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Abstract

In this paper, we study planar drawings of 2-connected outer-planar graphs. In
an earlier paper we showed that every such graph has a visibility representation with
height O(logn). In this paper, we show that with a different construction, the height
is 4pw(G) — 3, where pw(G) denotes the pathwidth of graph G. Since for any planar
graph G, any planar drawing has height > pw(G), this is a 4-approximation algorithm
for the height. We also show that our visibility representations can be converted into
straight-line drawings of the same height.
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1 Introduction

Graph drawing is the art of creating a pretty picture of a graph. Since “pretty” is hard to
define, common measures used are to minimize the number of edge-crossings and to keep
the area small (presuming all coordinates are integers.)

It has been known for many years that any planar graph has a straight-line drawing
without crossing in an O(n) x O(n)-grid [FPP90, Sch90b]. It is also known that an Q(n) x
Q(n)-grid is required for some planar graphs [FPP88|. For some in subclasses of planar
graphs, smaller drawings are possible. In an earlier paper, we showed that any outer-planar
graph has a so-called visibility representation in an O(logn) x O(n)-grid [Bie02]. Many
other papers have since dealt with drawing subclasses of planar graphs drawn in o(n?) area,
such as straight-line drawings of outer-planar graphs [GRO7, Fra07, DF09], and drawings of
series-parallel graphs [TNU09, Fral0, Biell].

For most of these drawing results, the output of the algorithm is a drawing that is
guaranteed to have area O(f(n)), where f(n) is some function in the number of vertices n.
To show that such an algorithm is good, the usual approach has been to give an example of
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a graph that is required to have area Q(g(n)) in any drawing, for some function g(n) that
is close to f(n). Thus, the usual approach has been to give bounds that are optimal in the
worst-case, but which may be significantly too large for some graphs.

Relatively few papers exist that draw all graphs with the optimal height (or at least
provably approximate it.) Specifically, a drawing of a graph is called a drawing of height
L if all y-coordinates are in {1,...,h}. We are not aware of any proof that minimizing h
is NP-hard, though minimizing the area is NP-hard, at least for disconnected graphs, both
for orthogonal drawings [KKL82, FW91] and for straight-line drawings [KW07]. Quite closely
related are h-level drawings, which are drawings of height h where edges must connect dif-
ferent levels (and for proper drawings, edges must connect adjacent levels.) Testing whether
a graph has a proper level drawing is NP-hard [HR92|, but given an h, testing whether a
graph has drawing on h levels is fixed-parameter tractable in i [DFKT08].

The latter paper was also among the first to prove the strong connection between the
height of drawings and the so-called pathwidth pw(G) of a graph G. In particular, any
planar graph that has a drawing of height i has pathwidth at most & [FLWO03]. However,
the pathwidth is not always proportional to the minimum height: There exists a planar
graph of pathwidth 3 that requires Q(n) width and height in any planar drawing [Biell].
But for trees, Suderman showed that the pathwidth relates closely to the optimum height:
Any tree T has a planar drawing of height at most 2pw(T) — 1 [Sud04].

In this paper, we prove a similar result to Suderman, but for a 2-connected outer-planar
graph G (detailed definitions are given below.) We show that G has a flat visibility repre-
sentation of height 4pw(G) — 3, where pw(G) is the pathwidth of G. Our algorithm therefore
produces a height that is within a factor of 4 of the optimum. We use flat visibility repre-
sentations because we find these especially easy to handle, but we also show that they can
be transformed into straight-line drawings of the same height.

2 Definitions

We assume familiarity with basic graph-theoretic terms. In the following, let G = (V| E)
be a simple graph with n vertices V' and m edges E. Throughout the paper, we assume
that G is planar, i.e., it can be drawn without crossing. Furthermore, we assume that G
is outer-planar, 1.e., it has a drawing without crossings such that all vertices are on the
outer-face (the infinite connected region outside the drawing.) Any finite region defined by
such a drawing is called an interior face, and we often identify faces with the vertices and
edges that are adjacent to it.

A graph is called mazimal outer-planar if we cannot add any edges to it and retain an
outer-planar simple graph. In a maximal outer-planar graph, the outer-face consists of a
simple cycle of length n, and every interior face is a triangle. The dual tree of a maximal
outer-planar graph consists of placing a vertex for every interior face and connecting two
vertices if and only the corresponding faces share an edge. It is easy to see that the result is
indeed a tree and has maximum degree 3.

A graph is said to have pathwidth k if there exists an order of the vertices vy, ..., v, such
that for any j > k, there are at most k vertices among {vq,...,v,} that have a neighbour in



{vj41,...,v,}. For trees, the pathwidth can be described using the notation of a main path
introduced by Suderman [Sud04].

Definition 1 Let T be a tree of pathwidth p > 0. A main path of T is a path P such that
every component of T — P has pathwidth at most p — 1.

It is easy to see (proved by Suderman [Sud04] and even earlier by Ellis et al. [EST94])
that every tree of pathwidth p > 0 has a main path. Note that the main path is not unique.
We often assume that a main path ends at a leaf of the dual tree, for if it doesn’t, then it
can simply be extended into a leaf and remains a main path.

A drawing of a graph consists of assigning a point or an axis-aligned box to every vertex,
and a curve between the points/boxes of u and v to every edge (u,v). The drawing is called
planar if curves of edges do not intersect curves of other edges or points/boxes of vertices
other than their endpoints. We only consider planar drawings in this paper and occasionally
omit “planar”. The most commonly considered type of drawing is a straight-line drawing
where vertices are represented by points and edges are drawn as straight-line segments. In
this paper, we also study wisibility representations, where vertices are represented by axis-
aligned boxes and edges are drawn as horizontal or vertical straight-line segments. A visibility
representation is called a flat vistbility representation if every vertex-box is degenerated into
a horizontal segment.

In all our drawings, we presume that the defining elements (i.e., points of vertices, corners
of boxes of vertices, and attachment points of edges to vertex-boxes) are placed at points
with integer coordinates. A drawing is said to have width w and height h if all such points are
placed on the [1,w] x [1, h]-grid. (Note that as opposed to some other graph drawing papers,
we measure the height by the number of rows, i.e., horizontal lines with integer y-coordinates
that are occupied by the drawing, and not by the vertical length of the minimum enclosing
box. This will make some of the recursive computations simpler.)

3 Visibility representations of outer-planar graphs

We first give an overview of the algorithm to create flat visibility representations of a 2-
connected outer-planar graph G.

e Convert GG into a maximal outer-planar graph G’ by adding edges. This can be done
such that pw(G’) < pw(G) + 1 [BF02].

e Let T be the dual tree of G'. It has maximum degree 3 since G’ was maximal outer-
planar. Moreover pw(T) < pw(G') — 1 [BF02] and therefore pw(T) < pw(G).

e We will give a recursive algorithm to create a drawing of G’ (and hence of G) whose
height is at most max{3,4pw(T) — 3} < 4pw(G) — 3 as follows:

— If T is a path, then it is very easy to create a drawing of height 2.

— If pw(T) > 1, then we draw the graph of a main path P of T' with height 2, and
merge the subgraphs defined by the components of 7' — P after drawing them
recursively.



To allow the last merging step to be done with adding too much height, we will put
restrictions on two vertices that form an edge on the outer-face of the subgraph as follows.

Definition 2 Let G be a mazimal outer-planar graph and let (u,v) be an edge on the outer-
face, with u before v in clockwise order. Let I' be a flat visibility representation of G. We
say that {u, v} spans the top of I' if the box of u occupies the top left corner, and the box of
v occupies the top right corner.

Figure 1: (Left) Example of a maximal outer-planar graph, its dual tree (dashed), and a
main path (thick dashed.) (Right) A flat visibility representation where {u,v} spans the
top.

We also need the following notation. Let (u,v) be an edge on the outer-face, and let f
be its adjacent interior face. We say that (u,v) is adjacent to a main path if there exists a
main path of T' that contains f. We now state the main result, which implies a recursive
drawing algorithm.

Lemma 3.1 Let G be a mazimal outer-planar graph with edge (u,v) on the outer-face, with
u before v in clockuise order. Let T be the dual tree of G.

1. There exists a flat visibility representation of G with {u,v} spanning the top that has
height max{2,4pw(T)}.

2. If (u,v) is adjacent to a main path of T, then there exists o flat visibility representation
of G with {u,v} in the top row that has height max{3,4pw(T) — 3}.

3. If (u,v) is adjacent to a main path of T, then there exists a flat visibility representation
of G with {u,v} spanning the top row that has height max{4,4pw(T) — 2}.

Proof: As a first ingredient, we study how to draw a graph G whose dual tree T is a path
P = fi, fo,..., fr. Here each f; is a vertex of T' and hence a face of G; we will use f; for
both vertex and face since the meaning should be clear from the context.



Let Gp be the graph induced by the faces fi,..., fx. Create a visibility representation
of Gp with height 2 in the obvious way: Draw the faces fi,..., fr as squares from left to
right, and place each vertex of Gp so that it reaches the squares of all faces it belongs to.
This uniquely determines the placement of all vertices except at fi and fi (where the vertex
of degree 2 could go on either row). We choose the placement of vertices at f; and f such
that v and v end up in the same row (after possible rotation, we may assume that it is the
top row.) See also Figure 2.
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Figure 2: How to draw a graph Gp whose dual tree is a path P.

The proof of the lemma is now by induction on the pathwidth of T'. In the base case
pw(T) = 0 tree T is a singleton vertex, and the above drawing has height 2 and {u, v} spans
the top; this proves all claims. For the inductive step, we first show (2), then (3), and then
(1) since each uses the other.

(2) Let fi1,..., fr be a main path P to which (u,v) is adjacent; as usual we assume that
it begins and ends at leaves of T'. For each face f;, e = 1,....k, let T; be the subtree
of T'— P whose root is adjacent to f;. See also Figure 3. Note that f; and f; have no
such subtree since they are leaves. All other f;’s have at most one such subtree since
they have two neighbours on P and degree < 3. By definition of a main path, 7; has
treewidth at most pw(T") — 1.

Draw the graph Gp formed by the faces fi, ..., fi as explained above; this places {u, v}
in the top row. Let G; be the subgraph of GG for which 7; is the dual graph. Thus, G;
is a maximal outer-planar subgraph whose dual tree has pathwidth at most pw(T') — 1.
Let (u;,u;) be the edge that G; shares with face f;, with w; clockwise before v; on
G;. By induction, G; has a drawing with {u,,v;} spanning the top that has height
H; <max{2,4pw(T;)} < max{2,4pw(T) — 4}.

Now take the drawing of Gp and expand it vertically by adding max;{ H;} —1 rows. For
each 1 = 2,... k. if the drawing of GG; has W, columns, then add W; columns between
the drawings of w; and v; in Gp. (Note that u; and v; are horizontally adjacent in
Gp, since they are not incident to fi or fi.) Insert the drawing of G; into the space
thus created for it, after rotating it 180° if {v;,u;} is in the top row, and flipping it
vertically. See Figure 3.

The drawing of G, has height at most max{2, 4pw(T)—4}. When inserting G; into Gp,
we re-use the row that contains u; and v;, so we need to add at most max{1,4pw(T)—5}

rows to the two rows of the drawing of Gp. The final height hence is max{3, 4pw(T")—3}
which gives the result.

(3) By (2), we know that G can be drawn with v and v in the top row, with height
max{3,4pw(T) — 3}. We now release u and v by adding a row and relocating them
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Figure 3: Definition of G;, and how to merge it into the drawing of Gp.

into it, so that they span the new top row. (This is quite similar in spirit to the
modifications introduced in our earlier paper [Bie02].)

More precisely, add a new row above the existing drawing. Move u and v into this new
row, with u occupying everything from the top left corner to its rightmost column, and
v occupying everything else in the top row. If = was a neighbour of u, then it either
was connected to u by a vertical line (which can simply be extended to continue to the
new position of u), or it was the unique vertex to the left of u in the top row. (Here
we crucially use that we have a flat visibility representation, i.e., that every vertex-box
has unit height.) In the latter case, @ can now add a vertical line towards the new
position of u, since u spans the whole range above x. Similarly we can connect any
neighbour of v to the new position of v.

Thus, releasing u and v adds one unit of height and achieves that v and v span the
top row. Thus the result holds by (2).

Figure 4: Releasing u and v.

We will first create a drawing where u and v are in the top row, and then release them
as in Case (3). To create the drawing, we proceed similarly as in case (2), but since
(u,v) is not on a main path, we use a different path and therefore need more height
for the subgraphs.

e = fi,..., fl, be a main path of T". Le e the interior face that is adjacent to
Let P/ = fl.....fl, b in path of T. Let f be the interior face that is adjacent t
(u,v). In tree T', there is a unique (and non-empty) shortest path that connects f to



a vertex f}, that belongs to the main path. We have 1 # j’ # &/, otherwise we could
simply have extended the main path to f and be in case (2).

Let P be the path that consists of the path from f to f},, and then continues with
ti1s firngys oo fls. Enumerate P as fi, ..., fr with fi = f, f; = fi, and f = fi,. The
drawing now proceeds exactly as in case (2), i.e., define the subtree T; of T'— P that is
attached to f;, and draw its corresponding graph G; recursively. Draw the graph Gp
induced by the faces fi,..., fr in two rows, and insert the drawings of G, ..., Gr_1
after adding sufficiently many rows and columns.
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Figure 5: The example from Figure 1, but using (d, e) as edge (u,v). The path P used is
marked dotted.

It remains to analyze the height. Recall that any subtree of T'— P’ has pathwidth
at most pw(T) — 1 since P’ was a main path. For any ¢ # j, subtree T} is a subtree
of T'— P’ and hence has pathwidth at most pw(T) — 1. So for j # i, graph G, is
drawn with height at most max{2,4pw(T;)} < max{2,4pw(T) — 4}. A special case is
T}, which contains the rest of the main path, f{,..., f,,_; and hence may well have
pathwidth pw(T') and then requires more height. However, the edge (u;,v;) (i.e., the
edge shared by G; and Gp) is incident to f},_;, and hence adjacent to a main path of
T;. Therefore T} can be drawn using case (3) with height max{4, 4pw(T) — 2}.

Since merging these drawings into the 2-row drawing of Gp reuses one row, therefore
the height of the drawing with v and v in the top row is at most max{5, 4pw(T) — 1}.
We then release v and v as in case (3) and obtained a drawing where u and v span the
top with height max{6,4pw(T)}. This proves the result unless pw(T') = 1.

If pw(T) = 1, then T is a cater-pillar, i.e., it consists of a path with leaves attached.
It is easy to draw G using three rows such that one of {u,v} (say u) is in the top row
and v (which has degree 2 since (u, v) is not adjacent to a main path) is in the middle
row. Now relocate both v and v to a newly added row on the top and re-connect to
their neighbours as illustrated in Figure 6; this gives a drawing of height 4 as desired.

a
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Figure 6: Drawing of a graph where the dual tree is a caterpillar, and how to transform it
into one where {u,v} span the top, even if v was not in the top row.

We summarize in a theorem:

Theorem 1 Any 2-connected outer-planar graph G has a flat visibility representation of
height 4pw(G) — 3 and width 3(n —2). It can be found in linear time.

Proof: Add edges to G until it is a maximal outer-planar G’ with pathwidth pw(G’) <
pw(G) — 1 [BF02]. Let T be the dual tree of G'; we have pw(T) < pw(G') — 1 < pw(G)
[BF02]. Find a main path of T" and let (u,v) be an edge on the outer-face of G' adjacent to
the main path. Then draw G’ with height max{3,4pw(T) — 3} using case (2) of Lemma 3.1.
This drawing has height at most 4pw(G) — 3 since pw(T) < pw(G) and pw(G) > 2 since G
is 2-connected. This proves the height-bound.

For the width, it is not hard to show that it is bounded by |T'| + ¢ — 1, where (7 is
the number of leaves in T'. (We consider a singleton vertex of degree 0 to be two leaves for
this formula to be correct.) Namely, this holds in the drawing of a graph Gp for which the
dual tree T is a path, since the width is |T'| + 1. When merging a subgraph G; into such a
drawing, we add no new columns beyond those that already existed for Gp and G;, but one
of the leaves in T; may not be a leaf in T', and some calculations show that the bound holds
as well. Since for a maximal outer-planar graph the dual tree T' has maximum degree 3, it
has at most |T']/2 + 1 leaves. So the width is at most 2|T| = 3(n — 2) since G’ has n — 2
interior faces.

As for the running time, computing the dual tree is straightforward. Given this tree,
the pathwidth of it can be computed in linear time (see e.g. [Sch90a].) The algorithm to
compute this pathwidth actually uses a rooted tree, and computes much more information
about each rooted subtree, which helps since we don’t need to re-compute the pathwidth of
subtrees. Root the dual tree T. Compute the pathwidth of T' (and all information for its
rooted subtrees.) Any subtree that we need in our algorithm is actually a rooted subtree of
T. Using the extra information with the pathwidth computation, it is easy to extract the
pathwidth of every subtree, as well as a main path (details are left to the reader.) Hence
we can look up all required information for our algorithm in constant time per subtree. All
other aspects of our algorithm can clearly be implemented in linear time as well. O

We have a few comments on this theorem:
e Qur drawings do not preserve the planar embedding, because we “flip in” the drawings
of the subgraphs G;, and all edges of G; except (u;,v;) disappear from the outer-

face. If bends are allowed (i.e., if we aim for orthogonal box-drawings rather than
visibility representations), then it is possible to create orthogonal box-drawings that
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reflect the planar embedding. The approach is similar as in [Bie02]: route the edge
(u;,v;) “around” the drawing of G;. The height then increases, but is still O(pw(T))
(details are left to the reader.)

e We made the graph maximal outerplanar because the dual tree then has maximum
degree 3, which simplifies notation. The algorithm works with minor changes for any
2-connected outerplanar graph: draw a cycle in the base case, and merge multiple
subgraphs into any face. This decreases the height-bound by 4 if pw(G) > 2, and may
decrease the width.

4 Straight-line drawings

In our drawing algorithm, we used flat visibility representations, since the orthogonality of
edges makes it easy to insert extra space for subgraphs, and the small height of boxes allows
to release vertices. We now show in this section that any height-bound obtained for them also
transfers to straight-line drawings, by doing a fairly straightforward transformation (which
to our knowledge has not been proved before.) The height remains exactly the same (all
vertices retain their y-coordinate), but the width increases much and may in fact become
exponential.

Theorem 2 Let I' be a flat visibility representation of a graph G that has height h. Then
there exists a straight-line drawing I of G of height h.

Proof: For any vertex v, use x;(v),x,(v) and y(v) to denote leftmost and rightmost a-
coordinate and (unique) y-coordinate of the box that represents v in I'. We use X (v) and
Y(v) to denote the (initially unknown) coordinates of v in [V. For any vertex we enforce
Y(v) = y(v), which proves the height-bound.

Let vy, ..., v, be the vertices sorted by x(.), breaking ties arbitrarily. We determine X(.)
for each vertex by processing vertices in this order and expanding the drawing I"_, created
for vy,...,v;_1 into a drawing [ of vy, ..., v;. We maintain throughout that Y'(v) = y(v) for
all vertices, and for any row, the left-to-right order of vertices will be the same in IV (as far
as it has been built yet) as it was in I'.

So presume we have determined X (vy) for all & < i already. To find X (v;), we determine
lower bounds for it by considering all predecessors of v; and taking the maximum over all of
them. (For each vertex v;, the predecessors of v; are the neighbours of v; that come earlier
in the order vq,...,v,.) A first (trivial) lower bound for X(v;) is that it needs to be to the
right of anything in row y(v;). Thus, if ['_; contains a vertex or part of an edge at point
(X, y(vi)), then we must have X (v;) > [X| + 1.

Next consider any predecessor vy, of v; with y(vs) # y(v;). Since v, and v; are not in
the same row, they must see each other vertically in I', which means that x,(vy) > a(v;).
So if vy, has a neighbour vy to its right in I', then a(vx) > 2, (vn) < a¢(v;), which implies
that k£ > 7, so v has not been added to I''_,. Since the order of the vertices in each row
is unchanged, therefore vy, is the rightmost vertex in its row in [\ ; and can see towards
infinity on the right. But then vj, can also see the point (+o00,y(v;)), or in other words, there



exists some X}, such that vy can see all points (X, y(v;)) for X > Xj,. See also Figure 7. We
impose the lower bound X (v;) > [X}] on the z-coordinate of v;.
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Figure 7: Transforming a flat visibility drawing into a straight-line drawing with unchanged
y-coordinates.

Now let X (v;) be the smallest value that satisfies the above lower bounds (from the row
y(v;) and from all predecessors of v; in different rows.) We set X (v;) = 0 if there were
no such lower bounds. Directly by construction, placing v; at (X(v;),y(v;)) allows it to be
connected with straight-line segments to all its predecessors. This includes the predecessor
(if any) that is in the row y(v;), since we can simply horizontally connect it to v;. (Here is
where we are using a flat visibility representation, which means that there is only one such
predecessor and it is placed in the same row.) This gives a drawing I'; of vy, ..., v; as desired,
and the result follows by induction. O

Unfortunately, while our transformation keeps the height intact, the width can increase
dramatically. It is not hard to construct a flat visibility representations of height 4 and
width O(n) for which the resulting straight-line drawing has width Q(2"); see Figure 8.
It remains open whether some other construction could create straight-line drawings with
smaller width, perhaps by rearranging which vertex is in which row, or at the expense of
some height.
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Figure 8: A flat visibility representation for which the corresponding straight-line drawing
has exponential width. Vertices are numbered in the order in which they are processed.
Vertex 7 is placed with z-coordinate 202 — 1 for ¢ > 3, and leaves an edge with slope

+1/(2072 —1).

5 Conclusion and open problems

In this paper, we presented algorithms to draw 2-connected outer-planar graphs, with the
objective of keeping the height as small as possible. While the pathwidth pw(G) of such a
graph G is an easy lower bound, we created drawings of height 4pw(G) — 3; the algorithm is
hence a 4-approximation algorithm for the height.
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We conclude with some open problems:

e What can be said about drawing outer-planar graphs that are not 2-connected? The
“obvious” approach (add edges to make the graph 2-connected, draw the result and
omit the added edges) requires care that we add edges with increasing the pathwidth
too much.

The example of a caterpillar shows that some outer-planar cannot be made 2-connected
without increasing the pathwidth. But how much increase is needed? In other words,
if G is an outer-planar graph, can we add edges to obtain a 2-connected outer-planar
graph G’ such that pw(G’) € O(pw(G))? To our surprise, no such result appears to
be known. (The closest result is by Govindran et al., which gives a 3-approximation
algorithm for the pathwidth of any outerplanar graph, even not biconnected, but it is
not clear whether the thus constructed path decomposition could be used to extend
the graph into a 2-connected outerplanar graph while maintaining the pathwidth.)

It is quite easy to create for any outerplanar graph G a 2-connected outerplanar super-
graph G’ such that pw(G') < pw(T) - pw(Ciax), where T is the block-tree of G, and
Cax 18 the 2-connected component with maximal pathwidth of G. We conjecture
that in fact we can create a 2-connected outer-planar graph G’ such that pw(G’') <
O(pw(T) + pw(Ciax)), but this remains open.

e Any tree has pathwidth at most 2logs(n) 4 o(logn) [KS93], so our height-bound is
bounded by a 8logs(n). This worst-case bound is worse than the 3log,(n) bound
proved earlier for outer-planar graphs [Bie02]. We have, however, not been able to find
a graph where our algorithm actually uses height ~ 8log;(n), and leave as an open
problem to improve the factor of the height.

Alternatively, can we prove lower bounds better than pw(G) on the height for some
graphs? Suderman showed that there are trees T', even with maximum degree 3, for
which any straight-line drawing requires height at least [$pw(T')] [Sud04]. Can we
prove a similar result for outer-planar graphs? One could try an outer-planar graph
for which the dual tree is Suderman’s tree (but it is not clear why the lower bound
for the dual tree should transfer.) Alternatively, one could try to make Suderman’s
tree 2-connected (but it is not clear whether this is possible without increasing the
pathwidth.) So this remains open.

e Note that our height-bound depended on pw(T') rather than pw(G). While we know
pw(T) < pw(G), this bound is not tight: There exists a 2-connected outer-planar graph
with pathwidth 2p + 1 whose dual tree has pathwidth p [CHS07]. Would it be possible
to get a better bound on the height if we use the pathwidth of G itself, rather than
the pathwidth of the dual tree, to guide the algorithm?

e Our bound on the width for visibility representations was O(n). Can this be reduced?
Obviously the width must be O(n) in a visibility representation if there exists a vertex
of degree Q(n) and the height is O(pw(G)). But can we get a width-bound that is
asymptotically less if the maximum degree A is smaller? For example, can we have

height O(pw(G)), and width O(max{n/pw(G), A})?
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Are there straight-line drawings of outerplanar graphs that have height O(pw(G)) and
polynomially bounded width? Can we bound the width by O(n) or even better?

Recall that our construction does not preserve the planar embedding. Is there a visi-
bility representation that has height O(pw(G)) and preserves the planar embedding?

What height can be achieved for series-parallel graphs? We cannot hope to create draw-
ings of height O(pw(G)) for a series-parallel graph, the series-parallel graph presented

by Frati [Fral0] has pathwidth O(logn), but requires Q(2V'°8") width and height in
any straight-line drawing. But can we create some drawings of series-parallel graphs
where the height is a function of the pathwidth only?

Suderman studied many different versions of leveled drawings of trees, depending on
whether edges may stay within the same level, or cross multiple levels, etc. In the
same spirit, one could restrict the types of visibility representations more and ask for
bounds on the height. For example, what height can we achieve for flat visibility
representations of outer-planar graphs if all edges must be drawn vertically? It is easy
to show that this can always be achieved with O(pw(G)) height (see [Biell] for various
transformations among drawings), but what is the best factor that can be achieved?
On the other hand, can we achieve a smaller height if we drop the “flat” requirement
on the visibility representation?

e The pathwidth, while useful for graph drawing applications, is not quite the right
bound for the height of a drawing. Is there another graph parameter, likely quite
similar to the path width but taking some “distance to outer-face” constraints into
account that captures the asymptotic height of a drawing for all planar graphs?
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