whether
a message is an input or output, it will have a relation that associates the message with its
source and/or destination feature.

In addition, message objects are transient, which means they can not exist in two consecutive
world states. For this reason, a WSTC constraint is added for every message concept to express
that if a message exists in a world state, then it can not exist in a next world state.

5.2.4 Features

The last major part of a FORML world model that is translated into Alloy are the feature
concepts. The FORML textual syntax does not directly correspond to the representation of
features in the world model. The textual syntax represents attributes and messages on features
as well as the hierarchy of features and cardinality of features that are located in the FORML
feature model.

In most aspects, a FORML feature is translated in the same way that other concepts are.
Features may contain attributes, a list of input messages, and a list of output messages. Speci-
fying if a message is an input to a feature or an output from a feature is not required. FORML’s
input and output syntax is a leftover from earlier versions of the translator and has been left
in for readability of large models in which the feature definitions can be separated by large
distances from the message definitions.

The only difference between a feature and other types of concepts is that feature objects
can not be dynamically added or removed from the world. This is modelled by a WSTC
constraint that will not allow features to be added or removed from one world state to the next.

16

The generated Alloy model contains constraints to ensure that the FORML model’s feature
hierarchy is preserved: e.g., a child feature can not be included in an SPL unless its parent is
present.

5.2.5 Enumerations and Macros

Enumerations in a FORML model are translated directly into Alloy enumerations with no
changes to the syntax or semantics.

Macros in FORML are used to simplify textual expressions. In many cases, the macros
are not needed as they are primarily used to simplify the expressions in guard conditions and
triggers in a FORML behaviour model. However, macros can also be used in transition actions,
so they are parsed.

The expression language used for constraints (e.g., user-provided WSCs or WSTCs) is very
similar to Alloy’s expression language (and therefore similar to OCL [2]). Thus, any constraints
expressed in a FORML world model require only minor changes to their structure in order to
represent them in Alloy. A complete grammar of the FORML’s expression syntax is given in
Appendix A.

5.3 Translation of the Behaviour Model

To perform the analysis, the translator needs to parse and translate parts of the FORML
behaviour model1. The behaviour model that is input to the translator must be a composed
state-machine, in which the behaviour models of the SPL features have been composed together
using superimposition [11]. The result of composing parallel state-machines can be two possible
representations: (1) a collection of parallel state-machines, or (2) machines running in concur-
rent regions of a composite machine. The translator accepts both of these representations for
the composed state-machine input.

5.3.1 World Change Actions

A WCA predicate for each type of WCA is added to the Alloy model for every concept in the
world model (as described in Section 5.1). A WCA checks the post-condition of an action to
determine if it has been executed successfully. The specific structure of each kind of WCA is
given in Appendix C.3.

A WCA predicate is named according to the kind of action it is performing and the type of
the object it is acting on. Figure 11 shows an example of the WCAs for adding, removing and
changing an attribute value on an object of type A, with an attribute b of type Int. The WCA
predicate for adding a message to the world has the same structure as adding any other concept.
Each WCA predicate takes as arguments the future world state (wsPost) that will be reached
when the actions on a transition have executed. All of the remaining arguments are objects
that an action uses to check if the post-condition it is testing holds. The add_A predicate states
that the object to be added is in the future world state, and the remove_A predicate states that
the object to be removed is not in the future world state. The change_A_b predicate states

1The limitations section discusses in more detail why some parts of the behaviour model are not translated.

17

pred add_A(wsPost : WS, ob j e c t : A) {
ob j e c t in wsPost

}
pred remove_A(wsPost : WS, ob j e c t : A) {

ob j e c t not in wsPost
}
pred change_A_b(wsPost : WS, ob j e c t : A, va lue : Int) {

ob j e c t . (wsPost . b) = value
}

Figure 11: A world change action that is removing an A object from the world.

that the attribute value of the object in the future world state should be equal to the value
passed as an argument.

5.3.2 States

The states in a FORML behaviour model are not included in the translated Alloy model, as
they are not needed for the analysis.

5.3.3 Transitions

Each transition in a FORML behaviour model is translated into an individual Alloy predicate
that is the concatenation of all of the WCA predicates for that transition’s actions. This
predicate will be true only if the actions on the transition can all be executed (i.e., all of
their post conditions are mutually satisfiable). A transition predicate is named according to
the feature and region in which its starting state resides; such a naming scheme ensures that
transition names are unique in the Alloy model. For instance, given a transition t1 in region
B of feature A, the predicate would be named A_B_t1. The actual values that are assigned
to attributes in a change attribute world-change action are not important as the values are
universally quantified over all possible valid values.

6 Analysis
The purpose of performing Alloy analysis is to identify individual transitions and pairs of
transitions whose (simultaneous) executions result in an inconsistent world state. Following
from the definition of an interaction in FORML, we define an interaction in Alloy as follows:
given some world state, applying the conjunction of the actions of an individual transition (or
pair of transitions) to that state cannot result in a new, valid world state. This definition is
used to create the Alloy assertions that detect interactions.

An assertion is created for every transition, and pair of transitions that can execute con-
currently. Although this strategy obviously will produce assertions for pairs of transitions from
different features, it also generates assertions for pairs of transitions from different concurrent
regions within the same feature, thereby detecting intra-feature interactions. An example of
such an assertion is shown in Figure 12. The assertion is checking transitions t1 and t4 from

18

1 a s s e r t t1_and_t4 {
2 a l l wsPre : WS |
3 a l l o1 : wsPre . AutoSoftCar , o2 : wsPre . AutoSoftCar , v1 : I gn i t i onS ta t e

, v2 : Int |
4 some wsPost : {ws : WS − wsPre | WSTC[wsPre , ws] } |
5 t1 [wsPost , o1 , v1] and t4 [wsPost , o2 , v2]
6 }
7 pred t1 (wsPost : WS, o1 : AutoSoftCar , v1 : I g n i t i o nS t a t e) {
8 change_AutoSoftCar_ignition [wsPost , o1 , v1]
9 }

10 pred t4 (wsPost : WS, o1 : AutoSoftCar , v1 : Int) {
11 change_RoadObject_acceleration [wsPost , o1 , v1]
12 }

Figure 12: The structure of the interaction assertion for two transitions, t1 and t4.

the Basic Driving Service behaviour model in Figure 2. The predicates for transitions t1 and
t4 are included with the assertion.

Predicate t1 contains a single WCA that changes the ignition value of an AutoSoftCar, and
predicate t4 contains a single WCA that changes the acceleration of an AutoSoftCar object.
You will notice in predicate t4 that the WCA change_RoadObject_acceleration is being used;
this is because the AutoSoftCar concept inherits from the RoadObject concept (see Figure 1)
and the acceleration attribute is defined on the RoadObject concept. The assertion checks that
both of these predicates can be applied to the same world state and lead to some valid next
world state. The assertion is named by concatenating the names of the two transitions that are
being tested for an interaction. If the assertion fails, the analyzer produces a counter-example
that shows the world state (wsPre) to which the two transitions’ action predicates cannot be
applied.

The general structure of this assertion is given in Appendix C.4. A major benefit of the
assertions that are generated is that they are not specific to the type of interactions being
detected – all of the types of interaction described in Section 4 are detected by assertions about
transitions’ post conditions. As such, there is no concern that we do not have a complete list
of the possible ways in which features’ actions conflict.

One of the limitations of our approach is that it tests transition pairs without knowing
whether, in fact, the transitions can execute simultaneously. It may be that a pair of transitions
can never execute together, and the analyzer might report that they interact. On the positive
side, this means that one could analyze partial models of feature behaviour, looking for early
feedback of potential interactions. It also means that if one wanted a more precise analysis
that avoids comparing transitions that can never be executed together (e.g., because their
source states are not simultaneously reachable) then one would need to use a more heavyweight
analysis method.

It is also possible that the actions on a single transition may interact, so we also support
the analysis of individual transitions. Given that a transition is simply a set of concurrent
actions, a single transition can be checked the same way as a pair of transitions. In this case,
the assertion name is the transition name and the rest of the predicate remains the same as in

19

1 a s s e r t t1_and_t4 {
2 distinct_valid_WSs imp l i e s
3 a l l wsPre : WS |
4 a l l o1 : wsPre . AutoSoftCar , o2 : wsPre . AutoSoftCar , v1 :

I gn i t i onS ta t e , v2 : Int |
5 some wsPost : {ws : WS − wsPre | WSTC[wsPre , ws] } |
6 t1 [wsPost , o1 , v1] and t4 [wsPost , o2 , v2]
7 }
8 pred t1 (wsPost : WS, o1 : AutoSoftCar , v1 : I g n i t i o nS t a t e) {
9 change_AutoSoftCar_ignition [wsPost , o1 , v1]

10 }
11 pred t4 (wsPost : WS, o1 : AutoSoftCar , v1 : Int) {
12 change_RoadObject_acceleration [wsPost , o1 , v1]
13 }

Figure 13: The new structure of the interaction assertion for two transitions, t1 and t4.

Figure 12.

6.1 Checking all world states

The assertion presented in Figure 12 is ideal, however, a limitation of Alloy makes the assertion
slightly incorrect. Alloy forces you to manually specify the scope of its search space. The
scope in this case is the number of concepts and world states. In addition, Alloy uses bounded
quantification [4]. This means that if the scope is set to not generate all of the possible world
states, then the universal and existential quantifiers will not explore the entire set of world
states, just a subset. If the scope of the assertion is set to be lower than the number of possible
world states, then the existential quantifier on line 4 may not find a future world state (wsPost)
where the conjunction of the transitions’ actions hold. This will cause the assertion to fail even
though no interaction has occurred. Normally, bounded quantification is useful as the size of
the set being quantified may be infinite. However, in our case we know that the set of world
states within a specified scope is finite and we would like to take advantage of that.

To work around the bounded quantification problem, it is necessary to force Alloy to explore
the entire set of world states. In order to do this, the scope of the world-state signature must
be set to the exact number of possible world states. This requires manual intervention on the
part of the user to find the exact number, as well as the definition of a new predicate that will
check to make sure only distinct and valid world states are being generated. The new assertion
is shown in Figure 13. The only difference between this assertion and the original one is that
this assertion has an additional check at the start of the assertion for distinct and valid world
states.

The distinct_valid_WSs on the first line of the assertion is a predicate used to ensure that
every world state generated is distinct from all other world states and is valid according to the
constraints of the Alloy model. The predicate also checks the every instance of the world state
in the model abides by the world state constraints (WSC) predicate. The distinct_valid_WSs
predicate is created by the translator.

20

Figure 14: The world model used in the experiment to determine the effectiveness of using
partial instances.

6.2 Saving the set of world states

When checking assertions like the one in Figure 13 the analyzer will generate and test the set of
distinct and valid world states with every assertion being checked. However, the set of distinct
and valid world states remains constant throughout the analysis run – raising the question of
whether the analysis would be faster if the set of distinct and valid world states were generated
once and reused in every assertion check of an analysis run. To test this hypothesis, we used
a research prototype version of Alloy that has support for manually specifying instances of an
Alloy model2 [8]. Using this approach a user can find the set of all distinct and valid world
states once, then use that set to specify exactly what the world states are for the analysis runs.

We performed a small experiment that compared the analysis time of our interaction analysis
with and without the use of partial instances. The FORML world model that we used is shown
in Figure 14. This world model contains a concept AutoSoftCar with several attributes, as
well as a Driver concept who drives the car. It also contains two features, BDS and CC, which
are a part of a SPL, AutoSoft. The behaviour model used is the same as the one located
in Figure 2. This model generates 198 distinct and valid world states. Table 1 shows the
results of performing a single assertion check on this set of world states. The row labelled “No
interaction” refers to testing a pair of transitions that does not generate a counter-example
due to no interactions between their actions. The row “Interaction” refers a pair of transitions
that interact and produce a counter-example. You can see from the results that using a partial
instance to save the set of world states leads to a significant performance improvement when
performing analysis.

We have created a small translator that translates from the internal Alloy representation
of a set of world states to the syntax required by the partial-instances prototype of Alloy.
To automate the specification of the partial instance, the user (1) runs the analyzer to find
all distinct and valid world states, (2) extracts the set of valid world states generated during
that analysis (accessible from the visualizer), (3) uses this new translator to convert the Alloy
visualizer output into a partial instance specification, and (4) employs the partial instance in

2The prototype can be downloaded from: https://ece.uwaterloo.ca/ ~vmontagh/alloy/

21

Task Runtime without PI (s) Runtime with PI (s)
No interaction 277 (41,236) 7 (6,1)
Interaction 282 (37,245) 6 (5,1)

Table 1: Performance comparison of interaction analysis using partial instances versus without
partial instances. PI is short for partial instance. The numbers in brackets are the times for
the conjunctive-normal-form formula generation and the solving time, respectively.

subsequent analysis runs.

7 An Example
This section provides a small example of how our analysis method can be used in practice to
locate interactions.

Given the FORML model in Figures 1 and 2, the translator can be run to generate an Alloy
model. When this Alloy model is loaded into the Alloy IDE, the user has several options for
checking the various assertions. For that model in particular, there are 13 assertions created
that will check pairs of transitions to see if they interact.

First a user will need to determine and specify the maximum number of distinct and valid
world states. This is done by guessing the exact number of world states and running the Alloy
model using the distinct_valid_WSs predicate. If instances are found, then the number is either
too low, or correct. If instances are not found, then the number is too high. A binary search
can be performed in this way to find the maximum number of world states (i.e., the number
i that generates instances where the number i + 1 does not generate instances). A partial
instance can now be created using our partial-instance translator. Once the user includes this
partial instance with their Alloy file, they are ready to check the assertions efficiently to identify
interactions.

When the analyzer completes its checking of the 13 assertions, the user will see that one
of the assertions returned a counter-example; this means that there is a potential interaction.
In this case, the interaction is between transitions t3 and t4 (see Figure 2). It is relatively
straightforward to reason out why this particular interaction occurs; both transitions are trying
to change the AutoSoftCar_acceleration value. However, an interaction could be much
more complex. In complex cases, the user should open the Alloy visualizer to view the exact
world state which leads to the interaction occurring. The user would see something similar to
what is shown in Figure 15. This figure shows part of the initial state for the world where
the interaction occurs (the world contains more concepts, but they are not shown). In the
visualized output, the AutoSoftCar object has two variable names listed on it: $AutoSoftCar_t3
and $AutoSoftCar_t4; these indicate that this AutoSoftCar is being acted on by transitions
t3 and t4. The current value of the AutoSoftCar’s acceleration attribute is 1. The other
important part of the output are the two integers 0 and -2, which are labelled with the variable
names $change_t4 and $change_t3, respectively. In this way, the visualizer will mark the
exact objects in the world that are being acted on by transitions. By using the knowledge
that transitions t3 and t4 are changing the AutoSoftCar’s acceleration, the output can be
read as: transition t3 is changing an AutoSoftCar’s acceleration value to -2, and transition

22

Figure 15: The initial world state for a counter-example where two transitions are each trying
to change the acceleration attribute on an AutoSoftCar. This visualization uses a custom Alloy
theme.

t4 is changing an AutoSoftCar’s acceleration value to 0. Clearly, the interaction is occurring
because the acceleration is being changed to two different values. This kind of information is
given whenever there is an interaction; using this the user can reason out the circumstances
that are leading to the interaction.

With this information the user can return to their original FORML model and resolve the
interaction. In this case, adding a transition priority, saying that t4 always takes precedence
over t3 (e.g., t4 > t3), resolves the interaction.

Much of the output that is given by the visualizer may not directly relate to the interaction
(as the counter-example shows the entire world state). For instance, for the AutoSoftCar object
in Figure 15, the arguments: AutoSoftCars, PhysicalObjects and RoadObjects state that an
AutoSoftCar is a part of those three sets of objects (due to the inheritance relations in the
world model). This information may still be useful when attempting to determine the cause of
an interaction.

8 Limitations
There are a few limitations of the translator that a user should be aware of when translating
FORML models into Alloy.

One limitation is that triggers and guards on transitions are not translated into Alloy. This
can lead to false positives, in that the analyzer will report that two transitions interact when in
fact they never execute concurrently because their triggers or guard conditions are incompatible.
Unfortunately, it is impossible to detect which transitions can execute concurrently: this would
require a reachability analysis of the FORML behaviour model.

A second limitation is that the translator does not attempt to detect and resolve name

23

conflicts. For example, the sets of concepts in a world state are named by making the concept
names plural (e.g., a type T will have a set Ts in the world state). This strategy will cause a
naming conflict if there is another type that is named Ts. The translator will not report any
kind of warning or error when this occurs. The resulting Alloy model will be incorrect and will
probably throw compilation errors when it is executed. The possible naming conflicts are:

• Having a concept with name T, and another concept with name Ts.

• Different concepts with the same name (e.g., a model in which both a message and a
feature is named X).

• Conflicting enumeration definitions

• Conflicting macro definitions

Lastly, the translator does not perform any kind of error checking. If the input model is
missing elements or is otherwise incorrect, the translator will not detect any problems or report
any errors.

9 Conclusion
In this report, we present a translator that translates a FORML model into Alloy. In addition,
the translator automatically generates assertions that, using the Alloy analyzer, will detect
interactions between concurrently executing transitions. We have shown that this method can
be used on partial FORML models, and that it can be implemented efficiently. This approach
has the benefit that it requires very little interaction with a user and can be used with no
specific background knowledge of model verification.

References
[1] UML Specification, 2007.

[2] Object Constraint Language Specification, 2010.

[3] Sven Apel and Christian Kastner. An overview of feature-oriented software development.
Journal of Object Technology, 2009.

[4] Jonas Barklund and Johan Bevemyr. Prolog with arrays and bounded quantifications.
Logic Programming and Automated Reasoning, 1993.

[5] Daniel Jackson. Alloy: a lightweight object modelling notation. TOSEM, pages 256 – 290,
2002.

[6] A.J. Malton K.A. Schneider J.R. Cordy, T.R. Dean. Source transformation in software
engineering using the TXL transformation system. Journal of Information and Software
Technology, 1985.

24

[7] G. Georg K. Anastasakis, B. Bordbar and I. Ray. On challenges of model transformation
from UML to Alloy. Software System Models, 2010.

[8] Vajih Montaghami and Derek Rayside. Extending alloy with partial instances. In To be
presented at ABZ 2012, 2012.

[9] Oracle. Getting starting with UML class modeling. Technical report, Oracle, 2007.

[10] Pourya Shaker and Joanne M Atlee. Feature-oriented requirements modelling language
(FORML). Technical report, University of Waterloo, 2011.

[11] Salvador Trujillo Sven Apel, Florian Janda and Christian Kastner. Model superimposi-
tion in software product lines. In Proceedings of the International Conference on Model
Transformation, 2009.

25

A FORML Grammar
The complete FORML plain text grammar has been provided below. This grammar corresponds
to the FORML metamodel. The state machine provided should be a composite state machine
in which all possible features in the SPL have been composed into one large state machine. The
grammar for the TXL program is not identical to this, but is equivalent.
% world model

world−model := concept ∗ p r ed i c a t e ∗ macro∗
concept := bas ic−concept ∗ a s s o c i a t i o n ∗ parto f−a s s o c i a t i o n ∗ message∗ SPL∗ f e a tu r e

∗ enumeration∗
bas ic−concept := (' abst ract ') ? ' concept ' ID (' extends ' ID) ? a t t r i b u t e ∗
a t t r i b u t e := ' a t t r i bu t e ' d e c l
d e c l := ID ' [' mu l t i p l i c i t y '] ' ' : ' ID
mu l t i p l i c i t y := (NAT | ' ∗ ') | (NAT ' . . ' (NAT | ' ∗ '))
id− l i s t := ID (' , ' ID) ∗
a s s o c i a t i o n := (' abst ract ') ? ' a s s o c i a t i on ' ID (' extends ' id− l i s t) ? a t t r i b u t e ∗

r o l e { 2 . . ∗ }
r o l e := ' ro l e ' ID ' [' mu l t i p l i c i t y '] ' ' : ' ID
parto f−a s s o c i a t i o n := (' aggregat ion ' | ' composit ion ') ID a t t r i b u t e ∗ ' whole ' r o l e

' part ' r o l e
message := (' abst ract ') ? ' message ' ID (' extends ' ID) ? a t t r i b u t e ∗
SPL := 'SPL ' ID a t t r i bu t e ∗ f e a t u r e ∗
f e a t u r e := ' f ea ture ' ID ' [' f e a t u r eCa rd i n a l i t y '] ' ' { ' a t t r i b u t e ∗ (' inputs ' id−

l i s t) ? (' outputs ' id− l i s t) ? f e a tu r e ∗ '} '
c a r d i n a l i t y := (NAT ' . . ' (NAT | ' ∗ '))
f e a t u r eCa rd i n a l i t y := (' 0 . . 1 ' | ' 1 ')
enumeration := 'enum ' ID '= { ' id− l i s t ' } '
macro := ' l e t ' ID '= ' expr

% exp r e s s i on s

expr := set−expr | p r ed i c a t e

set−expr := ' (' ? atomic | der ived | un sp e c i f i e d ') '?
atomic := ' none ' | ID | id−r e f | ID ' s ' '@pre ' ?
der ived := nav igat i on | standard−set−op | s e l e c t i o n | c ond i t i o na l | i n t e g e r
nav igat i on := (set−expr ' . ') ? (ID | ID '− ' ID | ' to ' | ' from ') '@pre ' ?
standard−set−op := set−expr ('+ ' | '\& ' | '− ')
s e l e c t i o n := set−expr ' [' ID | p r ed i c a t e '] '
c ond i t i o na l := ' i f ' p r ed i c a t e ' then ' set−expr ' e l s e ' set−expr
i n t e g e r := '# ' set−expr | i n t e g e r ('+ ' | '− ') i n t e g e r
un sp e c i f i e d := (funct ion−c a l l | ID '{ ' funct ion−c a l l ' } ') '@pre ' ?
funct ion−c a l l := ID ' () '

p r ed i c a t e := ' (' ? standard−set−pred | standard−l o g i c−pred | c a rd i n a l i t y−pred |
quant i f i ed−pred | in t ege r−pred | un sp e c i f i e d ') '?

standard−set−pred := set−expr ('= ' | ' in ') set−expr
standard−l o g i c−pred := ' not ' p r ed i c a t e | p r ed i c a t e (' and ' | ' or ' | ' imp l i e s ' | '

i f f ') p r ed i c a t e
c a rd i n a l i t y−pred := (' no ' | ' lone ' | ' one ' | ' some ') set−expr
quant i f i ed−pred := (' no ' | ' lone ' | ' one ' | ' some ' | ' a l l ') vars−dec l (' , ' vars−

dec l) ∗ '\ textbar ' p r ed i c a t e

26

vars−dec l := ' d i s j ' ? id− l i s t ' : ' ID
in t ege r−pred := i n t e g e r ('= ' | '> ' | '< ' | '=<' | '>=') i n t e g e r

% composite behaviour model (input to ana lyze r)

behaviour−model := 'SPL ' ID state−machine∗
s ta te−machine := ' s ta te−machine ' id−r e f i n i t−s t a t e s t a t e ∗ t r a n s i t i o n ∗ bm−macro∗
s t a t e := ' s ta te ' id−r e f r eg i on ∗
reg i on := ' reg ion ' id−r e f i n i t−s t a t e ? s t a t e ∗
i n i t−s t a t e := ' i n i t =' id−r e f
t r a n s i t i o n := ' t r an s i t i o n ' id−r e f tran−p r i o r i t y ? ' : ' ext−id−r e f '−>' ext−id−r e f

t r i g ? guard ? (' / ' WCA− l i s t) ?
tran−p r i o r i t y := '> ' id−r e f
t r i g := ove r r i d e | 'when (' id−r e f ') ' | ' a f t e r (' ID ') ' | WCE
ove r r i d e := ' ove r r i d e (' id−r e f ') '
WCE := ID '+(o) ' | ID ' (' id− l i s t ? ') ' | ID '−(o) ' | set−expr '− ' | ID ' . ' ID

'~(o) ' | set−expr ' . ' ID '~ '
guard := ' [' p r ed i c a t e '] '
WCA− l i s t := WCA (' , ' WCA)∗
WCA := ID ' : ' o v e r r i d e ? guard ? ((id−r e f '= ') ? '+ ' ID ' (' as s ign− l i s t ') ' | ' ! '

ID ' (' as s ign− l i s t ') ' | '− ' set−expr | set−expr ' . ' ID ' := ' set−expr)
ass ign− l i s t := (ID ' : : ') ? ID '= ' set−expr (' , ' (ID ' : : ') ? ID '= ' set−expr) ∗
bm−macro := l e t id−r e f '= ' expr
id−r e f := ID '{ ' ID '} '
ext−id−r e f := ID '{ ' ID (' . ' ID) ∗ '} ' (' . ' ID '{ ' ID (' . ' ID) ∗ ' } ') ?

27

B Textual FORML Model of the BDS Example
This section provides a more in-depth example of how the FORML graphical syntax corresponds
to the textual syntax.

Figures 16 and 17 give a small example of a FORML model of only a single feature, the
Basic Driving Service (BDS). Following the figures is the corresponding textual representation
of the model.

Figure 16: A World Model with a single feature

Figure 17: A Behaviour Model for the Basic Driving Service corresponding to the above World
Model

28

%These are the l i s t o f concepts in the model
ab s t r a c t concept Phys ica lObject

a t t r i b u t e p o s i t i o n [1] : Coord
a t t r i b u t e shape [1] : Shape

concept Lane extends Phys ica lObject
concept RoadSegment extends Phys ica lObject

a t t r i b u t e speedLimit [1] : Int
concept RoadObject extends Phys ica lObject

a t t r i b u t e speed [1] : Int
a t t r i b u t e a c c e l e r a t i o n [1] : Int
a t t r i b u t e o r i e n t a t i o n [1] : Int
a t t r i b u t e d i r e c t i o n [1] : D i r e c t i on

concept AutoSoftCar extends RoadObject
a t t r i b u t e i g n i t i o n [1] : I g n i t i o nS t a t e

concept Driver

%Al l o f the compos i t ions and aggr ega t i on s in the model
a s s o c i a t i o n IsOn

r o l e roadSeg [1] : RoadSegment
r o l e roadObj [∗] : RoadObject

aggregat i on Drives
whole r o l e r1 [1] : AutoSoftCar
part r o l e r2 [1] : Dr iver

compos it ion LaneOnRoadSeg
whole r o l e r1 [1] : RoadSegment
part r o l e r2 [1 . . ∗] : Lane

compos it ion Contains
whole r o l e r1 [1] : AutoSoftCar
part r o l e r2 [1] : AutoSoft

%The SPL and f e a tu r e model
SPL AutoSoft

f e a t u r e BDS [1]
{

inputs IgniteOn , I gn i t eOf f , Steer , Acce l e rate , Dece l e ra t e
}

%The messages that can be used by the f e a t u r e s
message IgniteOn

input
message I gn i t eO f f

input
message Stee r

input
a t t r i b u t e va lue [1] : Int

message Acce l e ra t e
input
a t t r i b u t e va lue [1] : Int

message Dece l e ra t e
input
a t t r i b u t e va lue [1] : Int

%Enumerations used in the model
%I t i s a l s o p o s s i b l e to have undef ined types , so do not need enumerations f o r

29

everyth ing
enum Ign i t i o nS t a t e = {on , o f f }

%The behaviour model
SPL AutoSoft

s ta te−machine BDS{main}
i n i t = BDS{ o f f }
s t a t e BDS{ o f f }
s t a t e BDS{on}

reg i on BDS{ a c c e l e r a t i o n }
i n i t = BDS{ wa i tAcce l e ra t e }
s t a t e BDS{ wa i tAcce l e ra t e }

r eg i on BDS{ d e c e l e r a t i o n }
i n i t = BDS{ wa i tDece l e ra t e }
s t a t e BDS{ wa i tDece l e ra t e }

r eg i on BDS{ s t e e r i n g }
i n i t = BDS{ wa i tStee r }
s t a t e BDS{ wa i tStee r }

t r a n s i t i o n BDS{ t1 } : BDS{ o f f } −> BDS{on}
IgniteOn () / BDS{a1 } : AutoSoftCar . i g n i t i o n := on

t r a n s i t i o n BDS{ t2 } : BDS{on} −> BDS{ o f f }
I gn i t eO f f () / BDS{a1 } : AutoSoftCar . i g n i t i o n := o f f

t r a n s i t i o n BDS{ t3 } : BDS{on . a c c e l e r a t i o n . wa i tAcce l e ra t e } −> BDS{on .
a c c e l e r a t i o n . wa i tAcce l e ra t e }

Acce l e ra t e (va lue) / BDS{a1 } : AutoSoftCar . a c c e l e r a t i o n := BDS{ a c c e l e r a t i o n
() }

t r a n s i t i o n BDS{ t4 } : BDS{on . d e c e l e r a t i o n . wa i tDece l e ra t e } −> BDS{on .
d e c e l e r a t i o n . wa i tDece l e ra t e }

Dece l e ra t e (va lue) / BDS{a1 } : AutoSoftCar . a c c e l e r a t i o n := BDS{ d e c e l e r a t i o n
() }

t r a n s i t i o n BDS{ t5 } : BDS{on . s t e e r i n g . wa i tStee r } −> BDS{on . s t e e r i n g . wa i tStee r }
Stee r (va lue) / BDS{a1 } : AutoSoftCar . o r i e n t a t i o n := BDS{ s t e e r () }

The translated Alloy output is too large to put in the report (this is due to the size of the
assertions and the generated names for objects). This exact example can be found in the code
provided with the report, in the file input2.form.

30

C FORML to Alloy Translation Rules
This appendix contains the general rules for the translation from FORML to Alloy.

C.1 World Model to Alloy

A world model wm is translated to an Alloy model 〚wm〛 of the form:

1 [type signatures]
2 sig WS {
3 [WS fields]
4 }
5 pred WSC (ws: WS) {
6 [WSC constraints]
7 }
8 pred WSTC (wsPre, wsPost: WS) {
9 [WSTC constraints]

10 }

where

• The place-holder [type signatures] (line 1) stands for a set of signatures, each of which
specifies a type (a concept, an enumeration, or an undefined type) in wm.

• The signature WS (lines 2-4) specifies the world-state space of wm. The place-holder [WS
fields] (line 3) stands for a set of fields of WS that specify the elements of a world state.

• The predicate WSC (lines 5-7) specifies constraints on possible world states. The place-
holder [WSC constraints] (line 6) stands for a set of Alloy constraints over a world-state
ws.

• The predicate WSTC (lines 8-10) specifies constraints on possible world-state transitions.
The place-holder [WSTC constraints] (line 9) stands for a set of Alloy constraints over
two consecutive before (wsPre) and after (wsPost) world states.

The following subsections describe how the above place holders are populated through trans-
lating the types and constraints in wm.

C.1.1 Undefined Types

An undefined type T is translated to a type signature

1 sig T {}

C.1.2 Enumerations

A FORMoL enumeration, which is expressed as an Alloy enumeration, is simply repeated as
a type signature.

31

C.1.3 Concepts

A concept A is at least translated to the following place-holder elements:

• A type signature, which in the simplest case, is

sig A {}

If A is abstract, so is its type signature:

abstract A {}

If A is a subtype of a concept B, its type signature extends that of B:

sig A extends B {}

• A WS field

As: set A

which represents the set of objects of type A in a world state

• For each attribute a with type T of A, a WS field

A_a: As -> T

which specifies the value of a for each A object in a world state; and a WSC constraint
that specifies a’s multiplicity, provided that the multiplicity is not ∗: for a multiplicity of
n, the WSC constraint is

all o: ws.As | #o.(ws.A_a) = n

for a multiplicity of n..∗, the WSC constraint is

all o: ws.As | #o.(ws.A_a) >= n

and for a multiplicity of n1..n2, the WSC constraint is

all o: ws.As | #o.(ws.A_a) >= n1 and #o.(ws.A_a) =< n2

• If A is abstract and has subtypes B1...Bn, a WSC constraint

ws.As = ws.B1s + ... + ws.Bns

32

which specifies that there are no A objects in a world state, besides those of its subtypes

• If A is a subtype of concept B, a WSC constraint

ws.As = ws.Bs & A

which specifies that any A object in a world state is also a B object in the world state

C.1.3.1 Associations

An association A is additionally translated to the following place-holder elements:

• For each role r with type T of A, a WS field

A_r: As ->one Ts

which specifies the object in role r of each A link (object) in a world state; and a WSC
constraint that specifies r’s multiplicity, provided that the multiplicity is not ∗: given
that in addition to r, A has roles r1...rn with types T1...Tn, for a multiplicity of n, the
WSC constraint is

all o1: ws.T1s, ..., on: ws.Tns |
#((ws.A_r1.o1 & ... & ws.A_rn.on).(ws.A_r)) = n

for a multiplicity of n..∗, the WSC constraint is

all o1: ws.T1s, ..., on: ws.Tns |
#((ws.A_r1.o1 & ... & ws.A_rn.on).(ws.A_r)) >= n

for a multiplicity of n1..n2, the WSC constraint is

all o1: ws.T1s, ..., on: ws.Tns |
#((ws.A_r1.o1 & ... & ws.A_rn.on).(ws.A_r)) >= n1 and
#((ws.A_r1.o1 & ... & ws.A_rn.on).(ws.A_r)) =< n2

• For each role r of A, a WSTC constraint

all o: wsPre.As & wsPost.As | o.(wsPre.A_r) = o.(wsPost.A_r)

which specifies that the objects related by a link do not change over time

33

C.1.3.2 Aggregations and Compositions

An aggregation or composition A whose whole-role w and part-role p are both of type T is
additionally translated to a WSC constraint

all o: ws.As | not o.(ws.A_w) = o.(ws.A_p)

which specifies that an object cannot be part of itself.
A composition B with a part-role p of type T and a whole-role w is additionally translated

to a WSTC constraint

all o: wsPre.Ts & wsPost.Ts | wsPre.B_p.o.(wsPre.B_w) = wsPost.B_p.o.(wsPost.B_w)

which specifies that a part object is ever in a composition link with a single whole object.

C.1.3.3 Features

In a world model for SPL S, a feature concept A is additionally translated to the following
place-holder elements:

• A WS field that specifies the A feature (if any) of each S product in a world state. If A
is mandatory, the WS field is

S_A: Ss one->one As

and if A is optional, the WS field is

S_A: Ss one->lone As

• If A is optional and has a parent feature concept B, a WSC constraint

all o: ws.Ss | one o.(ws.S_A) implies one o.(ws.S_B)

which specifies that an optional feature can be present in a product only if its parent
feature is present in the product

• A WSTC constraint

wsPre.S_A = wsPost.S_A

which specifies that the feature configuration of each SPL product in a world state is
fixed.

34

C.1.3.4 Messages

In a world model for SPL S, a message A is additionally translated to the following place-
holder elements:

• If A is an input message, a WS field

A_to: As ->one Ss

which specifies the S product that each A message object is sent to in a world state; and
if A is an output message, a WS field

A_from: As ->one Ss

which specifies the S product that each A message object is sent by in a world state

• A WSTC constraint

no (wsPre.As & wsPost.As)

which specifies that message objects are transient

C.1.4 Constraints

A world-state constraint (world-state transition constraint) is translated to a WSC constraint
(WSTC constraint) using the rules for translating world-model expressions to Alloy, which are
presented in Section C.2.

C.2 World-Model Expressions to Alloy

A FORMoL-expression expr over a world-model wm is translated to an Alloy-constraint 〚expr〛
over the Alloy-model 〚wm〛. The following subsections give the translation rules for the different
types of FORMoL expressions.

C.2.1 Parenthesized Expressions

Where expr is an abitrary FORMoL expression,

〚(expr)〛 = (〚expr〛)

35

C.2.2 Set Expressions

C.2.2.5 Atomic Expressions

Where v is a variable, T is a type, and A is a concept,

〚none〛 = none
〚v〛 = v
〚T〛 = T
〚As〛 = ws.As

C.2.2.6 Navigation Expressions

In the following rules, set is a FORMoL set expression that evaluates to a set of objects
of concept A. Where x is an attribute of A, or A is an association and x is a role of A, or A is
an SPL and x is a feature of A,

〚set.x〛 = 〚set〛.A_x

Where A is a message,

〚set.to〛 = 〚set〛.A_to
〚set.from〛 = 〚set〛.A_from

Where B is an association with a role r of type A,

〚set.B − r〛 = B_r.〚set〛

Where B is an association with only one role of type A,

〚set.B〛 = B_r.〚set〛

C.2.2.7 Set Operations

Where set , set1 , and set2 are FORMoL set expressions, and pred is a FORMoL
predicate,

〚set1 + set2〛 = 〚set1〛 + 〚set2〛
〚set1 − set2〛 = 〚set1〛 - 〚set2〛
〚set1 & set2〛 = 〚set1〛 & 〚set2〛
〚if pred then set1 else set2〛 = if 〚pred〛 then 〚set1〛 else 〚set2〛
〚set[o | pred]〛 = {o: 〚set〛 | 〚pred〛}

36

C.2.3 Integer Expressions

Where number is an integer, set is a FORMoL set expression, and int1 and int2 are
FORMoL integer expressions,

〚number〛 = number
〚#set〛 = #〚set〛
〚int1 + int2〛 = 〚int1〛 + 〚int2〛
〚int1 − int2〛 = 〚int1〛 - 〚int2〛

C.2.4 Predicates

C.2.4.8 Set Operations

Where set , set1 , and set2 are FORMoL set expressions,

〚set1 = set2〛 = 〚set1〛 = 〚set2〛
〚set1 in set2〛 = 〚set1〛 in 〚set2〛
〚no set〛 = no 〚set〛
〚lone set〛 = lone 〚set〛
〚one set〛 = one 〚set〛
〚some set〛 = some 〚set〛

C.2.4.9 Logic Operations

Where pred , pred1 , and pred2 are FORMoL predicates,

〚not pred〛 = not 〚pred〛
〚pred1 and pred2〛 = 〚pred1〛 and 〚pred2〛
〚pred1 or pred2〛 = 〚pred1〛 or 〚pred2〛
〚pred1 implies pred2〛 = 〚pred1〛 implies 〚pred2〛
〚pred1 iff pred2〛 = 〚pred1〛 iff 〚pred2〛

C.2.4.10 Quantification Predicates

Where set is a FORMoL set expression and pred is a FORMoL predicate,

〚no v : set | pred〛 = no v: 〚set〛 | 〚pred〛
〚lone v : set | pred〛 = lone v: 〚set〛 | 〚pred〛
〚one v : set | pred〛 = one v: 〚set〛 | 〚pred〛
〚some v : set | pred〛 = some v: 〚set〛 | 〚pred〛
〚all v : set | pred〛 = all v: 〚set〛 | 〚pred〛

37

Quantification predicates that involve multiple variables and the keyword disj are similarly
translated. For example,

〚all disj v1, v2 : set1, v3 : set2 | pred〛 =
all disj v1, v2: 〚set1〛, v3: 〚set2〛 | 〚pred〛

C.2.4.11 Integer Predicates

Where int1 and int2 are FORMoL integer expressions,

〚int1 = int2〛 = 〚int1〛 = 〚int2〛
〚int1 <> int2〛 = not 〚int1〛 = 〚int2〛
〚int1 > int2〛 = 〚int1〛 > 〚int2〛
〚int1 < int2〛 = 〚int1〛 < 〚int2〛
〚int1 <= int2〛 = 〚int1〛 <= 〚int2〛
〚int1 >= int2〛 = 〚int1〛 >= 〚int2〛

C.2.5 @pre

Where expr is an arbitrary FORMoL expression,

〚expr@pre〛 = 〚expr〛[wsPre/ws]

In the above rule, 〚expr〛[wsPre/ws] is the result of replacing all occurences of ws with wsPre in
〚expr〛.

C.3 WCA Types to Alloy

A WCA-type wca of a world-model wm is translated to an Alloy predicate 〚wca〛 over the
Alloy-model 〚wm〛 that specifies the WCA’s postcondition, excluding frame conditions. The
following subsections give the translation rules for the different types of WCAs.

C.3.1 Create Object

A WCA-type for creating an object of concept A is translated to a predicate of the form

1 pred addA(wsPost: WS, o: A, [parameters]) {
2 o in wsPost.As
3 [postconditions]
4 }

where

• The parameter wsPost (line 1) represents the world-state after the WCA is performed

38

• The parameter o (line 1) represents the newly added A object

• The postcondition o in wsPost.As (line 2) specifies that o is in wsPost

• The placeholder [parameters] (line 1) stands for a set of parameters, each of which
represents a value (i.e., a set of one or more instances of a type in wm) related to o

• The placeholder [postconditions] (line 3) stands for a set of postconditions that specify
how o is related to the values represented by the above parameters

The following subsections describe how the above place holders are populated for different
types of values related to A objects.

C.3.1.12 Attributes

Each attribute a with type T of A adds a parameter

a_val: set T

and a postcondition

o.(wsPost.A_a) = a_val

or if a is inherited from a concept B, a postcondition

o.(wsPost.B_a) = a_val

which specify that o’s a attribute has value a_val in wsPost.

C.3.1.13 Association Roles

If A is an association, each role r with type T of A adds a parameter

r_val: T

and a postcondition

o.(wsPost.A_r) = r_val

or if r is inherited from an association B, a postcondition

o.(wsPost.B_r) = r_val

39

which specify that in wsPost, o relates object r_val in role r.

C.3.1.14 Message Parameters with Concept Types

If A is a message, each message-parameter p of A whose type is a concept C adds a parameter

p_val: set A_p one->one C

(where A_p is the aggregation representing p, that is between A in role msg and C in role val)
and the postconditions

p_val.C in wsPost.A_ps
(p_val.C)->o in wsPost.A_p_msg
p_val in wsPost.A_p_val

or if p is inherited from a message B, the postconditions

p_val.C in wsPost.B_ps
(p_val.C)->o in wsPost.B_p_msg
p_val in wsPost.B_p_val

which specify that o’s p parameter has value A_p.p_val or B_p.p_val in wsPost.

C.3.2 Remove Objects

A WCA-type for removing a set of objects of a concept A is translated to the predicate

pred removeA(wsPost: WS, O: set A) {
not O in wsPost.As

}

which specifies that the removed A-objects O are not present in the world-state wsPost following
the WCA.

C.3.3 Change Attribute Value

A WCA-type for changing the value of an attribute a with type T of an object of a concept A
is translated to the predicate

pred changeA_a(wsPost: WS, o: A, val: set T) {
o.(wsPost.A_a) = val

}

which specifies that attribute a of the A-object o has value val in the world-state wsPost
following the WCA.

40

C.4 Assertions

Given a FORMoL model with a world model wm and a behaviour model bm, each pair of
concurrent transitions in bm is translated into an Alloy assertion over the Alloy-model 〚wm〛.
Such assertions are run over the space of all valid world states that can be constructed from a
chosen number of instances of each type in wm. This space can be characterized as the largest
world-state space that satisfies the predicate

1 pred distinct_valid_WSs {
2 all ws, ws': WS | ws = ws' iff ws.F1 = ws'.F1 and ... and ws.Fn = ws'.Fm
3 all ws: WS | WSC[ws]
4 }

given that the number of instances of each wm type respects the chosen bound. The above
predicate constrains the generated world-state space to containing distinct (line 2) and valid
(line 3) world states, where F1 ... Fm are the WS fields of 〚wm〛.

The assertion for a pair of transitions with a combined set of concurrent WCAs named id1
... idn is of the form

1 assert id1_..._idn {
2 distinct_valid_WSs implies
3 all wsPre: WS |
4 all [WCA arguments] |
5 some wsPost: {ws: WS - wsPre | WSTC[wsPre, ws]} |
6 [WCA invocations]
7 }

The assertion states that within the generated world-state space (line 2 together with the
bounds specified in the check command described below), starting from any world-state wsPre
(line 3), and for all combinations of arguments supplied to the WCAs (line 4), there exists
a world-state wsPost that can be arrived at by performing the WCAs; that is, the transition
from wsPre to wsPost satisfies the world-state transition constraints in wm (line 5), and wsPost
satisfies the postconditions of all of the WCAs (line 6).

The place-holder [WCA arguments] (line 4) stands for a comma-separated set of Alloy
declarations, each of which specifies the possible arguments that can be supplied for a particular
parameter of a particular WCA. The place-holder [WCA invocations] (line 6) stands for the
conjunction, via the Alloy-operator and, of a set of Alloy-predicate invocations, each of which
specifies a particular WCA. Each WCA id of type wca adds the following place-holder elements:

• A WCA invocation that is the invocation of the Alloy predicate 〚wca〛 using the WCA
arguments below.

• Each parameter of 〚wca〛 adds a WCA argument:

– If id creates an A object, parameter o: A of 〚wca〛 adds a WCA argument

id_o: A - wsPre.As

41

and each parameter a_val: set T of 〚wca〛 adds a WCA argument

id_a_val: set T

If A is an association, each parameter r_val: T of 〚wca〛 adds a WCA argument

id_r_val: T

If A is a message, each parameter p_val: set A_p one->one C of 〚wca〛 adds a
WCA argument

id_p_val: set (A_p - wsPre.A_ps) one->one wsPre.Cs

– If id removes a set of A objects, parameter O: set A of 〚wca〛 adds a WCA argument

id_O: set wsPre.As

– If id changes an attribute value of an A object, parameter o: A of 〚wca〛 adds a
WCA argument

id_o: wsPre.As

and parameter val: set T of 〚wca〛 adds a WCA argument

id_val: set T

The assertion above can be run using the Alloy command

check id1_..._idn for exactly x1 T1, ..., exactly xn Tn, exactly y WS

where T1 ... Tn are the types in wm, x1 ... xn are the chosen number of instances for these
types, and y is the size of the largest world-state space satisfying the predicate distinct_valid_WSs
that can be constructed using the chosen bounds.

42

D Partial Generated Alloy Model of the BDS Example
This section contains a partial model of the BDS example in Appendix B. The entire translation
of the World model, and a partial list of the generated WCAs and assertions is included. There
is a small difference between the model here and what is described elsewhere in the report:
the WCAs check both the pre- and post-condition of its action. As a result, the assertions
have also changed slightly. On line three of each assertion, when the transition arguments are
gathered, the type of each assertion is just the type of the object for the action (instead of the
more complex types in Appendix C). There is no change in behaviour using this method; this
is done to ease the translator implementation so that the assertion generation logic does not
need to know what types of actions are used in the transitions.

1 abs t r a c t s i g Phys ica lObject {}
2 s i g Driver {}
3 s i g Lane extends Phys ica lObject {}
4 s i g RoadSegment extends Phys ica lObject {}
5 s i g RoadObject extends Phys ica lObject {}
6 s i g AutoSoftCar extends RoadObject {}
7 s i g IsOn {}
8 s i g Drives {}
9 s i g LaneOnRoadSeg {}

10 s i g Contains {}
11 s i g AutoSoft {}
12 s i g BDS {}
13 s i g IgniteOn {}
14 s i g I gn i t eO f f {}
15 s i g Stee r {}
16 s i g Acce l e ra t e {}
17 s i g Dece l e ra t e {}
18 s i g Shape {}
19 s i g Coord {}
20 s i g D i r e c t i on {}
21
22 enum Bool { true , f a l s e }
23 enum Ign i t i o nS t a t e {on , o f f }
24
25 s i g WS {
26 Phys i ca lObjec t s : s e t Phys ica lObject ,
27 Dr iver s : s e t Driver ,
28 Lanes : s e t Lane ,
29 RoadSegments : s e t RoadSegment ,
30 RoadObjects : s e t RoadObject ,
31 AutoSoftCars : s e t AutoSoftCar ,
32 IsOns : s e t IsOn ,
33 Dr ives s : s e t Drives ,
34 LaneOnRoadSegs : s e t LaneOnRoadSeg ,
35 Containss : s e t Contains ,
36 AutoSofts : s e t AutoSoft ,
37 BDSs : s e t BDS,
38 IgniteOns : s e t IgniteOn ,
39 I g n i t eO f f s : s e t I gn i t eOf f ,

43

40 S t e e r s : s e t Steer ,
41 Acc e l e r a t e s : s e t Acce l e rate ,
42 Dece l e r a t e s : s e t Dece le rate ,
43 PhysicalObject_shape : Phys ica lObjects−> Shape ,
44 Phys i ca lObjec t_pos i t ion : Phys ica lObjects−> Coord ,
45 RoadSegment_speedLimit : RoadSegments−> Int ,
46 RoadObject_direct ion : RoadObjects−> Direct ion ,
47 RoadObject_orientat ion : RoadObjects−> Int ,
48 RoadObject_accelerat ion : RoadObjects−> Int ,
49 RoadObject_speed : RoadObjects−> Int ,
50 AutoSoftCar_ignit ion : AutoSoftCars−> Ign i t i onS ta t e ,
51 IsOn_roadSeg : IsOns−> one RoadSegments ,
52 IsOn_roadObj : IsOns−> one RoadObjects ,
53 Drives_r1 : Drivess−> one AutoSoftCars ,
54 Drives_r2 : Drivess−> one Drivers ,
55 LaneOnRoadSeg_r1 : LaneOnRoadSegs−> one RoadSegments ,
56 LaneOnRoadSeg_r2 : LaneOnRoadSegs−> one Lanes ,
57 Contains_r1 : Containss−> one AutoSoftCars ,
58 Contains_r2 : Containss−> one AutoSofts ,
59 AutoSoft_BDS : AutoSofts one−>one BDSs ,
60 IgniteOn_to : IgniteOns−> one AutoSofts ,
61 Ign i teOf f_to : I gn i t eO f f s−> one AutoSofts ,
62 Steer_value : Steer s−> Int ,
63 Steer_to : Steer s−> one AutoSofts ,
64 Acce lerate_value : Acce l e ra te s−> Int ,
65 Acce lerate_to : Acce l e ra te s−> one AutoSofts ,
66 Dece lerate_value : Dece l e ra te s−> Int ,
67 Dece lerate_to : Dece l e ra te s−> one AutoSofts ,
68 } {
69 a l l o : Phys i ca lObjec t s | # (o . Phys i ca lObject_pos i t ion) = 1
70 a l l o : Phys i ca lObjec t s | # (o . PhysicalObject_shape) = 1
71 a l l o : RoadSegments | # (o . RoadSegment_speedLimit) = 1
72 a l l o : RoadObjects | # (o . RoadObject_speed) = 1
73 a l l o : RoadObjects | # (o . RoadObject_accelerat ion) = 1
74 a l l o : RoadObjects | # (o . RoadObject_orientat ion) = 1
75 a l l o : RoadObjects | # (o . RoadObject_direct ion) = 1
76 a l l o : AutoSoftCars | # (o . AutoSoftCar_ignit ion) = 1
77 a l l o : S t e e r s | # (o . Steer_value) = 1
78 a l l o : Acc e l e r a t e s | # (o . Acce lerate_value) = 1
79 a l l o : Dec e l e r a t e s | # (o . Dece lerate_value) = 1
80 }
81
82 pred WSC (ws : WS) {
83 (ws . Lanes = ws . Phys i ca lObjec t s & Lane)
84 (ws . RoadSegments = ws . Phys i ca lObjec t s & RoadSegment)
85 (ws . RoadObjects = ws . Phys i ca lObjec t s & RoadObject)
86 (ws . AutoSoftCars = ws . RoadObjects & AutoSoftCar)
87 (a l l r oadob jec t : ws . RoadObjects | # ((((ws . IsOn_roadObj) . roadob jec t)) . (ws .

IsOn_roadSeg)) = 1)
88 (a l l d r i v e r : ws . Dr iver s | # ((((ws . Drives_r2) . d r i v e r)) . (ws . Drives_r1)) = 1)
89 (a l l au t o s o f t c a r : ws . AutoSoftCars | # ((((ws . Drives_r1) . au t o s o f t c a r)) . (ws .

Drives_r2)) = 1)
90 (a l l o : ws . Dr ives s | not o . (ws . Drives_r1) = o . (ws . Drives_r2))

44

91 (a l l l ane : ws . Lanes | # ((((ws . LaneOnRoadSeg_r2) . l ane)) . (ws .
LaneOnRoadSeg_r1)) = 1)

92 (a l l roadsegment : ws . RoadSegments | # ((((ws . LaneOnRoadSeg_r1) . roadsegment)
) . (ws . LaneOnRoadSeg_r2)) >= 1)

93 (a l l au to s o f t : ws . AutoSofts | # ((((ws . Contains_r2) . au to s o f t)) . (ws .
Contains_r1)) = 1)

94 (a l l au t o s o f t c a r : ws . AutoSoftCars | # ((((ws . Contains_r1) . au t o s o f t c a r)) . (ws
. Contains_r2)) = 1)

95 }
96
97 pred WSTC (wsPre , ws : WS) {
98 (a l l o : wsPre . Lanes & ws . Lanes | wsPre . LaneOnRoadSeg_r2 . o . (wsPre .

LaneOnRoadSeg_r1) = ws . LaneOnRoadSeg_r2 . o . (ws . LaneOnRoadSeg_r1))
99 (a l l o : wsPre . AutoSofts & ws . AutoSofts | wsPre . Contains_r2 . o . (wsPre .

Contains_r1) = ws . Contains_r2 . o . (ws . Contains_r1))
100 (wsPre . AutoSoft_BDS = ws . AutoSoft_BDS)
101 (no (wsPre . IgniteOns & ws . IgniteOns))
102 (no (wsPre . I g n i t eO f f s & ws . I g n i t eO f f s))
103 (no (wsPre . S t e e r s & ws . S t e e r s))
104 (no (wsPre . Acc e l e r a t e s & ws . Acc e l e r a t e s))
105 (no (wsPre . Dec e l e r a t e s & ws . Dec e l e r a t e s))
106 }
107
108 // sn ip − s t a r t i n g World Change Act ions
109 pred remove_PhysicalObject (wsPre , wsPost : WS, o1 : Phys ica lObject) {
110 o1 in wsPre . Phys i ca lObjec t s imp l i e s
111 o1 not in wsPost . Phys i ca lObjec t s
112 }
113 pred add_PhysicalObject (wsPre , wsPost : WS, o1 : Phys ica lObject) {
114 o1 not in wsPre . Phys i ca lObjec t s imp l i e s
115 o1 in wsPost . Phys i ca lObjec t s
116 }
117 pred change_PhysicalObject_posit ion (wsPre , wsPost : WS, o1 : Phys ica lObject , v1

: Coord) {
118 o1 in wsPre . Phys i ca lObjec t s imp l i e s
119 o1 . (wsPost . Phys i ca lObjec t_pos i t i on) = v1
120 }
121 pred change_PhysicalObject_shape (wsPre , wsPost : WS, o1 : Phys ica lObject , v1 :

Shape) {
122 o1 in wsPre . Phys i ca lObjec t s imp l i e s
123 o1 . (wsPost . PhysicalObject_shape) = v1
124 }
125 pred remove_AutoSoftCar (wsPre , wsPost : WS, o1 : AutoSoftCar) {
126 o1 in wsPre . AutoSoftCars imp l i e s
127 o1 not in wsPost . AutoSoftCars
128 }
129 pred add_AutoSoftCar (wsPre , wsPost : WS, o1 : AutoSoftCar) {
130 o1 not in wsPre . AutoSoftCars imp l i e s
131 o1 in wsPost . AutoSoftCars
132 }
133 pred change_AutoSoftCar_ignition (wsPre , wsPost : WS, o1 : AutoSoftCar , v1 :

I g n i t i o nS t a t e) {
134 o1 in wsPre . AutoSoftCars imp l i e s
135 o1 . (wsPost . AutoSoftCar_ignit ion) = v1

45

136 }
137 pred remove_IsOn (wsPre , wsPost : WS, o1 : IsOn) {
138 o1 in wsPre . IsOns imp l i e s
139 o1 not in wsPost . IsOns
140 }
141 pred add_IsOn (wsPre , wsPost : WS, o1 : IsOn) {
142 o1 not in wsPre . IsOns imp l i e s
143 o1 in wsPost . IsOns
144 }
145 // sn ip − s t a r t i n g Trans i t i on p r ed i c a t e s
146 pred AutoSoft_BDS_main_t1 (wsPre , wsPost : WS, a1_v1 : I gn i t i onS ta t e , a1_o1 :

AutoSoftCar) {
147 change_AutoSoftCar_ignition [wsPre , wsPost , a1_o1 , a1_v1]
148 }
149 pred AutoSoft_BDS_main_t2 (wsPre , wsPost : WS, a1_v1 : I gn i t i onS ta t e , a1_o1 :

AutoSoftCar) {
150 change_AutoSoftCar_ignition [wsPre , wsPost , a1_o1 , a1_v1]
151 }
152 pred AutoSoft_BDS_main_on_acceleration_t3 (wsPre , wsPost : WS, a1_v1 : Int ,

a1_o1 : AutoSoftCar) {
153 change_RoadObject_acceleration [wsPre , wsPost , a1_o1 , a1_v1]
154 }
155 pred AutoSoft_BDS_main_on_deceleration_t4 (wsPre , wsPost : WS, a1_v1 : Int ,

a1_o1 : AutoSoftCar) {
156 change_RoadObject_acceleration [wsPre , wsPost , a1_o1 , a1_v1]
157 }
158 pred AutoSoft_BDS_main_on_steering_t5 (wsPre , wsPost : WS, a1_v1 : Int , a1_o1 :

AutoSoftCar) {
159 change_RoadObject_orientation [wsPre , wsPost , a1_o1 , a1_v1]
160 }
161 // sn ip − s t a r t i n g t r a n s i t i o n a s s e r t i o n s
162 a s s e r t AutoSoft_BDS_main_t1_AND_AutoSoft_BDS_main_on_acceleration_t3 {
163 distinct_valid_WSs imp l i e s
164 a l l wsPre : WS |
165 a l l a1_v1_1 : Int , a1_o1_1 : AutoSoftCar , a1_v1_2 : I gn i t i onS ta t e , a1_o1_2 :

AutoSoftCar |
166 some wsPost : {ws : WS − wsPre | WSTC [wsPre , ws] } |
167 AutoSoft_BDS_main_on_acceleration_t3 [wsPre , wsPost , a1_v1_1 , a1_o1_1] and

AutoSoft_BDS_main_t1 [wsPre , wsPost , a1_v1_2 , a1_o1_2]
168 }
169 a s s e r t AutoSoft_BDS_main_t1_AND_AutoSoft_BDS_main_on_deceleration_t4 {
170 distinct_valid_WSs imp l i e s
171 a l l wsPre : WS |
172 a l l a1_v1_3 : Int , a1_o1_3 : AutoSoftCar , a1_v1_4 : I gn i t i onS ta t e , a1_o1_4 :

AutoSoftCar |
173 some wsPost : {ws : WS − wsPre | WSTC [wsPre , ws] } |
174 AutoSoft_BDS_main_on_deceleration_t4 [wsPre , wsPost , a1_v1_3 , a1_o1_3] and

AutoSoft_BDS_main_t1 [wsPre , wsPost , a1_v1_4 , a1_o1_4]
175 }
176 a s s e r t AutoSoft_BDS_main_t1_AND_AutoSoft_BDS_main_on_steering_t5 {
177 distinct_valid_WSs imp l i e s
178 a l l wsPre : WS |
179 a l l a1_v1_5 : Int , a1_o1_5 : AutoSoftCar , a1_v1_6 : I gn i t i onS ta t e , a1_o1_6 :

AutoSoftCar |

46

180 some wsPost : {ws : WS − wsPre | WSTC [wsPre , ws] } |
181 AutoSoft_BDS_main_on_steering_t5 [wsPre , wsPost , a1_v1_5 , a1_o1_5] and

AutoSoft_BDS_main_t1 [wsPre , wsPost , a1_v1_6 , a1_o1_6]
182 }

47

