
Pathwidth and small-height drawingsof 2-
onne
ted outer-planar graphsTherese Biedl �Te
hni
al Report CS-2012-07Abstra
tIn this paper, we study planar drawings of 2-
onne
ted outer-planar graphs. Inan earlier paper we showed that every su
h graph has a visibility representation withheight O(logn). In this paper, we show that with a di�erent 
onstru
tion, the heightis 4pw(G)� 3, where pw(G) denotes the pathwidth of graph G. Sin
e for any planargraph G, any planar drawing has height � pw(G), this is a 4-approximation algorithmfor the height. We also show that our visibility representations 
an be 
onverted intostraight-line drawings of the same height.Keywords: Outer-planar graph, pathwidth, graph drawing, approximation algorithm.1 Introdu
tionGraph drawing is the art of 
reating a pretty pi
ture of a graph. Sin
e \pretty" is hard tode�ne, 
ommon measures used are to minimize the number of edge-
rossings and to keepthe area small (presuming all 
oordinates are integers.)It has been known for many years that any planar graph has a straight-line drawingwithout 
rossing in an O(n) �O(n)-grid [FPP90, S
h90b℄. It is also known that an 
(n)�
(n)-grid is required for some planar graphs [FPP88℄. For some in sub
lasses of planargraphs, smaller drawings are possible. In an earlier paper, we showed that any outer-planargraph has a so-
alled visibility representation in an O(log n) � O(n)-grid [Bie02℄. Manyother papers have sin
e dealt with drawing sub
lasses of planar graphs drawn in o(n2) area,su
h as straight-line drawings of outer-planar graphs [GR07, Fra07, DF09℄, and drawings ofseries-parallel graphs [TNU09, Fra10, Bie11℄.For most of these drawing results, the output of the algorithm is a drawing that isguaranteed to have area O(f(n)), where f(n) is some fun
tion in the number of verti
es n.To show that su
h an algorithm is good, the usual approa
h has been to give an example of�David R. Cheriton S
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a graph that is required to have area 
(g(n)) in any drawing, for some fun
tion g(n) thatis 
lose to f(n). Thus, the usual approa
h has been to give bounds that are optimal in theworst-
ase, but whi
h may be signi�
antly too large for some graphs.Relatively few papers exist that draw all graphs with the optimal height (or at leastprovably approximate it.) Spe
i�
ally, a drawing of a graph is 
alled a drawing of heighth if all y-
oordinates are in f1; : : : ; hg. We are not aware of any proof that minimizing his NP-hard, though minimizing the area is NP-hard, at least for dis
onne
ted graphs, bothfor orthogonal drawings [KL82, FW91℄ and for straight-line drawings [KW07℄. Quite 
loselyrelated are h-level drawings, whi
h are drawings of height h where edges must 
onne
t dif-ferent levels (and for proper drawings, edges must 
onne
t adja
ent levels.) Testing whethera graph has a proper level drawing is NP-hard [HR92℄, but given an h, testing whether agraph has drawing on h levels is �xed-parameter tra
table in h [DFK+08℄.The latter paper was also among the �rst to prove the strong 
onne
tion between theheight of drawings and the so-
alled pathwidth pw(G) of a graph G. In parti
ular, anyplanar graph that has a drawing of height h has pathwidth at most h [FLW03℄. However,the pathwidth is not always proportional to the minimum height: There exists a planargraph of pathwidth 3 that requires 
(n) width and height in any planar drawing [Bie11℄.But for trees, Suderman showed that the pathwidth relates 
losely to the optimum height:Any tree T has a planar drawing of height at most 32pw(T )� 1 [Sud04℄.In this paper, we prove a similar result to Suderman, but for a 2-
onne
ted outer-planargraph G (detailed de�nitions are given below.) We show that G has a 
at visibility repre-sentation of height 4pw(G)�3, where pw(G) is the pathwidth of G. Our algorithm thereforeprodu
es a height that is within a fa
tor of 4 of the optimum. We use 
at visibility repre-sentations be
ause we �nd these espe
ially easy to handle, but we also show that they 
anbe transformed into straight-line drawings of the same height.2 De�nitionsWe assume familiarity with basi
 graph-theoreti
 terms. In the following, let G = (V;E)be a simple graph with n verti
es V and m edges E. Throughout the paper, we assumethat G is planar, i.e., it 
an be drawn without 
rossing. Furthermore, we assume that Gis outer-planar, i.e., it has a drawing without 
rossings su
h that all verti
es are on theouter-fa
e (the in�nite 
onne
ted region outside the drawing.) Any �nite region de�ned bysu
h a drawing is 
alled an interior fa
e, and we often identify fa
es with the verti
es andedges that are adja
ent to it.A graph is 
alled maximal outer-planar if we 
annot add any edges to it and retain anouter-planar simple graph. In a maximal outer-planar graph, the outer-fa
e 
onsists of asimple 
y
le of length n, and every interior fa
e is a triangle. The dual tree of a maximalouter-planar graph 
onsists of pla
ing a vertex for every interior fa
e and 
onne
ting twoverti
es if and only the 
orresponding fa
es share an edge. It is easy to see that the result isindeed a tree and has maximum degree 3.A graph is said to have pathwidth k if there exists an order of the verti
es v1; : : : ; vn su
hthat for any j � k, there are at most k verti
es among fv1; : : : ; vjg that have a neighbour in2



fvj+1; : : : ; vng. For trees, the pathwidth 
an be des
ribed using the notation of a main pathintrodu
ed by Suderman [Sud04℄.De�nition 1 Let T be a tree of pathwidth p > 0. A main path of T is a path P su
h thatevery 
omponent of T � P has pathwidth at most p � 1.It is easy to see (proved by Suderman [Sud04℄ and even earlier by Ellis et al. [EST94℄)that every tree of pathwidth p > 0 has a main path. Note that the main path is not unique.We often assume that a main path ends at a leaf of the dual tree, for if it doesn't, then it
an simply be extended into a leaf and remains a main path.A drawing of a graph 
onsists of assigning a point or an axis-aligned box to every vertex,and a 
urve between the points/boxes of u and v to every edge (u; v). The drawing is 
alledplanar if 
urves of edges do not interse
t 
urves of other edges or points/boxes of verti
esother than their endpoints. We only 
onsider planar drawings in this paper and o

asionallyomit \planar". The most 
ommonly 
onsidered type of drawing is a straight-line drawingwhere verti
es are represented by points and edges are drawn as straight-line segments. Inthis paper, we also study visibility representations, where verti
es are represented by axis-aligned boxes and edges are drawn as horizontal or verti
al straight-line segments. A visibilityrepresentation is 
alled a 
at visibility representation if every vertex-box is degenerated intoa horizontal segment.In all our drawings, we presume that the de�ning elements (i.e., points of verti
es, 
ornersof boxes of verti
es, and atta
hment points of edges to vertex-boxes) are pla
ed at pointswith integer 
oordinates. A drawing is said to have width w and height h if all su
h points arepla
ed on the [1; w℄� [1; h℄-grid. (Note that as opposed to some other graph drawing papers,we measure the height by the number of rows, i.e., horizontal lines with integer y-
oordinatesthat are o

upied by the drawing, and not by the verti
al length of the minimum en
losingbox. This will make some of the re
ursive 
omputations simpler.)3 Visibility representations of outer-planar graphsWe �rst give an overview of the algorithm to 
reate 
at visibility representations of a 2-
onne
ted outer-planar graph G.� Convert G into a maximal outer-planar graph G0 by adding edges. This 
an be donesu
h that pw(G0) � pw(G) + 1 [BF02℄.� Let T be the dual tree of G0. It has maximum degree 3 sin
e G0 was maximal outer-planar. Moreover pw(T ) � pw(G0)� 1 [BF02℄ and therefore pw(T ) � pw(G).� We will give a re
ursive algorithm to 
reate a drawing of G0 (and hen
e of G) whoseheight is at most maxf3; 4pw(T )� 3g � 4pw(G) � 3 as follows:{ If T is a path, then it is very easy to 
reate a drawing of height 2.{ If pw(T ) � 1, then we draw the graph of a main path P of T with height 2, andmerge the subgraphs de�ned by the 
omponents of T � P after drawing themre
ursively. 3



To allow the last merging step to be done with adding too mu
h height, we will putrestri
tions on two verti
es that form an edge on the outer-fa
e of the subgraph as follows.De�nition 2 Let G be a maximal outer-planar graph and let (u; v) be an edge on the outer-fa
e, with u before v in 
lo
kwise order. Let � be a 
at visibility representation of G. Wesay that fu; vg spans the top of � if the box of u o

upies the top left 
orner, and the box ofv o

upies the top right 
orner.
* ** ** * ab
e dfg h i j k l u* v** ** * u vFigure 1: (Left) Example of a maximal outer-planar graph, its dual tree (dashed), and amain path (thi
k dashed.) (Right) A 
at visibility representation where fu; vg spans thetop.We also need the following notation. Let (u; v) be an edge on the outer-fa
e, and let fbe its adja
ent interior fa
e. We say that (u; v) is adja
ent to a main path if there exists amain path of T that 
ontains f . We now state the main result, whi
h implies a re
ursivedrawing algorithm.Lemma 3.1 Let G be a maximal outer-planar graph with edge (u; v) on the outer-fa
e, withu before v in 
lo
kwise order. Let T be the dual tree of G.1. There exists a 
at visibility representation of G with fu; vg spanning the top that hasheight maxf2; 4pw(T )g.2. If (u; v) is adja
ent to a main path of T , then there exists a 
at visibility representationof G with fu; vg in the top row that has height maxf3; 4pw(T ) � 3g.3. If (u; v) is adja
ent to a main path of T , then there exists a 
at visibility representationof G with fu; vg spanning the top row that has height maxf4; 4pw(T ) � 2g.Proof: As a �rst ingredient, we study how to draw a graph G whose dual tree T is a pathP = f1; f2; : : : ; fk. Here ea
h fi is a vertex of T and hen
e a fa
e of G; we will use fi forboth vertex and fa
e sin
e the meaning should be 
lear from the 
ontext.4



Let GP be the graph indu
ed by the fa
es f1; : : : ; fk. Create a visibility representationof GP with height 2 in the obvious way: Draw the fa
es f1; : : : ; fk as squares from left toright, and pla
e ea
h vertex of GP so that it rea
hes the squares of all fa
es it belongs to.This uniquely determines the pla
ement of all verti
es ex
ept at f1 and fk (where the vertexof degree 2 
ould go on either row). We 
hoose the pla
ement of verti
es at f1 and fk su
hthat u and v end up in the same row (after possible rotation, we may assume that it is thetop row.) See also Figure 2. vu *** ** * vu *Figure 2: How to draw a graph GP whose dual tree is a path P .The proof of the lemma is now by indu
tion on the pathwidth of T . In the base 
asepw(T ) = 0 tree T is a singleton vertex, and the above drawing has height 2 and fu; vg spansthe top; this proves all 
laims. For the indu
tive step, we �rst show (2), then (3), and then(1) sin
e ea
h uses the other.(2) Let f1; : : : ; fk be a main path P to whi
h (u; v) is adja
ent; as usual we assume thatit begins and ends at leaves of T . For ea
h fa
e fi, i = 1; : : : ; k, let Ti be the subtreeof T � P whose root is adja
ent to fi. See also Figure 3. Note that f1 and fk have nosu
h subtree sin
e they are leaves. All other fi's have at most one su
h subtree sin
ethey have two neighbours on P and degree � 3. By de�nition of a main path, Ti hastreewidth at most pw(T )� 1.Draw the graph GP formed by the fa
es f1; : : : ; fk as explained above; this pla
es fu; vgin the top row. Let Gi be the subgraph of G for whi
h Ti is the dual graph. Thus, Giis a maximal outer-planar subgraph whose dual tree has pathwidth at most pw(T )�1.Let (ui; ui) be the edge that Gi shares with fa
e fi, with ui 
lo
kwise before vi onGi. By indu
tion, Gi has a drawing with fui; vig spanning the top that has heightHi � maxf2; 4pw(Ti)g � maxf2; 4pw(T )� 4g.Now take the drawing of GP and expand it verti
ally by adding maxifHig�1 rows. Forea
h i = 2; : : : ; k, if the drawing of Gi has Wi 
olumns, then add Wi 
olumns betweenthe drawings of ui and vi in GP . (Note that ui and vi are horizontally adja
ent inGP , sin
e they are not in
ident to f1 or fk.) Insert the drawing of Gi into the spa
ethus 
reated for it, after rotating it 180Æ if fvi; uig is in the top row, and 
ipping itverti
ally. See Figure 3.The drawing of Gi has height at most maxf2; 4pw(T )�4g. When inserting Gi into GP ,we re-use the row that 
ontains ui and vi, so we need to add at most maxf1; 4pw(T )�5grows to the two rows of the drawing of GP . The �nal height hen
e is maxf3; 4pw(T )�3gwhi
h gives the result.(3) By (2), we know that G 
an be drawn with u and v in the top row, with heightmaxf3; 4pw(T ) � 3g. We now release u and v by adding a row and relo
ating them5



f2f3f4 f5 f6G3 f1 ab
dfg h j k l uvi = u3*e = v3** ** ** ** ** * G3 e = v3G2 G5G4 a
i = u3j k u vFigure 3: De�nition of Gi, and how to merge it into the drawing of GP .into it, so that they span the new top row. (This is quite similar in spirit to themodi�
ations introdu
ed in our earlier paper [Bie02℄.)More pre
isely, add a new row above the existing drawing. Move u and v into this newrow, with u o

upying everything from the top left 
orner to its rightmost 
olumn, andv o

upying everything else in the top row. If x was a neighbour of u, then it eitherwas 
onne
ted to u by a verti
al line (whi
h 
an simply be extended to 
ontinue to thenew position of u), or it was the unique vertex to the left of u in the top row. (Herewe 
ru
ially use that we have a 
at visibility representation, i.e., that every vertex-boxhas unit height.) In the latter 
ase, x 
an now add a verti
al line towards the newposition of u, sin
e u spans the whole range above x. Similarly we 
an 
onne
t anyneighbour of v to the new position of v.Thus, releasing u and v adds one unit of height and a
hieves that u and v span thetop row. Thus the result holds by (2). x u vx u v Figure 4: Releasing u and v.(1) We will �rst 
reate a drawing where u and v are in the top row, and then release themas in Case (3). To 
reate the drawing, we pro
eed similarly as in 
ase (2), but sin
e(u; v) is not on a main path, we use a di�erent path and therefore need more heightfor the subgraphs.Let P 0 = f 01; : : : ; f 0k0 be a main path of T . Let f be the interior fa
e that is adja
ent to(u; v). In tree T , there is a unique (and non-empty) shortest path that 
onne
ts f to6



a vertex f 0j0 that belongs to the main path. We have 1 6= j 0 6= k0, otherwise we 
ouldsimply have extended the main path to f and be in 
ase (2).Let P be the path that 
onsists of the path from f to f 0j0, and then 
ontinues withf 0j0+1; f 0j0+2; : : : ; f 0k0 . Enumerate P as f1; : : : ; fk with f1 = f , fj = f 0j0 and fk = f 0k0. Thedrawing now pro
eeds exa
tly as in 
ase (2), i.e., de�ne the subtree Ti of T �P that isatta
hed to fi, and draw its 
orresponding graph Gi re
ursively. Draw the graph GPindu
ed by the fa
es f1; : : : ; fk in two rows, and insert the drawings of G2; : : : ; Gk�1after adding suÆ
iently many rows and 
olumns.f 0j0 = fjf 01 f 0k0f
Gj ab
fg h i j k l* nd = ue = v m** ** ** ** ** * Gj a
 nme = vd = u

Figure 5: The example from Figure 1, but using (d; e) as edge (u; v). The path P used ismarked dotted.It remains to analyze the height. Re
all that any subtree of T � P 0 has pathwidthat most pw(T ) � 1 sin
e P 0 was a main path. For any i 6= j, subtree Ti is a subtreeof T � P 0 and hen
e has pathwidth at most pw(T ) � 1. So for j 6= i, graph Gi isdrawn with height at most maxf2; 4pw(Ti)g � maxf2; 4pw(T ) � 4g. A spe
ial 
ase isTj, whi
h 
ontains the rest of the main path, f 01; : : : ; f 0j0�1 and hen
e may well havepathwidth pw(T ) and then requires more height. However, the edge (uj; vj) (i.e., theedge shared by Gj and GP ) is in
ident to f 0j0�1, and hen
e adja
ent to a main path ofTj. Therefore Tj 
an be drawn using 
ase (3) with height maxf4; 4pw(T ) � 2g.Sin
e merging these drawings into the 2-row drawing of GP reuses one row, thereforethe height of the drawing with u and v in the top row is at most maxf5; 4pw(T )� 1g.We then release u and v as in 
ase (3) and obtained a drawing where u and v span thetop with height maxf6; 4pw(T )g. This proves the result unless pw(T ) = 1.If pw(T ) = 1, then T is a 
ater-pillar, i.e., it 
onsists of a path with leaves atta
hed.It is easy to draw G using three rows su
h that one of fu; vg (say u) is in the top rowand v (whi
h has degree 2 sin
e (u; v) is not adja
ent to a main path) is in the middlerow. Now relo
ate both u and v to a newly added row on the top and re-
onne
t totheir neighbours as illustrated in Figure 6; this gives a drawing of height 4 as desired.27



vu xxu vFigure 6: Drawing of a graph where the dual tree is a 
aterpillar, and how to transform itinto one where fu; vg span the top, even if v was not in the top row.We summarize in a theorem:Theorem 1 Any 2-
onne
ted outer-planar graph G has a 
at visibility representation ofheight 4pw(G) � 3 and width 32(n � 2). It 
an be found in linear time.Proof: Add edges to G until it is a maximal outer-planar G0 with pathwidth pw(G0) �pw(G) � 1 [BF02℄. Let T be the dual tree of G0; we have pw(T ) � pw(G0) � 1 � pw(G)[BF02℄. Find a main path of T and let (u; v) be an edge on the outer-fa
e of G0 adja
ent tothe main path. Then draw G0 with height maxf3; 4pw(T )� 3g using 
ase (2) of Lemma 3.1.This drawing has height at most 4pw(G) � 3 sin
e pw(T ) � pw(G) and pw(G) � 2 sin
e Gis 2-
onne
ted. This proves the height-bound.For the width, it is not hard to show that it is bounded by jT j + `T � 1, where `T isthe number of leaves in T . (We 
onsider a singleton vertex of degree 0 to be two leaves forthis formula to be 
orre
t.) Namely, this holds in the drawing of a graph GP for whi
h thedual tree T is a path, sin
e the width is jT j+ 1. When merging a subgraph Gi into su
h adrawing, we add no new 
olumns beyond those that already existed for GP and Gi, but oneof the leaves in Ti may not be a leaf in T , and some 
al
ulations show that the bound holdsas well. Sin
e for a maximal outer-planar graph the dual tree T has maximum degree 3, ithas at most jT j=2 + 1 leaves. So the width is at most 32jT j = 32(n � 2) sin
e G0 has n � 2interior fa
es.As for the running time, 
omputing the dual tree is straightforward. Given this tree,the pathwidth of it 
an be 
omputed in linear time (see e.g. [S
h90a℄.) The algorithm to
ompute this pathwidth a
tually uses a rooted tree, and 
omputes mu
h more informationabout ea
h rooted subtree, whi
h helps sin
e we don't need to re-
ompute the pathwidth ofsubtrees. Root the dual tree T . Compute the pathwidth of T (and all information for itsrooted subtrees.) Any subtree that we need in our algorithm is a
tually a rooted subtree ofT . Using the extra information with the pathwidth 
omputation, it is easy to extra
t thepathwidth of every subtree, as well as a main path (details are left to the reader.) Hen
ewe 
an look up all required information for our algorithm in 
onstant time per subtree. Allother aspe
ts of our algorithm 
an 
learly be implemented in linear time as well. 2We have a few 
omments on this theorem:� Our drawings do not preserve the planar embedding, be
ause we \
ip in" the drawingsof the subgraphs Gi, and all edges of Gi ex
ept (ui; vi) disappear from the outer-fa
e. If bends are allowed (i.e., if we aim for orthogonal box-drawings rather thanvisibility representations), then it is possible to 
reate orthogonal box-drawings that8



re
e
t the planar embedding. The approa
h is similar as in [Bie02℄: route the edge(ui; vi) \around" the drawing of Gi. The height then in
reases, but is still O(pw(T ))(details are left to the reader.)� We made the graph maximal outerplanar be
ause the dual tree then has maximumdegree 3, whi
h simpli�es notation. The algorithm works with minor 
hanges for any2-
onne
ted outerplanar graph: draw a 
y
le in the base 
ase, and merge multiplesubgraphs into any fa
e. This de
reases the height-bound by 4 if pw(G) � 2, and mayde
rease the width.4 Straight-line drawingsIn our drawing algorithm, we used 
at visibility representations, sin
e the orthogonality ofedges makes it easy to insert extra spa
e for subgraphs, and the small height of boxes allowsto release verti
es. We now show in this se
tion that any height-bound obtained for them alsotransfers to straight-line drawings, by doing a fairly straightforward transformation (whi
hto our knowledge has not been proved before.) The height remains exa
tly the same (allverti
es retain their y-
oordinate), but the width in
reases mu
h and may in fa
t be
omeexponential.Theorem 2 Let � be a 
at visibility representation of a graph G that has height h. Thenthere exists a straight-line drawing �0 of G of height h.Proof: For any vertex v, use xl(v); xr(v) and y(v) to denote leftmost and rightmost x-
oordinate and (unique) y-
oordinate of the box that represents v in �. We use X(v) andY (v) to denote the (initially unknown) 
oordinates of v in �0. For any vertex we enfor
eY (v) = y(v), whi
h proves the height-bound.Let v1; : : : ; vn be the verti
es sorted by xl(:), breaking ties arbitrarily. We determineX(:)for ea
h vertex by pro
essing verti
es in this order and expanding the drawing �0i�1 
reatedfor v1; : : : ; vi�1 into a drawing �0i of v1; : : : ; vi. We maintain throughout that Y (v) = y(v) forall verti
es, and for any row, the left-to-right order of verti
es will be the same in �0 (as faras it has been built yet) as it was in �.So presume we have determinedX(vh) for all h < i already. To �nd X(vi), we determinelower bounds for it by 
onsidering all prede
essors of vi and taking the maximum over all ofthem. (For ea
h vertex vi, the prede
essors of vi are the neighbours of vi that 
ome earlierin the order v1; : : : ; vn.) A �rst (trivial) lower bound for X(vi) is that it needs to be to theright of anything in row y(vi). Thus, if �0i�1 
ontains a vertex or part of an edge at point(X; y(vi)), then we must have X(vi) � bX
 + 1.Next 
onsider any prede
essor vh of vi with y(vh) 6= y(vi). Sin
e vh and vi are not inthe same row, they must see ea
h other verti
ally in �, whi
h means that xr(vh) � xl(vi).So if vh has a neighbour vk to its right in �, then x`(vk) � xr(vh) � x`(vi), whi
h impliesthat k > i, so vk has not been added to �0i�1. Sin
e the order of the verti
es in ea
h rowis un
hanged, therefore vh is the rightmost vertex in its row in �0i�1 and 
an see towardsin�nity on the right. But then vh 
an also see the point (+1; y(vi)), or in other words, there9



exists some Xh su
h that vh 
an see all points (X; y(vi)) for X � Xh. See also Figure 7. Weimpose the lower bound X(vi) � dXhe on the x-
oordinate of vi.vi vhvh viXhother partsof � other partsof �0i�1 unobstru
tedFigure 7: Transforming a 
at visibility drawing into a straight-line drawing with un
hangedy-
oordinates.Now let X(vi) be the smallest value that satis�es the above lower bounds (from the rowy(vi) and from all prede
essors of vi in di�erent rows.) We set X(vi) = 0 if there wereno su
h lower bounds. Dire
tly by 
onstru
tion, pla
ing vi at (X(vi); y(vi)) allows it to be
onne
ted with straight-line segments to all its prede
essors. This in
ludes the prede
essor(if any) that is in the row y(vi), sin
e we 
an simply horizontally 
onne
t it to vi. (Here iswhere we are using a 
at visibility representation, whi
h means that there is only one su
hprede
essor and it is pla
ed in the same row.) This gives a drawing �0i of v1; : : : ; vi as desired,and the result follows by indu
tion. 2Unfortunately, while our transformation keeps the height inta
t, the width 
an in
reasedramati
ally. It is not hard to 
onstru
t a 
at visibility representations of height 4 andwidth O(n) for whi
h the resulting straight-line drawing has width 
(2n); see Figure 8.It remains open whether some other 
onstru
tion 
ould 
reate straight-line drawings withsmaller width, perhaps by rearranging whi
h vertex is in whi
h row, or at the expense ofsome height. 623 � 1 54321 24 � 13 4 5 6 71 2Figure 8: A 
at visibility representation for whi
h the 
orresponding straight-line drawinghas exponential width. Verti
es are numbered in the order in whi
h they are pro
essed.Vertex i is pla
ed with x-
oordinate 2i�2 � 1 for i � 3, and leaves an edge with slope�1=(2i�2 � 1).5 Con
lusion and open problemsIn this paper, we presented algorithms to draw 2-
onne
ted outer-planar graphs, with theobje
tive of keeping the height as small as possible. While the pathwidth pw(G) of su
h agraph G is an easy lower bound, we 
reated drawings of height 4pw(G)� 3; the algorithm ishen
e a 4-approximation algorithm for the height.10



We 
on
lude with some open problems:� What 
an be said about drawing outer-planar graphs that are not 2-
onne
ted? The\obvious" approa
h (add edges to make the graph 2-
onne
ted, draw the result andomit the added edges) requires 
are that we add edges with in
reasing the pathwidthtoo mu
h.The example of a 
aterpillar shows that some outer-planar 
annot be made 2-
onne
tedwithout in
reasing the pathwidth. But how mu
h in
rease is needed? In other words,if G is an outer-planar graph, 
an we add edges to obtain a 2-
onne
ted outer-planargraph G0 su
h that pw(G0) 2 O(pw(G))? To our surprise, no su
h result appears tobe known. (The 
losest result is by Govindran et al., whi
h gives a 3-approximationalgorithm for the pathwidth of any outerplanar graph, even not bi
onne
ted, but it isnot 
lear whether the thus 
onstru
ted path de
omposition 
ould be used to extendthe graph into a 2-
onne
ted outerplanar graph while maintaining the pathwidth.)It is quite easy to 
reate for any outerplanar graph G a 2-
onne
ted outerplanar super-graph G0 su
h that pw(G0) � pw(T ) � pw(Cmax), where T is the blo
k-tree of G, andCmax is the 2-
onne
ted 
omponent with maximal pathwidth of G. We 
onje
turethat in fa
t we 
an 
reate a 2-
onne
ted outer-planar graph G0 su
h that pw(G0) �O(pw(T ) + pw(Cmax)), but this remains open.� Any tree has pathwidth at most 2 log3(n) + o(log n) [KS93℄, so our height-bound isbounded by � 8 log3(n). This worst-
ase bound is worse than the 3 log2(n) boundproved earlier for outer-planar graphs [Bie02℄. We have, however, not been able to �nda graph where our algorithm a
tually uses height � 8 log3(n), and leave as an openproblem to improve the fa
tor of the height.Alternatively, 
an we prove lower bounds better than pw(G) on the height for somegraphs? Suderman showed that there are trees T , even with maximum degree 3, forwhi
h any straight-line drawing requires height at least d32pw(T )e [Sud04℄. Can weprove a similar result for outer-planar graphs? One 
ould try an outer-planar graphfor whi
h the dual tree is Suderman's tree (but it is not 
lear why the lower boundfor the dual tree should transfer.) Alternatively, one 
ould try to make Suderman'stree 2-
onne
ted (but it is not 
lear whether this is possible without in
reasing thepathwidth.) So this remains open.� Note that our height-bound depended on pw(T ) rather than pw(G). While we knowpw(T ) � pw(G), this bound is not tight: There exists a 2-
onne
ted outer-planar graphwith pathwidth 2p+1 whose dual tree has pathwidth p [CHS07℄. Would it be possibleto get a better bound on the height if we use the pathwidth of G itself, rather thanthe pathwidth of the dual tree, to guide the algorithm?� Our bound on the width for visibility representations was O(n). Can this be redu
ed?Obviously the width must be O(n) in a visibility representation if there exists a vertexof degree 
(n) and the height is O(pw(G)). But 
an we get a width-bound that isasymptoti
ally less if the maximum degree � is smaller? For example, 
an we haveheight O(pw(G)), and width O(maxfn=pw(G);�g)?11



� Are there straight-line drawings of outerplanar graphs that have height O(pw(G)) andpolynomially bounded width? Can we bound the width by O(n) or even better?� Re
all that our 
onstru
tion does not preserve the planar embedding. Is there a visi-bility representation that has height O(pw(G)) and preserves the planar embedding?� What height 
an be a
hieved for series-parallel graphs? We 
annot hope to 
reate draw-ings of height O(pw(G)) for a series-parallel graph, the series-parallel graph presentedby Frati [Fra10℄ has pathwidth O(log n), but requires 
(2plogn) width and height inany straight-line drawing. But 
an we 
reate some drawings of series-parallel graphswhere the height is a fun
tion of the pathwidth only?� Suderman studied many di�erent versions of leveled drawings of trees, depending onwhether edges may stay within the same level, or 
ross multiple levels, et
. In thesame spirit, one 
ould restri
t the types of visibility representations more and ask forbounds on the height. For example, what height 
an we a
hieve for 
at visibilityrepresentations of outer-planar graphs if all edges must be drawn verti
ally? It is easyto show that this 
an always be a
hieved with O(pw(G)) height (see [Bie11℄ for varioustransformations among drawings), but what is the best fa
tor that 
an be a
hieved?On the other hand, 
an we a
hieve a smaller height if we drop the \
at" requirementon the visibility representation?� The pathwidth, while useful for graph drawing appli
ations, is not quite the rightbound for the height of a drawing. Is there another graph parameter, likely quitesimilar to the path width but taking some \distan
e to outer-fa
e" 
onstraints intoa

ount that 
aptures the asymptoti
 height of a drawing for all planar graphs?Referen
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