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Datalog is a declarative logic programming language that has been used in a variety of applications, including

big-data analytics, language processing, networking and distributed systems, and program analysis.

In this paper, we propose first-class Datalog constraints as a mechanism to construct, compose, and solve

Datalog programs at run time. The benefits are twofold: We gain the full power of a functional programming

language to operate on Datalog constraints-as-values, while simultaneously we can use Datalog where it

really shines: to declaratively express and solve fixpoint problems.

We present an extension of the lambda calculus with first-class Datalog constraints, including its semantics

and a type system with row polymorphism based on Hindley-Milner. We prove soundness of the type system

and implement it as an extension of the Flix programming language.

CCS Concepts: • Software and its engineering → Functional languages; Constraint and logic lan-
guages.
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1 INTRODUCTION

Datalog is a simple, yet surprisingly powerful, declarative logic programming language. A Datalog

program is a collection of constraints. Each constraint is a fact or a rule. Together, the facts and

rules imply a minimal model, a unique solution to any Datalog program [Ceri et al. 1989].

Datalog has roots in the database community [Ullman 1984] and has been used in a wide

variety of applications [de Moor et al. 2011; Huang et al. 2011], including in bioinformatics [King

2004], big-data analytics [Halperin et al. 2014; Seo et al. 2013; Shkapsky et al. 2016], natural

language processing [Mooney 1996], networking and distributed systems [Alvaro et al. 2010;

Conway et al. 2012; Loo et al. 2009], program understanding [Hajiyev et al. 2006], and program

analysis [Bravenboer and Smaragdakis 2009; Lam et al. 2005; Smaragdakis and Bravenboer 2011].

Datalog has several properties of theoretical and practical interest: (i) every Datalog program

eventually terminates, (ii) every Datalog program has a unique solution, (iii) efficient and parallel

evaluation strategies exist, and (iv) any polynomial time algorithm can be expressed in Datalog [Pa-

padimitriou 1985]. For practical purposes, (i)–(iii) are very useful as they enable easy reasoning

and debugging of Datalog programs.

Datalog programs are truly declarative: Unlike Prolog, the order of constraints and the order of

predicates within a constraint is immaterial in Datalog; we may freely reorder the program without

changing its semantics. The solution to a Datalog program, its minimal model, is defined without

reference to any specific evaluation order or strategy. Thus, Datalog cleanly separates the what

from the how, i.e. the specification is separate from its implementation.

Modern Datalog solvers are increasingly efficient [Jordan et al. 2016, 2018; Scholz et al. 2016;

Subotic et al. 2018; Veldhuizen 2012], implementing many important optimizations, such as index

selection, query planning, join-ordering, and parallel execution [Bancilhon et al. 1985; Graefe 1993;
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Gregory 1987; Ullman 1984]. In hand-crafted fixpoint computations, such optimizations must be

re-discovered and re-implemented, a waste of programmer effort.

Despite these advantages, use of Datalog is not widespread. We speculate that there are at least

two barriers to a broader adoption of Datalog: (i) the poor integration of Datalog into general-

purpose programming languages, and (ii) the lack of mechanisms to construct modular Datalog

programs. To expand on the former, use of Datalog today often involves generating constraints,

storing them into a file, invoking the Datalog engine on the file, and reading the results back

into memory for further processing. To expand on the latter, we are rarely interested in a specific

Datalog program, but rather in a family of related Datalog programs. Since Datalog lacks a module

system, programmers often resort to program generation. Such approaches, whether based on

textual generation or template programming, are often inflexible and error-prone.

To overcome these issues, we propose Datalog programs as first-class values that can be con-

structed, composed, and solved within a functional programming language. We can leverage the

features of functional programming to build modular and parametric families of Datalog programs.

We can build pipelines of Datalog programs where the output facts of one program are passed as

input facts to another program. We can define functions and refer to them from inside Datalog

constraints. And finally, we can use parametric polymorphism to express Datalog constraints that

are polymorphic in the types of their terms. In this paper, we show how to integrate first-class

constraints into a statically-typed eager functional language. We describe the static and dynamic

semantics, interaction with lexical scoping, and how to support stratified negation.

We identify and overcome two technical challenges in the presence of first-class constraints:

(i) how can we design a modular type system in which reusable fragments of Datalog programs

can be typed independently such that when they are composed, at run-time, the composition is

type-safe? Specifically, the type system should support abstraction such that each module can be

provided by multiple different implementations, and (ii) in the presence of negation, how can we

ensure, at compile-time, that every such composition that could occur at run-time is stratified?

In summary, the contributions of this paper are:

• (Calculus) We show how to extend the lambda calculus with first-class Datalog constraints.

• (Type System) We show how a Hindley-Milner style type system for a functional program-

ming language can be seamlessly extended to type Datalog program fragments as first-class

values. Inspired by record calculi, the type system uses row polymorphism to precisely track

the predicate symbols that occur in each Datalog fragment. The type system supports full

type inference and we prove type safety of the system.

• (Stratification)We observe that there are trade-offs betweenmodularity and type complexity

in solutions for ensuring stratified negation. As a starting point, we propose one sound

technique to compute stratification at compile-time.

• (Implementation) We implement our system in the Flix programming language.

• (Evaluation)We present case studies that illustrate the usefulness of our system.
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2 MOTIVATION

We motivate the need for first-class Datalog constraints with several toy examples. In Section 6, we

present real-world applications implemented in our system. All programs shown in this paper are

valid and executable programs in our system.

2.1 Example I

As a student of history might know, Pompey the Great was the son of the wealthy equestrian

Gnaeus Pompeius Strabo. Pompey had five wives with whom he had two sons and one daughter.

We can capture these familial relations with the Datalog program:

ParentOf("Pompey", "Strabo").

ParentOf("Gnaeus", "Pompey").

ParentOf("Pompeia", "Pompey").

ParentOf("Sextus", "Pompey").

In ancient Rome, the lineage of a statesman was an important part of his stature. We can use Datalog

to elegantly compute the ancestors of every person, i.e. the transitive closure of the ancestor relation:

AncestorOf(x, y) :- ParentOf(x, y).

AncestorOf(x, z) :- AncestorOf(x, y), AncestorOf(y, z).

The solution to this program, its minimalmodel, contains the factAncestorOf("Sextus", "Strabo"),
because Strabo was the grandfather of Sextus. We are now able to reason about family relations in

ancient Rome. However, familial ties where not only by blood, as adoption was equally recognized.

With this in mind, we can extend the Datalog program with the facts:

AdoptedBy("Augustus", "Caesar").

AdoptedBy("Tiberius", "Augustus").

to record that Caesar adopted Augustus who himself later adopted Tiberius. We can easily include

adoptions in the ancestor relation with the addition of a single rule:

AncestorOf(x, y) :- AdoptedBy(x, y).

This example demonstrates the power of Datalog: We can extend the semantics of a program by

simply adding new facts and rules! But what if we had wanted to keep the original program? We

would have to maintain two versions of our program: one with ancestry based on biological parents

and one extended to include adoptions. We could store these two programs as copies in separate

files, but what happens when we discover a bug in one program? Or when we want to extend

the other? We quickly run into the multiple maintenance problem. What we want is the ability to

construct, compose, and solve Datalog programs at run-time. What we need are first-class constraints.

Here is a reformulation of both programs as a single program in our extension of Flix:

def getParents[r](): #{ ParentOf(String , String) | r} = #{

ParentOf("Pompey", "Strabo").

ParentOf("Gnaeus", "Pompey").

ParentOf("Pompeia", "Pompey").

ParentOf("Sextus", "Pompey").

}

def getAdoptions[r]() #{ AdoptedBy(String , String) | r} = #{

AdoptedBy("Augustus", "Caesar").

AdoptedBy("Tiberius", "Augustus").

}
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def heritage[r]( withAdoptions: Bool): #{ ParentOf(String , String),

AncestorOf(String , String), AdoptedBy(String , String) | r} =

let p1 = #{

AncestorOf(x, y) :- ParentOf(x, y).

AncestorOf(x, z) :- AncestorOf(x, y), AncestorOf(y, z).

};

let p2 = #{

AncestorOf(x, y) :- AdoptedBy(x, y).

};

if (withAdoptions) p1 else (p1 <+> p2)

def ancestors(withAdoptions: Bool): #{ AncestorOf(String , String) | r} =

let facts = getParents () <+> getAdoptions ();

let model = solve (facts <+> heritage(withAdoptions ));

project AncestorOf model

This program illustrates the key idea of our work: Datalog constraints are first-class values. We can

pass them around, compose them with other Datalog values, and solve them.

The functions getParents and getAdoptions return sets of facts about biological parents and

adoptions. The heritage function encapsulates the two variants of the Datalog program. The

function constructs the two Datalog program values p1 and p2, and returns either p1, corresponding
to the program solely with biological parents, or the composition (i.e. union) of p1 and p2, corre-
sponding to the program with biological and adoptive parents. The ancestor function assembles

the facts and rules, computes their minimal model (with solve), and returns the AncestorOf facts.

The getParents, getAdoptions, and ancestor functions have a row type parameter r . If the
parameter were removed, each function would return a closed row which could not be combined

with Datalog constraints sets containing other predicate symbols.

The program illustrates the following important principles of our design:

Principle I: Datalog constraints are first-class values that can be passed around.

Principle II: Datalog constraints can be composed with other Datalog constraints to

form larger Datalog programs.

Principle III: The design preserves the essence of Datalog: the constraints are declarative,
they look like ordinary Datalog clauses, and they are solvable by standard techniques.

2.2 Example II

We now consider a simple reachability problem: Given a road network with speed limits on each

road, we want to determine if it is possible to drive from one city to another city going at least a

certain speed. We can write a function r that uses Datalog to compute if this is possible:

def r(g: #{Road(City , Int , City)}, src: City , dst: City , speed: Int): Bool =

let p = #{

Path(x, y) :- Road(x, speedLimit , y), if speedLimit > speed.

Path(x, z) :- Path(x, y), Road(y, speedLimit , z), if speedLimit > speed.

};

(solve g <+> p) |= #{ Path(src , dst). }

The function r takes a road network in the form of a set of road facts g, a source city src, a destination

city dst, and a minimum speed we want to go on each road. Each rule is equipped with a boolean-

valued filter expression that must be true in the minimal model. The expression e1 |= e2 returns
true if e2 is a subset of e1. In other words, if there is a path with the desired speed.
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If we want a leisurely drive, we may wish to avoid roads which have a high speed limit. Instead

of changing the r function, we can generalize it by equipping it with a predicate q that determines

whether the speed limit on a road is acceptable:

def r(g: #{Road(City , Int , City)}, src: City , dst: City , q: Int -> Bool): Bool =

let p = #{

Path(x, y) :- Road(x, speedLimit , y), if q(speedLimit ).

Path(x, z) :- Path(x, y), Road(y, speedLimit , z), if q(speedLimit ).

};

(solve g <+> p) |= #{ Path(src , dst). }

We can imagine that roads carry not only speed limits, but also other meta-data such as the

presence of construction work, the current weather conditions, etc. We can further generalize r to
be polymorphic in the type of the information associated with a road:

def r[a](g: #{Road(City , a, City)}, src: City , dst: City , q: a -> Bool): Bool =

let p = #{

Path(x, y) :- Road(x, metaData , y), if q(metaData ).

Path(x, z) :- Path(x, y), Road(y, metaData , z), if q(metaData ).

};

(solve g <+> p) |= #{ Path(src , dst). }

These programs illustrate the following important principles of our design:

Principle IV: Datalog constraints may refer to expressions in the functional language.

Principle V: The types of the predicates of a Datalog constraint may be polymorphic.

2.3 Benefits of Type Safety

We can imagine a programmer accidentally writing a program like:

let g = #{

Edge(Paris , 120, Lyon).

Edge(Lyon , 110, Rome).

};

let q = #{

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

};

solve (g <+> q)

where the arity of the predicate symbol Edge is inconsistent. In the facts of g, the Edge relation

is ternary, whereas in the rules of q, the Edge relation is binary. The composition of g and q is

meaningless: In a Datalog program every predicate symbol must have a fixed arity. In the presence

of first-class Datalog constraints, evaluation of such a program would get stuck at run-time. In this

paper, we propose a static type system, based on row polymorphism, to reject such programs.

As a continuation of Example II, we can also imagine a programmer accidentally writing:

let g = #{ Road(Paris , true , Lyon). ... };

solve r(g, Paris , Rome , speed -> speed > 60)

This program would get stuck inside the Datalog engine, since when the function speed -> speed
> 60 is applied to the value true, we get the stuck term: true > 60. The proposed type system

also rejects such programs.

Principle VI: Type safety: Well-typed programs do not get stuck.
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P ∈ Programs = C1, · · · ,Cn

C ∈ Constraints = A0 ⇐ B1, · · · ,Bn

A ∈ Head Atoms = p(t1, · · · , tn )

B ∈ Body Atoms = p(t1, · · · , tn ) | notp(t1, · · · , tn )

t ∈ Terms = x | c

c ∈ Literals = is a set of literal constants.

x,y ∈ VarSym = is a set of variable symbols.

p,q ∈ PredSym = is a set of predicate symbols.

Fig. 1. Datalog Syntax.

These examples demonstrate the benefit of a type system. A library based approach would suffer

from such run-time errors. In addition, from a practical point of view, a language-based approach

has several advantages: (i) we can determine whether a Datalog program is stratified (and compute

its stratification) at compile-time (see Section 4.7), (ii) we can have proper syntax and integration

with lexical scoping (as shown in the examples), and (iii) we can provide understandable type and

stratification error messages.

3 THE λDat CALCULUS

We now present λDat, a minimal lambda calculus with first-class Datalog constraints, which is the

formal foundation of our implementation. We begin with a brief recap of Datalog, then discuss the

syntax, semantics, and type system of λDat.

3.1 A Brief Recap of Datalog

We briefly discuss the syntax and semantics of Datalog. Readers who are already familiar with

Datalog may wish to skip this subsection. A comprehensive introduction to Datalog is available in

Ceri et al. [1989, 2012]. In this paper, we focus on stratified Datalog, a variant of Datalog with a

restricted form of negation [Minker 1988].

Syntax. A Datalog program P is a collection of constraints C1, · · · ,Cn . A constraint, also called

a Horn clause, is of the form A0 ⇐ B1, · · · ,Bn where A0 is the head atom and each Bi is a body
atom. A head atom p(t1, · · · , tn) consists of a predicate symbol p and a sequence of terms t1, · · · , tn .
A body atom is similar to a head atom, except it can be negated, which is written with the not

keyword in front of the predicate symbol. A constraint without a body is called a fact. Conversely,

a constraint with a body is called a rule. A term is either a variable x or a literal constant c . An atom

without variables is said to be ground. A fact or rule with only ground atoms is said to be ground.

Figure 1 shows the grammar of Datalog. As an example, the constraint:

Path(x, z) ⇐ Path(x,y), Edge(y, z).

is a rule with predicate symbols Path and Edge and variables x , y and z. Datalog rules are implicitly

universally quantified by their variables, hence the rule is formally written as:

∀x,∀y,∀z. Path(x, z) ⇐ Path(x,y), Edge(y, z).

In the calculus, we will write constraints with universal quantifiers. In the implementation, as

shown in the previous section, the compiler will automatically determine which variables are

implicitly quantified and which are bound by the lexical scope. Thus, like in traditional Datalog

programs, the programmer never has to explicitly introduce variables.
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v ∈ Val = c | λx . e | #{C1, · · · ,Cn }

e ∈ Exp = x | v | e e | letx = e in e
| e <+> e | solve e | subset e e | projectp e
| S(e) | H(A, e, e)

C ∈ Constraints = ∀(x1 : τ1 · · · xn : τn ).A0

e
⇐ B1, · · · ,Bn

A ∈ Head Atoms = p(th
1
, · · · , thn )

B ∈ Body Atoms = p(tb
1
, · · · , tbn ) | notp(t

b
1
, · · · , tbn )

th ∈ Head Terms = x | c | e

tb ∈ Body Terms = x | c

c ∈ Literals = is a set of literal constants.

x,y ∈ VarSym = is a set of variable symbols.

p,q ∈ PredSym = is a set of predicate symbols.

Fig. 2. Syntax of λDat.

Semantics. The model-theoretic semantics of Datalog describes the solution, i.e. minimal model,

of any Datalog program independent of the mechanism used to compute it [Ceri et al. 1989, 2012;

Fitting 2002; Gelfond and Lifschitz 1988, 1991; Kunen 1987]. Intuitively, a Datalog model is simply

a set of facts. The minimal model is the smallest set of facts that satisfies all constraints. The

model-theoretic semantics is what makes Datalog declarative: we can write a Datalog program,

and someone else can write a Datalog solver, and we can independently agree on what the result

ought to be. In this paper, we shall not be particularly concerned with how the minimal model

is computed. Rather, we will model a generic Datalog solver with very mild assumptions about

its behavior. Consequently, the calculus will work with any Datalog solver independent of its

specific implementation details. We will model the solver as a black box that, when given a set of

Datalog constraints, is permitted to repeatedly select any constraint, pick a type-safe valuation of its

quantified variables, instantiate the constraint with the valuation, evaluate its terms (expressions),

and add the head atom to the current constraint set.

3.2 Syntax of λDat

We now turn to the syntax of λDat which extends the lambda calculus with first-class constraints.

The grammar of λDat is shown in Figure 2. The language includes the usual expressions from the

lambda calculus: constants, variables, lambda abstraction, function application, and let-bindings.

Values. The values of λDat include literal constants c , lambda abstractions λx . e , and constraint

sets #{C1, · · · ,Cn}. A constraint set is a set of enriched Datalog constraints. In our extension of

Flix, a single fact or rule can be written without #{}. We will use this in subsequent examples

when there is no risk of confusion. The grammar of constraints mirrors that of Figure 1, but with

three important differences: (i) the implicit universally quantified variables are made explicit along

with their types, (ii) every constraint is extended with a filter expression on the implication arrow,

and (iii) the terms of a head atom may now be expressions. The last two extensions enrich the

expressive power of the constraints.

A constraint set #{C1, · · · ,Cn} is a set of the constraints C1, · · · ,Cn . We define two Datalog

constraints C1 and C2 to be equal when they are syntactically identical.



8 Magnus Madsen and Ondřej Lhoták

(λx . e)v → e[x 7→ v]
(E-App)

letx = v in e → e[x 7→ v]
(E-Let)

v1 = #{C1

1
, · · · ,C1

n } v2 = #{C2

1
, · · · ,C2

m }

v1 <+> v2 → #{C1

1
, · · · ,C1

n,C
2

1
, · · · ,C2

m }
(E-Compose)

solve #{C1, · · · ,Cn } → S(#{C1, · · · ,Cn })
(E-Solve)

v1 = #{C1

1
, · · · ,C1

n } v2 = #{C2

1
, · · · ,C2

m }

v1 ⊆ v2

subsetv1v2 → true
(E-Subset-T)

v1 = #{C1

1
, · · · ,C1

n } v2 = #{C2

1
, · · · ,C2

m }

v1 ⊈ v2

subsetv1v2 → false
(E-Subset-F)

v = {p(v1, · · · ,vm ) | p(v1, · · · ,vm ) ∈ #{C1, · · · ,Cn }}

projectp #{C1, · · · ,Cn } → v
(E-Project)

Ci = ∀(x1 : τ1, · · · , xn : τn ).A
e
⇐ B1, · · · ,Bn′

ν is a primitive valuation of xi s.t. typeOf(ν (xi )) = τi

S(#{C1, · · · ,Cn′′}) → H(ν (A),ν (e), #{C1, · · · ,Cn′′})
(S-Rule)

v = {p(v1, · · · ,vn ) | p(v1, · · · ,vn ) ∈ #{C1, · · · ,Cn′}}

S(#{C1, · · · ,Cn′}) → v
(S-Finish)

A = p(v1, · · · ,vn )

H(A, true, #{C1, · · · ,Cn }) → S(#{A,C1, · · · ,Cn })
(H-True)

A = p(v1, · · · ,vn )

H(A, false, #{C1, · · · ,Cn }) → S(#{C1, · · · ,Cn })
(H-False)

Fig. 3. Semantics of λDat.

Expressions. The expressions of λDat include variables x , values v , function application e e , and
let-bindings letx = e in e . The calculus has four expressions for working with first-class constraints:

(i) a composition expression e1 <+> e2 to compute the union of two constraint sets, (ii) a subset

expression subset e1 e2 to determine if one constraint set is a subset of another constraint set, (iii) a

project expression projectp e to extract all facts of a given predicate symbol from a constraint set,

and (iv) a solve expression solve e to compute the minimal model of a constraint set. Finally, the

calculus has two internal constructs: S(e) and H(A, e, e) to model the execution of the Datalog

solver. The two expressions are not considered part of the surface syntax of the language. Figure 2

shows the grammar of the expressions in λDat.

Composing Constraints. We can compute the union of two constraints sets with the composition

expression e <+> e . Unlike in Prolog, the order of constraints in Datalog is immaterial. Hence,

composition is both commutative and associative
1
:

e1 <+> e2 = e2 <+> e1 (||-Commutative)

(e1 <+> e2) <+> e3 = e1 <+> (e2 <+> e3) (||-Associative)

Furthermore, repeating a Datalog constraint has no effect, so composition is idempotent:

e <+> e = e (||-Idempotent)

A key insight is that these properties enable a design of first-class constraints which supports

modular and local reasoning. A similar design for Prolog falls apart because the order of clauses is

significant and simply changing the order of two clauses may cause non-termination.

1
Under the assumption that e1, e2, and e3 are pure (i.e. have no side-effects) and total (i.e. always terminate).
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Computing the Minimal Model. We can compute the minimal model of a constraint set with the

solve e expression. The expression evaluates to a new constraint set that consists of all the facts in

the minimal model of e . The constraint set does not contain any rules.

The solve expression is idempotent since the minimal model of a set of facts is the set itself:

solve (solve e) = solve e (Solve-Idempotent)

Why is Solve Explicit? The solve operationmust be explicit because in the presence of composition

of constraint sets, we cannot identify a constraint set with its minimal model. If we compute

the minimal model eagerly, immediately when two constraints are composed, then the order of

composition determines the minimal model. For example, if we have the program:

let a = A(1).;

let b = B(1).;

let q = R(x) :- A(x), not B(x).

Then the eager computation of (a <+> b) <+> q is not equivalent to the eager computation of

(a <+> q) <+> b. The minimal model of the former does not contain an R fact, but the latter does.

We view such order dependence as completely antithetical to the declarative nature of Datalog.

Consequently, our design requires explicit solve expressions.

Comparing Constraint Sets. We can compute whether one constraint set is a subset of another

with the subset expression subset e1 e2. The expression evaluates to true if all constraints in e1
appear in e2. The expression does not compute the minimal model of e1 nor e2. By lifting a fact

into the singleton set, the subset expression can be used to determine if the minimal model of a

program contains that fact.

Projecting Constraint Sets. We can use the project expression projectp e to select the facts in e
which share the predicate symbol p. The project expression is useful when we have computed the

minimal model of a program, and we want to select a certain type of facts for further computation.

Enriched Datalog Constraints. We enrich Datalog constraints in two ways: (i) we introduce a

filter expression as a guard on a constraint, and (ii) we allow arbitrary expressions as head terms.

For (i), a constraint with a filter expression e is written as:∀(x1 : τ1, · · · , xn : τn).A0

e
⇐ B1, · · · ,Bn .

The expression e may refer to any of the quantified variables x1, · · · xn of the constraint. Filter

expressions enrich the semantics of a Datalog constraint by allowing an arbitrary expression

to determine when a ground instance of the constraint holds. But the cost is decidability: the

programmer must take adequate measures to ensure that the expression e always terminates.

For (ii), a constraint may now have arbitrary expressions as terms in its head atom. This increases

the expressiveness at the cost of decidability. For example, we can now perform addition from

within constraints:

Var(r, v1 + v2) :- Add(r, x, y), Var(x, v1), Var(y, v2).

But the consequence is that the Herbrand Base is no longer finite, and as such we have lost most of

the important properties of Datalog. For example, we can now write a program with a constraint

that never terminates:

P(0). P(x + 1) :- P(x).

With great power comes great responsibility: If the programmer chooses to use the enriched Datalog

constraints, then he or she must ensure termination and that the Herbrand base remains finite.
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E ∈ Ctx = □
| E e | v E | E <+> e | v <+> E | letx = E in e
| solveE | subsetE e | subsetv E | projectp E
| S(E) | H(A, e, E) | H(A, E,v)
| H(p(v, · · · , Ei , · · · , e),v,v)

Fig. 4. Evaluation Contexts of λDat.

Internal Solver Expressions. We model the semantics of the Datalog solver with two internal solver

expressions. The two internal expressions are not part of the surface syntax of the language, but

they are expressions that appear during evaluation.

The select expression S(#{C1, · · · ,Cn}) represents an internal state where the Datalog solver is

in the process of computing the fixed point of the constraint set #{C1, · · · ,Cn} and needs to select

and instantiate a constraint. The extend expression:H(A, e, #{C1, · · · ,Cn}) represents an internal

state where the Datalog solver is in the process of evaluating the head terms of an atom and its

filter expression. If the filter expression evaluates to true, then the evaluated head atom is added

to the constraint set, and the solver continues. If the filter expression evaluates to false, then the

solver continues with the original constraint set. The purpose of the two internal solver expressions

is to mimic the most fundamental operations of a Datalog solver: rule selection, rule instantiation,

and evaluation of head terms. The idea is that these two expression can be substituted for an actual

implementation while preserving the type safety of the calculus.

3.3 Evaluation of λDat

We define evaluation of λDat as a small-step operational semantics. The evaluation relation e → e ′

describeswhen the expression e can reduce to the expression e ′ in a single step.We define an intrinsic

(or Church-style) semantics where the evaluation rules depend on the type of the expressions: in

other words, we assign no meaning to untyped programs. This is required, since for the Datalog

solver to correctly instantiate a Datalog constraint, it must know the types of its quantified variables.

The evaluation rules of λDat are shown in Figure 3. We now discuss the most important rules:

The evaluation rule for constraint composition:

v1 = #{C1

1
, · · · ,C1

n} v2 = #{C2

1
, · · · ,C2

m}

v1 <+> v2 → #{C1

1
, · · · ,C1

n,C
2

1
, · · · ,C2

m}
(E-Compose)

states that to combine two constraint sets, we compute their union. The evaluation rule for solve:

solve #{C1, · · · ,Cn} → S(#{C1, · · · ,Cn}) (E-Solve)

states that a solve expression reduces to the internal select expression.

The first evaluation rule for the subset expression:

v1 = #{C1

1
, · · · ,C1

n} v2 = #{C2

1
, · · · ,C2

m} v1 ⊆ v2

subsetv1v2 → true
(E-Subset-T)

states that a constraint setv1 is a subset ofv2 if all constraints inv1 also occur inv2. The (E-Subset-F)
rule is similar.

The evaluation rule for projection:

v = {p(v1, · · · ,vm) | p(v1, · · · ,vm) ∈ #{C1, · · · ,Cn}}

projectp #{C1, · · · ,Cn} → v
(E-Project)
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states that given the predicate symbolp and the constraint set #{C1, · · · ,Cn}, the expression reduces

to those ground facts in #{C1, · · · ,Cn} that share the same predicate symbol. Note that the project

expression returns ground facts, and implicitly strips out non-ground facts and rules.

The first evaluation rule for the internal select expression:

Ci = ∀(x1 : τ1, · · · , xn : τn).A
e
⇐ B1, · · · ,Bn′

ν is a primitive valuation of xi s.t. typeOf(ν (xi )) = τi

S(#{C1, · · · ,Cn′′}) → H(ν (A),ν (e), #{C1, · · · ,Cn′′})
(S-Rule)

states that given a constraint set #{C1, · · · ,Cn}, the Datalog solver may non-deterministically select

any constraint Ci and any primitive valuation ν of the quantified variables x1 : τ1, · · · , xm : τm .
The valuation must assign a value of type τi to each quantified variable xi and the value must be a

primitive value. We do not allow complex types, such as functions and constraint sets, as terms.

The evaluation rule is in Church-style since evaluation depends on the types of the quantified

variables x1, · · · , xn . Given a primitive valuation ν , the expression applies it to the head atomA and

the filter expression e , and reduces to the extend expression with these components together with

the original constraint set. Intuitively, the (S-Rule) models the Datalog solver when it selects a

Datalog rule for evaluation, binds its quantified variables, and proceeds to evaluate the head atom.

The second evaluation rule for the internal select expression:

v = {p(v1, · · · ,vn) | p(v1, · · · ,vn) ∈ #{C1, · · · ,Cn′}}

S(#{C1, · · · ,Cn′}) → v
(S-Finish)

states that the select expressionS(#{C1, · · · ,Cn})may immediately evaluate to the facts of #{C1, · · · ,Cn}.

Together, the (S-Rule) and (S-Finish) evaluation rules model a non-deterministic execution where

constraints are repeatedly instantiated, their head atoms become part of the constraint set (if the

filter expression reduces to true), and at some point the facts of the constraint set are returned.

This over-approximates the concrete evaluation steps of any reasonable Datalog engine without

modeling its exact semantics.

The extend expression has two evaluation rules, (H-True) and (H-False), depending on the

value of the filter expression. The first rule:

A = p(v1, · · · ,vn)

H(A, true, #{C1, · · · ,Cn}) → S(#{A,C1, · · · ,Cn})
(H-True)

states that the expression H(A, true, #{C1, · · · ,Cn}) reduces to the select expression where the

constraint set has been extended with the fact A. Note that the side-condition requires that all

terms of A are values, i.e. that A is a ground fact.

Substitution. As is standard, we use capture avoiding substitution to implement beta reduction

for λDat. The substitution rules are available in appendix.

Evaluation Contexts. As is also standard, we use evaluation contexts to allow reduction of sub-

expressions [Felleisen et al. 2009]. Figure 4 shows the evaluation contexts of λDat. We use □ to

represent the hole in the expression tree. If E is an evaluation context, then E[e] is an expression

in which the hole □ has been replaced by the expression e . We assume that the semantics are

extended with the rule:

e → e ′

E[e] → E[e ′]
(E-Context)
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τ ∈ Type = α | ι | τ1 → τ2 | (τ1, · · · , τn ) | r
r , s ∈ Row = ρ | { } | {p = (τ1, · · · , τn ) | r }

α ∈ TypeVar = is a set of type variables.

ρ ∈ RowVar = is a set of row variables.

(a) Mono Types of λDat.

σ ∈ Scheme = ∀α ∀ρ. τ poly type

α ∈ TypeVar = is a set of type variables.

ρ ∈ RowVar = is a set of row variables.

(b) Type Schemes of λDat.

Fig. 5. Mono Types and Type Schemes of λDat.

In the proofs, we will sometimes refer to a specific instantiation of this meta-rule in combination

with a specific evaluation context. For example, we might refer to the context rule in reference to

the first evaluation context for function application, i.e. the context rule with E = E ′ e for some E ′.
The evaluation contexts for λDat are straightforward. In the case of the extend expression, the

context enforces that we evaluate the constraint set first, then the filter expression, and finally the

terms (expressions) of the head atom itself.

4 TYPING OF λDat

We now discuss the type system for λDat. The type system is based on Hindley-Milner [Damas and

Milner 1982; Wright and Felleisen 1994] extended with row types. We use row types to precisely

track the types of predicate symbols in constraint sets. In this way, the type system is reminiscent

of type systems for extensible records [Leijen 2005]. We have proved soundness of the type system.

The detailed proofs are available in appendix.

4.1 Mono and Poly Types

The type system, as is standard for Hindley-Milner style type systems, splits types into mono- and

poly types. Figure 5a shows the mono types of λDat. The mono types consist of type variables α ,
a set of base types denoted by ι (e.g. Bool), function types τ1 → τ2, tuple types (τ1, · · · , τn), and
row types r . A row type is either a row type variable ρ, an empty row {}, or a row extension

{p = (τ1, · · · , τn) | r }. A row type describes the types of the predicate symbols of a constraint set.

For example, the constraint set:

#{A(123).,B("Hello World").}

may be assigned the row type:

{A = (Int) | {B = (Str) | {}}}

For brevity, we will write such types as: {A = (Int),B = (Str)}. In our extension of Flix both

constraint sets and row types are written using #{}. In the calculus, for clarity, we write constraint

sets as #{· · ·} and row types as {· · · } without the hash #.

Figure 5b shows the poly types (or type schemes) of λDat. A poly type is of the form:

∀α1, · · · ,αn ∀ρ1, · · · , ρm . τ

As can be seen, we separate regular type variables α from row type variables ρ. We use poly types

to type polymorphic constraint sets. For example, the constraint set:

#{Path(x, z) ⇐ Path(x,y), Edge(y, z).}

is given the polymorphic type:

∀α1,α2 ∀ρ . {Path = (α1,α2), Edge = (α2,α2) | ρ}

The type is polymorphic in the terms of the Edge and Path atoms. Specifically, the variable x must

have type α1 whereas the variables y and z must have type α2, because the two occurrences of the
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τ � τ (Eq-Refl)

τ1 � τ ′
1

τ2 � τ ′
2

τ1 → τ2 � τ ′
1
→ τ ′

2

(Eq-Arrow)

∀i . τi � τ ′i

(τ1, · · · , τn ) � (τ
′
1
, · · · , τ ′n )
(Eq-Tuple)

τ1 � τ2 τ2 � τ3

τ1 � τ3
(Eq-Trans)

τ � τ ′ r � s

{p : τ | r } � {p : τ ′ | s }
(Eq-Head)

p , p′

{p : τ , p′ : τ ′ | r } � {p′ : τ ′, p : τ | r }
(Eq-Swap)

Fig. 6. Type Equivalence in λDat.

Path atom force the variables y and z to have the same type. But, the type is also polymorphic

in the rest of the row ρ, since the constraint set can be composed with other constraint sets that

(potentially) contain additional predicate symbols.

As is standard, we introduce a partial order on types [Damas and Milner 1982; Wright and

Felleisen 1994]. Given two poly types σ1 and σ2, we say that σ1 is more general than σ2, written as

σ1 ⊑ σ2, if there is a substitution s of quantified variables of σ1 such that s(σ1) = σ2. For example:

∀α .α → α ⊑ Int→ Int

∀ρ .{A = (Int) | ρ} ⊑ {A = (Int),B = (Int)}

∀α, ρ.{A = α,B = (Int) | ρ} ⊑ {A = (Int),B = (Int),C = (Bool)}

The least element of the partial order is ∀α .α .

4.2 Type Equality

Consider the two constraint sets:

#{A(123). B(456).} and #{B(456).A(123).}

We can assign them the two types:

{A = (Int),B = (Int)} and {B = (Int),A = (Int)}

These two types are not equivalent, since the order of the predicate symbols is different! But clearly,

from a Datalog perspective, the two constraints sets are equivalent.

To fix this, we introduce an equivalence relation on types. Specifically, we consider two row

types to be equivalent up to permutation of distinct labels following Leijen [2005]. Figure 6 specifies

this equivalence relation � on types. The [Eq-Refl] and [Eq-Trans] rules specify that the relation

is reflexive and transitive. In the appendix, we prove that the relation is symmetric, hence it is

an equivalence relation. The [Eq-Arrow] and [Eq-Tuple] rules specify that function and tuple

types are equivalent if their constituents are. The [Eq-Head] rule specifies that two row types are

equivalent if their first predicate symbols are the same, they have equivalent types, and the rest of

the two rows are equivalent. The [Eq-Swap] rule specifies that two row types are equivalent if

they are equivalent when the first two predicates of one of them are swapped, provided that the

predicate symbols are distinct. With this in place, we have that:

{A = (Int), B = (Int)} � {B = (Int), A = (Int)}

The type system permits rows with duplicate predicate symbols. In the context of extensible records

with scoped labels such types make sense and can be useful, but in the context of our work they are

more of an artifact. We tolerate them because they simplify the formalism and the implementation

of type inference. We refer the reader to Leijen [2005] for more details.
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4.3 Examples

Before we present the type system in detail, we give some examples of how it works.

Example I. Consider the program fragment:

let p1 = Edge("a", "b").;

let p2 = Path("a", "b").;

let p3 = p1 <+> p2;

The type system will assign the two local variables p1 and p2 the row polymorphic types:

p1 : ∀r1.{Edge = (Str, Str) | r1}

p2 : ∀r2.{Path = (Str, Str) | r2}

The type rule for composition:

Γ ⊢ e1 : r Γ ⊢ e2 : r
′ r � r ′

Γ ⊢ e1 <+> e2 : r
(T-Compose)

requires that the types of p1 and p2 are equivalent. We can instantiate the two polymorphic types

using the type rule for variables:

(x,σ ) ∈ Γ σ ⊑ τ

Γ ⊢ x : τ
(T-Var)

which allow us to replace r1 by {Path = (Str, Str) | r3} and r2 by {Edge = (Str, Str) | r3}. We

pick the same type variable r3 for both instantiations; otherwise the composition rule would be

inapplicable. The type rule for composition now allows us to conclude that p1 <+> p2 has type:

{Edge = (Str, Str), Path = (Str, Str) | r3}

Using the type rule for let:

Γ ⊢ e1 : τ1 Γ, x : gen(Γ, τ1) ⊢ e2 : τ2

Γ ⊢ letx = e1 in e2 : τ2
(T-Let)

We obtain the polymorphic type:

∀r3.{Edge = (Str, Str), Path = (Str, Str) | r3}

for the local variable p3.

Example II. Consider the program fragment for some labelled graph:

let p1 = Edge("a", 123, "b").;

let p2 = Path(x, l, z) :- Path(x, l, y), Edge(y, l, z).;

let p3 = p1 <+> p2;

The types of the three local variables are:

p1 : ∀r1.{Edge = (Str, Int, Str) | r1}

p2 : ∀α1,α2,α3,∀r2.{Edge = (α1,α2,α3), Path = (α1,α2,α3) | r2}

p3 : ∀r3.{Edge = (Str, Int, Str), Path = (Str, Int, Str) | r3}

Note how the type of p2 is polymorphic in terms of Edge and Path, but once p1 and p2 are composed

in p3, the types of both Edge and Path become (Str, Int, Str).
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Example III. If we modify the previous program to the following:

let p1 = Edge("a", 123, "b").;

let p2 = Path(x, l1, z) :- Path(x, l1, y), Edge(y, l2, z).;

let p3 = p1 <+> p2;

We get the more interesting types:

p1 : ∀r1. {Edge = (Str, Int, Str) | r1}

p2 : ∀α1,α2,α
′
2
,α3,∀r2. {Edge = (α1,α2,α3), Path = (α1,α

′
2
,α3) | r2}

p3 : ∀α
′
2
,∀r3. {Edge = (Str, Int, Str), Path = (Str,α ′

2
, Str) | r3}

Note how the type of p2 is now polymorphic in both labels l1 (with type α ′
2
) and l2 (with type α2).

Consequently, p3 becomes polymorphic in the label l1 (α
′
2
).

Ill-typed Example I. The program fragment:

let p1 = Edge("a", "b").;

let p2 = Edge("a", 42, "b").;

let p3 = p1 <+> p2;

cannot be typed since the types of p1 and p2:

∀r1.{Edge = (Str, Str) | r1} and ∀r2.{Edge = (Str, Int, Str) | r2}

cannot be unified.

Ill-typed Example II. The program fragment:

let p1 = Edge("a", 12345, "b").;

let p2 = Edge("a", "abc", "b").;

let p3 = p1 <+> p2;

cannot be typed since the types of p1 and p2:

∀r1.{Edge = (Str, Int, Str) | r1} and ∀r2.{Edge = (Str, Str, Str) | r2}

cannot be unified.

Ill-typed Example III. Similarly, the single constraint:

Path(x, 42, z) :- Path(x, "foo", y), Edge(y, z).

cannot be typed since the types of the Path atom in the head and body cannot be unified.

4.4 Type Rules

We now present the type rules of λDat. The type rules are a syntax-directed formulation of the

Hindley-Milner type system where instantiation occurs in the type rule for variables [T-Var] and

generalization occurs in the type rule for let-bindings [T-Let] [Damas and Milner 1982; Wright and

Felleisen 1994]. Figure 7 shows the type rules of λDat. The type system has three type judgements:

Γ ⊢ e : τ for expressions, Γ ⊢c C : r for constraints, and Γ ⊢p A : r for atoms. We assume that there

is a function typeOf : Literal→ Type that assigns a primitive type to every constant literal.

We now discuss the most important type rules:

The type rule for composition was shown in Example I. It states that e1 and e2 must have row

types r and r ′, and they must be equivalent r � r ′:

Γ ⊢ e1 : r Γ ⊢ e2 : r
′ r � r ′

Γ ⊢ e1 <+> e2 : r
(T-Compose)

The type rule for project states that e must have a row type where the predicate p has some type

(τ1, · · · , τn), and then the result is a new row type with the same type for the predicate p:
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typeOf(c) = ι

Γ ⊢ c : ι
(T-Cst)

(x,σ ) ∈ Γ σ ⊑ τ

Γ ⊢ x : τ
(T-Var)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx . e : τ1 → τ2
(T-Abs)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ
′
1

τ1 � τ ′
1

Γ ⊢ e1 e2 : τ2
(T-App)

Γ ⊢ e1 : τ1 Γ, x : gen(Γ, τ1) ⊢ e2 : τ2

Γ ⊢ letx = e1 in e2 : τ2
(T-Let)

Γ ⊢ e1 : r Γ ⊢ e2 : r
′ r � r ′

Γ ⊢ e1 <+> e2 : r
(T-Compose)

Γ ⊢ e : r

Γ ⊢ solve e : r
(T-Solve)

Γ ⊢ e1 : r Γ ⊢ e2 : r
′ r � r ′

Γ ⊢ subset e1 e2 : Bool
(T-Subset)

Γ ⊢ e : r r � {p = (τ1, · · · , τn ) | r
′}

Γ ⊢ projectp e : {p = (τ1, · · · , τn ) | r
′′}

(T-Project)

Γ ⊢ e : r

Γ ⊢ S(e) : r
(T-Select)

Γ ⊢p A : r Γ ⊢ e1 : Bool Γ ⊢ e2 : r
′ r � r ′

Γ ⊢ H(A, e1, e2) : r
(T-Extend)

∀i . (Γ ⊢c Ci : ri ∧ ri � r )

Γ ⊢ #{C1, · · · ,Cn } : r
(T-Constraint-Set)

Γ, x1 : τ1, · · · , xm : τm ⊢p A0 : r
∀i . Γ, x1 : τ1, · · · , xm : τm ⊢p Bi : ri

∀i . r � ri Γ, x1 : τ1, · · · , xm : τm ⊢ e : Bool

Γ ⊢c ∀(x1 : τ1, · · · , xm : τm ).A0

e
⇐ B1, · · · ,Bn : r
(T-Constraint)

∀i . Γ ⊢ thi : τi

Γ ⊢p p(th
1
, · · · , thn ) : {p = (τ1, · · · , τn ) | r }

(T-Head-Atom)

∀i . Γ ⊢ tbi : τi

Γ ⊢p p(tb
1
, · · · , tbn ) : {p = (τ1, · · · , τn ) | r }

(T-Body-Atom-1)

∀i . Γ ⊢ tbi : τi

Γ ⊢p notp(tb
1
, · · · , tbn ) : {p = (τ1, · · · , τn ) | r }

(T-Body-Atom-2)

gen(Γ, τ ) = ∀α1, · · · ,αn,∀ρ1, · · · , ρn .τ

where {α1, · · · ,αn, ρ1, · · · , ρn } = ftv(τ ) \ ftv(Γ)

Fig. 7. Type Rules of λDat.

Γ ⊢ e : r r � {p = (τ1, · · · , τn) | r
′}

Γ ⊢ projectp e : {p = (τ1, · · · , τn) | r
′′}

(T-Project)

The type rule for the internal select expression states that e must have a row type r and the

result has type r :

Γ ⊢ e : r

Γ ⊢ S(e) : r
(T-Select)

The type rule for the internal extend expression states that the atom Amust have row type r under
the typing judgement for atoms ⊢p , the filter expression e1 must have type Bool, and the constraint
set e2 must have row type r ′. Finally, r and r ′ must be equivalent, i.e. r � r ′:

Γ ⊢p A : r Γ ⊢ e1 : Bool Γ ⊢ e2 : r
′ r � r ′

Γ ⊢ H(A, e1, e2) : r
(T-Extend)
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The type rule for a constraint set states that the type of a constraint set #{C1, · · · ,Cn} is a row type

r if each of the constraints Ci are typeable under the ⊢c typing judgement with some row type ri
and all of the row types are equivalent to r :

∀i . (Γ ⊢c Ci : ri ∧ ri � r )

Γ ⊢ #{C1, · · · ,Cn} : r
(T-Constraint-Set)

Intuitively, the rule ensures that the types of the predicates within multiple constraints have

consistent types.

The type rule for a single constraint is:

Γ, x1 : τ1, · · · , xm : τm ⊢p A0 : r
∀i . Γ, x1 : τ1, · · · , xm : τm ⊢p Bi : ri

∀i . r � ri Γ, x1 : τ1, · · · , xm : τm ⊢ e : Bool

Γ ⊢c ∀(x1 : τ1, · · · , xm : τm).A0

e
⇐ B1, · · · ,Bn : r

(T-Constraint)

It states that a constraint ∀(x1 : τ1, · · · , xm : τm).A0

e
⇐ A1, · · · ,An has row type r under a type

environment Γ if we can type its constituents as follows: (i) the head atom A0 must have type r
under the extended environment Γ, x1 : τ1, · · · , xm : τm , (ii) each body atom Ai must have type ri
under the extended environment Γ, x1 : τ1, · · · , xm : τm , (iii) all the row types, r and each ri must

be equivalent, and (iv) the filter expression e must have type Bool under the extended environment

Γ, x1 : τ1, · · · , xm : τm . Intuitively, the rule ensures that the types of the atoms within a single

constraint have consistent types.

The type rule for a head atom is:

∀i . Γ ⊢ thi : τi

Γ ⊢p p(t
h
1
, · · · , thn ) : {p = (τ1, · · · , τn) | r }

(T-Head-Atom)

It states that the type of an atom A = p(th
1
, · · · , thn ) is a row type of the form {p(τ1, · · · , τn) | r } for

some row type r provided that each expression term thi has type τi according to the expression

typing judgement ⊢. The type rules [T-Body-Atom-1] and [T-Body-Atom-2] are similar.

4.5 Type Safety

We have established type soundness for λDat. We state the most important theorems here:

Theorem 4.1 (Progress). Suppose e is a closed, well-typed expression (that is, ⊢ e : τ for some τ ).
Then either e is a value or else there is some expression e ′ such that e → e ′.

Theorem 4.2 (Preservation). If Γ ⊢ e : τ and e → e ′, then Γ ⊢ e ′ : τ ′ where τ = τ ′.

The detailed proofs are available in the appendix.

4.6 Type Inference

The type system, as an instance of Hindley-Milner, supports full type reconstruction. The type

system for λDat is based on that for polymorphic extensible records [Leijen 2005]. We leave it as

future work to prove its correctness, but we believe that the proofs should be easily adaptable. The

relationship between records and first-class constraints is as follows: Given the Datalog constraint:

p0(t
0

1
, · · · , t0l ) ⇐ p1(t

1

1
, · · · , t1l ′), · · · ,pn(t

n
1
, · · · , tnl ′′)

we can view it as a record in which the fields are the predicate symbols p0, · · · ,pn and the types of

the fields are the types of the terms, i.e. the “field” p0 would have the tuple type (τ1, · · · , τl ), where
τi is the type of the term t0i .



18 Magnus Madsen and Ondřej Lhoták

4.7 Stratification

Unrestricted use of negation poses problems for Datalog. Consider the following program:

P(x) :- not Q(x). Q(x) :- not P(x).

If we assume that the program contains the constant c , then the program has two minimal models:

m1 = {P(c)} and m2 = {Q(c)}

This is undesirable because the minimal model is no longer unique. We can ensure a consistent

semantics by restricting ourselves to stratified Datalog [Minker 1988]. Stratification requires that

the predicate symbols of a Datalog program can be partitioned into a sequence of strata such that a

positive predicate symbol in a stratum only depends on predicate symbols in the same or lower

strata and a negative predicate symbol only depends on predicate symbols in strictly lower strata.

Stratification splits a Datalog program P into a sequence of sub-programs P1, · · · , Pn such that the

output of Pi becomes the input of Pi+1.

Definition 4.3. (Precedence Graph) The precedence graph of a program P is a graph that contains:

• a positive edge a ← b if P contains a rule where a is the head predicate and b is a positive

body predicate, and similarly

• a negative edge a ↚ b if P contains a rule where a is the head predicate and b is a negative

body predicate.

We can use the precedence graph to determine whether a Datalog program is stratified:

Definition 4.4. (Stratified) A program P is stratified if its precedence graph contains no cycles

with a negative edge.

Given a complete Datalog program, we can determine if it is stratified and compute its stratifica-

tion using Ullman’s Algorithm [Ullman 1988]. For a language like λDat, we can identify three levels

of modularity of a type system or static analysis. At the least modular level, we require the complete

Datalog program for analysis of stratification. At the second level, we require the complete λDat
program, which contains Datalog constraint sets that will be composed at run time. Finally, at the

most modular level, we may be given fragments of λDat programs, and be required to construct a

summary of each fragment such that stratification of a complete λDat program can be computed

using the summaries alone.

For the first level, stratification of the complete Datalog program can be computed using Ullman’s

Algorithm [Ullman 1988]. In the context of λDat, however, such an approach would only be

applicable at runtime when the complete Datalog programs are known, so stratification errors

would be detected only at runtime. The strategy that we will describe in the rest of this section

supports the second level of modularity, which allows analyzing Datalog constraint sets at compile

time. The analysis can therefore detect stratification errors at compile time. The analysis in this

section does not support the third level of modularity. At this level, there is a range of design

choices in how detailed and complex the summaries of the λDat fragments should be. An analysis

is deemed modular if it reads the summaries instead of the code. At the extreme, if the full details

contained in the code are recorded in the summaries, then any analysis can be made modular

in name, but then analyzing the summaries will be equivalent to analyzing the original code. At

this level, there is a rich design space with trade offs between precision and complexity of the

summaries which we leave for exploration in future work.

Definition 4.5 (Stratification for λDat). Given a complete λDat program e , determine at compile-

time whether all Datalog constraint sets that e may construct at run-time are stratified.
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We propose a simple and sound algorithm that computes stratification at compile time using

information from the type system. We view this as an important first step towards stratification of

Flix programs, but there is still a rich design space to be explored.

Definition 4.6. (First-Class Constraint Stratification) For a whole λDat or Flix program:

(1) Collect all constraints into a set G, regardless of where they occur in the program.

(2) Compute the global dependency graph D = dg(G) of the constraint set G.

(3) For each expression e with a row type r = {p1 = (· · · ), · · · ,pn = (· · · )}, compute a subgraph

R of the dependency graph with only those edges a ← b or a ↚ b where both predicates a
and b occur in the row type. Finally, use Ullman’s Algorithm to determine if the dependency

graph R is stratified, and to compute its stratification.

We do not need to consider row type variables because stratification occurs after monomorphization.

For example, consider the following program fragment:

let r1 = B(x) :- A(x).;

let r2 = C(x) :- B(x).;

let r3 = K(x) :- A(x).;

let r4 = A(x) :- not C(x), R(x).;

The dependency graph G of this program fragment is:

{B ← A,C ← B,K ← A,A ↚ C,A← R}

The dependency graph is not stratified, since there is a cycle with a negative edge:

C ← B ← A ↚ C

However, if we consider the expression: r3 <+> r4 which has the row type:

{A = (· · · ),C = (· · · ),K = (· · · ),R = (· · · )}

we see that its restricted dependency graph R does not have any edges for B:

{K ← A,A ↚ C,A← R}

and hence the constraint sets that the expression r3 <+> r4 may evaluate to must be stratified and

we can compute the stratification at compile-time. We now prove correctness of the algorithm.

Lemma 4.7. Given any subset of constraintsU ⊆ G, the dependency graph ofU is a subgraph of

the dependency graph of G, i.e. dg(U) ⊆ dg(G) by the definition of the dependency graph.

Theorem 4.8 (Correctness). If algorithm 4.6 reports that an expression e is stratified, then all

constraint sets that e may evaluate to must be stratified.

Proof. An expression with row type {p1 = (· · · ), · · · ,pn = (· · · )} may evaluate to some con-

straint set Q which can be partitioned into facts F and rules C such that Q = F ∪ C and we

have that C ⊆ G. By inversion of the typing derivation of e , the constraint set C can only contain

constraints with predicate symbols drawn from p1, · · · ,pn . By definition, the precedence graph

dg(C) can then only contain edges with predicates drawn from p1, · · · ,pn . By the previous lemma,

the dependency graph dg(C) must be a subgraph of dg(G), but the largest subgraph of dg(G) with

edges where the predicates are drawn from p1, · · · ,pn is R. Hence we must have that dg(C) ⊆ R.

Now, if R is stratified, then dg(C) must also be stratified, since if a graph has no negative cycles

then a subgraph cannot have any negative cycles. □

The algorithm is an over-approximation, and it will sometimes unfairly reject programs that can

never fail at run-time. For example, the program:
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def f(b: Bool): #{...} =

let r1 = P(x) :- A(x), not Q(x).;

let r2 = Q(x) :- A(x), not P(x).;

solve (if (b) r1 else r2)

is unfairly rejected, even though it is always stratified.

5 IMPLEMENTATION

We have implemented λDat as an extension of the Flix programming language. Flix is a functional,

imperative, and logic programming language. Flix supports algebraic data types, pattern matching,

currying, higher-order functions, extensible records, channel and process-based concurrency, and

now first-class Datalog constraints.

The extension required 5,000 lines of code in addition to the 55,000 lines of code already present

in the compiler. The implementation effort was significant, but not difficult, as the constructs of

λDat integrate seamlessly with an ML-style language. Most changes were to the frontend of the

compiler and to the intricate details of the type inference algorithm. We reuse the Datalog engine

that already comes with Flix to solve Datalog constraints at run-time.

Flix is open source, ready for use, and freely available at: flix.dev

6 EVALUATION: CASE STUDIES

To demonstrate the practical value of the λDat calculus and its implementation in Flix, we present

a series of case studies. We report on programs that have already been implemented in Flix and on

one program that could benefit from being implemented in Flix (or in a system based on λDat).

6.1 Case Study: Koans

We have implemented eleven “koans” which are small programs that demonstrate how to program

with first-class constraints. The koans solve practical computational problems such as: (i) Given

a Git commit graph, find the pair of commits where a bug was introduced and where the bug

was merged into the master branch. (ii) Given a social network graph, compute a set of friend

suggestions based on the friends of my friends. (iii) Given a train and bus network, compute if there

is a route from one city to another with a preference for the train. (iv) Given a list of graphs, find all

pairs of graphs whose union is acyclic. The koans illustrate the interplay between functional and

logic programming: the overall program is constructed from smaller functions that use first-class

constraints. The koans are available at https://flix.dev/papers/flix-koans.pdf.

6.2 Case Study: PuppetMaster an Actor Library with Declarative Actor Supervision

PuppetMaster is an actor library for Flix. An actor is a light-weight process that executes concur-

rently with—and in isolation from—other processes. Every actor has its own unique mailbox, an

unbounded queue of incoming messages. Actors communicate by sending immutable messages to

each other’s mailboxes. An actor system is a collection of actors together with policies that govern

how actors are started, how actors are stopped, and how to respond when an actor crashes. In

PuppetMaster, startup, shutdown, and supervision policies are expressed as first-class Datalog

constraints. The “input” (i.e. ground facts) of a policy is the state of every actor in the system and

the “output” (i.e. minimal model) of a policy is a set of actions to be executed by the actor system.

For example, the very simple policy (where ActorPolicy is a type alias omitted for brevity):

def immediatelyStartAllPolicy (): ActorPolicy = #{

Start(actor) :- Actor(actor ).

}

flix.dev
https://flix.dev/papers/flix-koans.pdf
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specifies that every actor should be started immediately. A more sophisticated policy is:

def defaultStartPolicy (): ActorPolicy = #{

Waiting(x) :- DependsOn(x, y), not ActorState(y, Running ).

Start(x) :- Actor(x), not Waiting(x).

}

which allows an actor to start once all its dependencies have entered the Running state. An even

more sophisticated policy is:

def defaultSupervisionPolicy (): ActorPolicy = #{

Path(x, y) :- DependsOn(x, y).

Path(x, z) :- Path(x, y), DependsOn(y, z).

Waiting(x) :- Path(x, w), ActorState(w, NonResumablyCrashed ).

Resume(x) :- ActorState(x, ResumablyCrashed), not Waiting(x).

}

which allows a resumably crashed actor x to continue execution unless one of its transitive

dependencies have non-resumably crashed. The PuppetMaster library ships with a collection of

such startup, shutdown, and supervision policies, but the programmer may also define his or her

own policies using first-class constraints.

6.3 Case Study: A Prototype Points-To Analysis for Python

We have implemented a prototype points-to analysis for Python with a special focus on precise

object initialization. The points-to analysis is parameterized by the choice of context- and heap-

sensitivity in the form of two functions, merge and record, following Smaragdakis et al. [2011]:

def analysis(merge: (String , octx , String , ctx) -> ctx ,

record: (String , ctx) -> octx , empty_ctx : ctx): #{...}

where the analysis function is polymorphic in the type of the call context ctx and the type of the

heap context octx. The merge and record functions are used within the analysis rules:

Reachable(attrObject , merge(baseObject , baseOCtx , invo, callerCtx )) :-

VCall(base, attr, invo, inMeth),

VarPointsTo(base, callerCtx , baseObject , baseOCtx),

AttrPointsTo(baseObject , baseOCtx , attr, attrObject , octx),

ObjectIsFunction(attrObject),

Reachable(inMeth , callerCtx ).

This design allows us to easily change and experiment with different types of context- and heap

sensitivity. We can instantiate the analysis with no context or heap sensitivity by simply using

the Unit type and passing in two constant functions. We can also instantiate the analysis with

2-call-1-heap sensitivity by defining appropriate algebraic data types and passing in appropriate

record and merge functions.

Case Study: The IFDS & IDE Program Analyses. The Interprocedural Finite Distributive Subset

(IFDS) algorithm [Reps et al. 1995] solves context-sensitive interprocedural dataflow analysis

problems by computing reachability in a graph. The input to the algorithm is a graph called the

exploded supergraph, and the algorithm works by constructing two sets of additional edges, called

path edges and summary edges, according to rules about existing edges. For example, whenever

there is a path edge from node n1 to node n2 and a supergraph edge from node n2 to node n3, the
algorithm adds a new path edge from n1 to n3. There are additional rules, some of them more

complicated, but they all have a similar form. Thus, it appears natural to express the rules of the

IFDS algorithm as Datalog rules and to use a Datalog solver to compute the solution.
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However, the exploded supergraph is generally very large and the IFDS algorithm explores only a

subgraph that is reachable from the entry point of the program. It would be expensive to realize the

whole exploded supergraph as a data structure, including unreachable parts of the graph. Instead,

the graph is usually specified implicitly as a successor function that can compute, for each node

n that is found to be reachable, the set of edges leading out from n to its successor nodes. The

exploded supergraph would be too large to realize as a Datalog relation, so it is impractical to

implement the IFDS algorithm in pure Datalog. In our hybrid language, the exploded supergraph

can be expressed using functions in the functional fragment of the language, which can be called

on demand by the rules of the IFDS algorithm expressed declaratively in the relational fragment

of the language. Since the functions can be first-class this allows us to implement a generic IFDS

framework once, with parameters that can later be instantiated to specific program analyses.

The Interprocedural Distributive Environment (IDE) algorithm [Sagiv et al. 1996] extends IFDS by

adding representations of functions on a lattice to the edges of the exploded supergraph. Whenever

a rule of the algorithm creates a new path edge or summary edge, it decorates the new edge with

a new function created by composing functions on the edges that triggered the rule. When the

sets of edges are represented as Datalog relations, it is easy to decorate each edge with a function

by adding a new attribute to the relation to store the function. However, the rules for creating

new edges no longer map to pure Datalog: each rule needs to perform a general computation to

determine the function for the new edge from the functions of the existing edges. Our language

makes it possible to express this by allowing a Datalog rule to call into the functional fragment

of the language, which can express the general computations needed to determine the function

for the new edge. As with IFDS, we can implement a single parametric IDE framework and later

instantiate it with multiple IDE analyses.

6.4 Case Study: The Doop Program Analysis Framework

Doop
2
is a fast, scalable, context-sensitive, subset-based points-to analysis for Java implemented in

Datalog [Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2013, 2014]. Doopmodelsmany features

of the Java programming language, including reflection and exceptions. The Doop Framework

comes with a wide variety of configuration options for tuning the precision and performance of

the points-to analysis, e.g. the choice of context sensitivity, heap sensitivity, reflection support,

exception support, and a multitude of other options. The implementation uses the C preprocessor

to selectively include (or exclude) rules based on the configuration options.

For example, if the FEATHERWEIGHT_ANALYSIS option is disabled, the C preprocessor excludes

the following rule that models static field accesses:

#ifndef FEATHERWEIGHT_ANALYSIS

StaticFieldPointsTo (?hctx , ?value , ?signature) <-

ReachableStoreStaticFieldFrom (?from),

OptStoreStaticField (?signature , ?from),

VarPointsTo (?hctx , ?value , _, ?from).

#endif

As another example, if the REFLECTION option is enabled, the C preprocessor includes the following

rule that models reflective calls:

#ifdef REFLECTION

AnyCallGraphEdge (?from , ?to) :- ReflectiveCallGraphEdge(_, ?from , _, ?to).

#endif

2
https://bitbucket.org/yanniss/doop/src/master/
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Similarly, the REFLECTION_DYNAMIC_PROXIES option controls the modelling of reflective calls

through proxy objects:

#ifdef REFLECTION_DYNAMIC_PROXIES

AnyCallGraphEdge (?from , ?to) :- ProxyCallGraphEdge(_, ?from , _, ?to).

#endif

These examples demonstrate that it is common to selectively include or exclude rules in Doop.

In fact, a search across the Doop repository reveals 268 uses of ifdef and 189 uses of ifndef.
An interesting flag is EXCEPTIONS_CS, which controls whether context sensitivity is used when

modelling the data flow of exceptions:

#ifdef EXCEPTIONS_CS

ThrowPointsTo (?hctx , ?heap , ?ctx , ?method) <-

Throw (?ref , ?var),

VarPointsTo (?hctx , ?heap , ?ctx , ?var),

#else

ThrowPointsTo (?hctx , ?heap , ?method) <-

Throw (?ref , ?var),

VarPointsTo (?hctx , ?heap , _, ?var),

#endif

Note that in the first rule, the ThrowPointsTo predicate symbol takes four arguments whereas

in the second rule it takes only three arguments. Thus it is critical, whether ThrowPointsTo is

enabled or not, that any use of ThrowPointsTo is also guarded by EXCEPTIONS_CS to ensure that

the arities always match up. Another example of the same pattern is:

#ifdef EXCEPTIONS_CS

ThrowPointsTo (?hctx , ?heap , ?callerCtx , ?callerMethod) <-

CallGraphEdge (?callerCtx , ?invocation , ?calleeCtx , ?tomethod),

ThrowPointsTo (?hctx , ?heap , ?calleeCtx , ?tomethod),

#else

ThrowPointsTo (?hctx , ?heap , ?callerMethod) <-

CallGraphEdge(_, ?invocation , _, ?tomethod),

ThrowPointsTo (?hctx , ?heap , ?tomethod),

#endif

These examples illustrate that there is a need to selectively include or exclude certain rules where

even the arity of the predicate symbols might differ. The Flix type system ensures that for any

first-class constraint set constructed at run-time the arities of predicate symbols always match.

Doop uses macros to parameterize the choice of context- and heap sensitivity:

#define MergeMacro(callerCtx , invocation , hctx , value , calleeCtx) \

Context(calleeCtx), \

CtxFromRealCtx[RealContext2FromContext[callerCtx], invocation] = calleeCtx

#define MergeMacro(callerCtx , invocation , hctx , heap , calleeCtx) \

Context(calleeCtx), \

CtxFromRealCtx[RealHContext1FromHContext[hctx], \

DeclaringClass:Allocation[RealHContext2FromHContext[hctx]], \

heap] = calleeCtx

// .. and many more ...



24 Magnus Madsen and Ondřej Lhoták

Here the syntax A[x] = y can be understood as a function call that is true if A(x) evaluates to y.
The two macro definitions above are examples of different context sensitivity policies. Similarly,

there are different definitions of the MergeStartupMacro macro:

#define MergeStartupMacro(hctx , heap , calleeCtx) \

Context(calleeCtx), \

ContextFromRealContext[RealHContextFromHContext[hctx], heap] = calleeCtx

#define MergeStartupMacro(hctx , heap , calleeCtx) \

Context(calleeCtx), \

ContextFromRealContext[heap , heap] = calleeCtx

// .. and many more ...

and of the MergeThreadStartMacro macro:

#define MergeThreadStartMacro(hctx , heap , callerCtx , newCtx) \

Context(newCtx), \

ContextFromRealContext[RealHContextFromHContext[hctx], heap] = newCtx

#define MergeThreadStartMacro(hctx , heap , callerCtx , newCtx) \

Context(newCtx), \

ContextFromRealContext[heap] = newCtx

// .. and many more ...

In Flix, we can express such macros as arguments to higher-order functions that return constraint

sets parameterized by these functions, as seen in Example II. The commonMacros file contains 11
such macros and the repository has over 800 uses of #define.

The Doop Framework demonstrates that there is a need for parametricity of Datalog programs.

However, there are at least three problems with a meta-programming approach based on textual

generation: (i) we cannot be sure that all of the programs output by the C preprocessor system

are valid Datalog programs, (ii) we cannot change any option at runtime; we have to recompile

the entire program from scratch, and (iii) we cannot determine if the program is stratified without

actually constructing a specific program for a specific configuration. The λDat calculus (and its

implementation in Flix) overcomes these issues. We can use first-class Datalog constraints to model

the selective inclusion of rules. We can model macro functions, such as MergeMacro, using ordinary
functions. And finally, the type system of λDat ensures that any Datalog program constructed at

run-time is well-formed and stratified.

7 RELATEDWORK

Datalog Integration. Arntzenius and Krishnaswami [2016] present Datafun, a typed functional

programming language with constructs for fixpoint computations. The key feature of Datafun is

to track monotonicity with types. If a function f is deemed monotone by the type system, this

guarantees that the fixpoint of f exists and can be computed by the fix operator. Datafun is closer

to a functional language than λDat. In Datafun, the programmer writes functions and computes

with these, whereas in λDat the programmer writes constraints, composes them, and solves them.

The integration in Datafun is tight: functions such as map and filter are given monotonicity

types. It is also expressive: the cross product and transitive closure can be expressed as generic

functions. However, Datafun programs are not solvable by standard techniques, such as semi-naive

evaluation. Consequently, the extra power of Datafun comes at a cost. Most recently Arntzenius

and Krishnaswami [2019] have studied semi-naive evaluation in the context of Datafun.



Fixpoints for the Masses:

Programming with First-Class Datalog Constraints 25

Madsen et al. [2016] present Flix, a programming language that extends the Datalog semantics

from constraints on relations to constraint on lattices. Unlike Datalog relations, which are always

finite, lattices may have an infinite number of elements. Termination is still ensured, provided

that the lattices have finite height. To define the components of the lattices, e.g. the least upper

bound and greatest lower bound, Flix allows Datalog predicates to refer to functions defined in a

functional language. While this allows the logic part of Flix to refer to the functional part of Flix,

the opposite direction is not possible. In the current work, λDat allows integration in both ways:

Datalog constraints can refer to expressions and expressions can evaluate to constraints.

Template Programming. Programmatic generation of Datalog programs is commonplace, whether

based on simple string concatenation or with the use of a macro pre-processors. Recently, several

macro-based meta programming languages for Datalog have appeared.

Souffle is an efficient and scalable Datalog engine that comes with its own template programming

language [Scholz et al. 2016; Souffle Authors 2018]. In Souffle, a Datalog program can be organized as

a set of components which are collections of Datalog constraints. A component can be instantiated,

which copies all constraints and predicates within it, giving fresh names to all its predicate symbols.

The fresh predicate symbols are then accessible through a handle to the instance. Components

also support a simple form of inheritance that allows reuse of constraints and gives the ability to

override (i.e. remove) constraints from a super-component. In λDat, the combination of first-class

constraints and predicate symbols allows us to emulate components, if so desired.

Template programming is a powerful technique, but it has at least two downsides: (i) program-

ming with templates is difficult and error-prone, and (ii) template expansion can only depend on

information that is available at compile time.

Logic Programming. Mercury is a strongly typed functional and logic programming language [Hen-

derson et al. 1996; Somogyi et al. 1996, 1995]. In Mercury, a predicate has a mode that determines

which arguments must explicitly be passed to it and how many times the predicate can succeed,

i.e. whether it is deterministic or non-deterministic. This enables a mix of functional and logic

programming: A function requires all its parameters and returns a deterministic result, whereas a

Prolog-style goal requires only some of its arguments and may return a non-deterministic result.

In λDat, the integration between functions and predicates is less tight: We are free to call functions

inside Datalog constraints, but we cannot call a Datalog predicate as an expression. Instead, we

must put that predicate into a Datalog program and explicitly solve it. In comparison to Mercury,

λDat is closer to a meta-language for Datalog.

Constraint Logic Programming. Constraint Logic Programming (CLP) extends logic programming

with a decidable background theory, such as lists, trees, or linear arithmetic [Cohen 1990; Jaffar and

Lassez 1987; Jaffar and Maher 1994; Li and Mitchell 2003]. A CLP(X) program is a set of Horn clauses

with formulae over the background theory X. During evaluation, term unification is augmented

with a decision procedure for the underlying theory, e.g. an SMT solver or other specialized solver.

Datalog Extensions. Many Datalog extensions have been proposed. We detail some of them below.

Alvaro et al. [2010] present Dedalus, an extension of Datalog with time. In Dedalus, every fact is

equipped with a timestamp T and said to hold at that instant. Dedalus rules come in two types.

A deductive rule derives a new fact at timestamp T from facts already established at timestamp T .

An inductive rule, on the other hand, derives a new fact at timestamp T + 1 from facts already

established at timestamp T . An important use case for Dedalus is to describe distributed systems.

Alvaro et al. [2011] present the Bloom programming language, a distributed programming

language based on Datalog and built on the ideas of Dedalus. A Bloom program is a collection

of rules that operate on facts with timestamps. Bloom programs are re-evaluated whenever new
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messages arrive, i.e. over the network or due to some local event (such as a timeout). In later work,

Conway et al. [2012] extend Bloom with predicate symbols that are given a lattice interpretation,

similar to the first work on Flix [Madsen et al. 2016].

Avgustinov et al. [2016] present QL, a programming language that combines logic programming

with elements of object-oriented programming. QL supports classes and methods, but recast in

logical terms. For example, a class is simply a set of values described by a collection of logic formulae.

Sub-typing between classes is then logical implication between sets. While the QL language is rich

in features, it still compiles to plain Datalog and is solvable using standard Datalog techniques.

Bembenek and Chong [2018] present FormuLog, an extension of Datalog with logical formulae.

FormuLog permits terms to be constructed from boolean connectives and using functions from

some underlying theory. Using FormuLog, it becomes possible to express program analyses such as

symbolic execution and model checking. To solve FormuLog programs, an SMT solver is used to

reason about the specific logical formulae.

While all of these extensions increase the power of Datalog, the primary contribution of the

current work is an embedding of Datalog as first-class values within a functional programming

language. The extension of the expressive power of Datalog by allowing expressions as head terms

is a secondary contribution. In addition, we can imagine situations where one would want the

expressive power of Dedalus or FormuLog combined with first-class constraints.

Type Systems for Datalog. Zook et al. [2009] present a type system for LogicBlox, a Datalog-based

platform for enterprise planning. The type system is based on the notion of integrity constraints.

An integrity constraint is a special form of rule that if ever instantiated indicates an error. For

example, an integrity constraint might demand that every Child(x) is also a Person(x): if there
is a child that is not a person then there is a violation. Such integrity constraints can be viewed as

specifying a type system. It is straightforward to check such constraints at run-time, i.e. during the

fixpoint computation, and to raise an error, corresponding to a form of dynamic type checking.

The authors present a static type system that can eliminate many of these run-time checks.

Schäfer and de Moor [2010] propose a type system for statically checking integrity constraints

in the style of Zook et al., but for a richer language of type constraints, and with a type inference

algorithm that is sound and optimal.

The work of Zook et al. [2009] and Schäfer and de Moor [2010] is orthogonal to our work: We

embed Datalog programs inside a functional programming language and we want to ensure that

composition of such programs is well-typed w.r.t. the arity and type of the terms. We can imagine

an extension of our type system that also takes integrity constraints into account. We leave it as

interesting future work to explore this direction.

8 CONCLUSION

We have proposed the idea of first-class Datalog constraints to enable the construction, composition,

and evaluation of Datalog programs within a functional language.

We have proposed a modular type system, based on Hindley-Milner, in which reusable fragments

of Datalog programs can be typed independently while guaranteeing that their composition is type-

safe. The type system allows reuse and abstraction via polymorphism. We have proven safety of the

system. We have also proposed a sound technique for computing stratification of λDat programs

at compile-time. The technique ensures that every Datalog program constructed at run-time is

stratified. Our implementation is freely available as as part of the Flix programming language.
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A SUBSTITUTION

y[x 7→ v] = v if x = y (S-Var-1)

y[x 7→ v] = y if x , y (S-Var-2)

c[x 7→ v] = c (S-Cst)

(λx . e)[x 7→ v] = λx . [x 7→ v] (S-Abs)

(#{C1, · · · ,Cn })[x 7→ v] = #{C1[x 7→ v], · · · ,Cn [x 7→ v]}
(S-Constraint-Set)

(e1 e2)[x 7→ v] = e1[x 7→ v] e2[x 7→ v] (S-App)

(letx = e1 in e2)[x 7→ v] =
letx = e1[x 7→ v] in e2[x 7→ v]

(S-Let)

(e1 <+> e2)[x 7→ v] = e1[x 7→ v] <+> e2[x 7→ v]
(S-Compose)

(solve e)[x 7→ v] = solve e[x 7→ v] (S-Solve)

(subset e1 e2)[x 7→ v] = (subset e1[x 7→ v] e2[x 7→ v])
(S-Subset)

(projectp e)[x 7→ v] = (projectp e[x 7→ v])
(S-Project)

(S(e))[x 7→ v] = S(e[x 7→ v]) (S-Solver)

(H(A, e1, e2))[x 7→ v] =
(H(A[x 7→ v], e1[x 7→ v], e2[x 7→ v]))[x 7→ v]

(S-Eval-Head)

(∀(xi : τi ). (A0

e
⇐ B1, · · · ,Bn ))[x 7→ v] = ∀(xi : τi ).A0[x 7→ v]

e[x 7→v]
⇐ B1[x 7→ v], · · · ,Bn [x 7→ v]

(S-Constraint)

(p(th
1
, · · · , thn ))[x 7→ v] = p(th

1
[x 7→ v], · · · , thn [x 7→ v]) (S-Head-Atom)

(p(tb
1
, · · · , tbn ))[x 7→ v] = p(tb

1
[x 7→ v], · · · , tbn [x 7→ v]) (S-Body-Atom-1)

not (p(tb
1
, · · · , tbn ))[x 7→ v] = notp(tb

1
[x 7→ v], · · · , tbn [x 7→ v]) (S-Body-Atom-2)

Fig. 8. Substitution in λDat.

B PROOF OF TYPE SOUNDNESS

B.1 Proof of Progress

Theorem B.1 (Progress). Suppose e is a closed, well-typed expression (that is, ⊢ e : τ for some τ ),
then either e is a value or else there is some expression e ′ such that e → e ′.

Proof. By induction on the derivation of e : τ .

Case [T-Var]: Impossible since the expression e is closed.

Case [T-Cst]: Immediate since we know that the expression e is a value.

Case [T-Abs]:We know that e = λx . e1 which is a value.

Case [T-Constraint-Set]:We know that e = #{C1, · · · ,Cn} which is a value.

Case [T-App]: We know that e = e1 e2. By the induction hypothesis either e1 is a value or it can
take a step, and likewise for e2. If e1 can take a step, then by [E-Context] the whole expression e
can take a step, and likewise for e2. Otherwise both e1 and e2 must be values and then the canonical

forms lemma assures us that e1 must be of the form λx . e ′. Thus [E-App] applies, and we can take a

step.
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Case [T-Let]: We know that letx = e1 in e2. By the induction hypothesis either e1 is a value or
it can take a step. If e1 can take a step, then by [E-Context] the whole expression e can take a step.

Otherwise e1 must be a value. Thus [E-Let] applies, and we can take a step.

Case [T-Compose]: We know that e = e1 <+> e2. By the induction hypothesis either e1 is a
value or it can take a step, and likewise for e2. If e1 can take a step, then by [E-Context] the whole

expression e can take a step, and likewise for e2. Otherwise both e1 and e2 must be values and then

the canonical forms lemma assures us that e1 must be of the form #{C1

1
, · · · ,C1

n} and e2 must be of

the form #{C2

1
, · · · ,C2

m}. Thus [E-Compose] applies, and we can take a step.

Case [T-Solve]:We know that e = solve e1. By the induction hypothesis either e1 is a value or
it can take a step. If e1 can take a step, then by [E-Context] the whole expression e can take a step.

Otherwise e1 must be a value and then the canonical forms lemma assures us that it must be of the

form #{C1, · · · ,Cn}. Thus [E-Solve] applies, and we can take a step.

Case [T-Subset]: We know that e = subset e1 e2. By the induction hypothesis either e1 is a
value or it can take a step, and likewise for e2. If e1 can take a step, then by [E-Context] the

whole expression e can take a step, and likewise for e2. Otherwise both e1 and e2 must be values

and then the canonical forms lemma assures us that e1 must be of the form #{C1

1
, · · · ,C1

n} and e2
must be of the form #{C2

1
, · · · ,C2

m}. Thus either [E-Subset-T] or [E-Subset-F] applies since either

#{C1

1
, · · · ,C1

n} is a subset of #{C
2

1
, · · · ,C2

m} or it is not, and either way we can take a step.

Case [T-Project]: We know that e = projectp e1. By the induction hypothesis either e1 is a
value or it can take a step. If e1 can take a step, then by [E-Context] the whole expression e can
take a step. Otherwise e1 must be a value and then the canonical forms lemma assures us that it

must be of the form #{C1, · · · ,Cn}. Thus [E-Project] applies, and we can take a step.

Case [T-Select]:We know that e = S(e1). By the induction hypothesis either e1 is a value or it
can take a step. If e1 can take a step, then by [E-Context] the whole expression e can take a step.

Otherwise e1 must be a value and then the canonical forms lemma assures us that it must be of

the form #{C1, · · · ,Cn}. If the constraint set is empty then [S-Finish] applies, and we can take a

step. If the constraint set is non-empty then both [S-Rule] and [S-Finish] apply, and we can take a

non-deterministic step.

Case [T-Extend]: We know that e = H(A, e1, e2). By the induction hypothesis either e1 is a
value or it can take a step, and likewise for e2. If e1 can take a step, then by [E-Context] the

whole expression e can take a step, and likewise for e2. We know that A = p(th
1
, · · · , thn ). By the

induction hypothesis, for each i , either thi is a value or it can take a step. If thi can take a step then

by [E-Context] the whole expression e can take a step. Otherwise, we have that A = p(v1, · · · ,vn)
and e1 and e2 are values. The canonical forms lemma assures that e1 is either true or false and
that e2 is of the form #{C1, · · · ,Cn}. Thus [H-True] or [H-False] applies, and we can take a step.

□
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B.2 Proof of Preservation

Theorem B.2 (Preservation). If Γ ⊢ e : τ and e → e ′, then Γ ⊢ e ′ : τ ′ where τ = τ ′.

Proof. By induction on the derivation of Γ ⊢ e : τ . At each step, we assume that the property

holds for all sub-derivations. We proceed by case analysis on the final rule in the derivation.

Case [T-Var]: If the last rule in the derivation is [T-Var], we know that the expression must be

a variable, and it cannot take a step, hence the requirements of the theorem are trivially satisfied.

Case [T-Cst]: If the last rule in the derivation is [T-Cst], we know that the expression must be

a value, and it cannot take a step, hence the requirements of the theorem are trivially satisfied.

Case [T-Abs]: If the last rule in the derivation is [T-Abs], we know that the expression must be

a lambda, and it cannot take a step, hence the requirements of the theorem are trivially satisfied.

Case [T-Constraint-Set]: If the last rule in the derivation is [T-Constraint-Set], we know

that the expression must be a constraint set, and it cannot take a step, hence the requirements of

the theorem are trivially satisfied.

Case [T-App]: If the last rule in the derivation is [T-App], we know that the expression must

be of the form e1 e2 for some e1 and e2. We must also have sub-derivations with the conclusions

Γ ⊢ e1 : τ1 → τ and Γ ⊢ e2 : τ
′
1
, and we know that τ1 � τ ′

1
. We must prove that if e takes a step it

produces an expression e ′ of type τ . Now, looking at the evaluation contexts and evaluation rules

with e1 e2 on the left-hand side, we find there are three cases by which e → e ′:

Subcase [E-App-Ctx-1]: In e1 e2, we have that e1 → e ′
1
and Γ ⊢ e1 : τ1 → τ . Applying the

induction hypothesis yields: Γ ⊢ e ′
1
: τ1 → τ . Applying [T-App], we conclude e ′

1
e2 : τ .

Subcase [E-App-Ctx-2]: Similar.

Subcase [E-App]: If e → e ′ by [E-App] then we know that e1 = λx . eb , e2 = v , and e
′ = eb [x 7→

v]. We must show that eb [x 7→ v] : τ . By inversion on the typing of the lambda abstraction,

we have that Γ, x : τ1 ⊢ eb : τ . We also have that v : τ ′
1
, but τ1 � τ ′

1
, hence v : τ1. We must

now show that e ′ : τ , which holds by the substitution lemma.

Case [T-Let]: If the last rule in the derivation is [T-Let], we know that the expression must

be of the form letx = e1 in e2 for some e1 and e2. We must also have sub-derivations with the

conclusions: Γ ⊢ e1 : τ1 and Γ, x : gen(Γ, τ1) ⊢ e2 : τ2. We must prove that if e takes a step it produces
an expression e ′ of type τ2. Now, looking at the evaluation contexts and evaluation rules with

letx = e1 in e2 on the left-hand side, we find there are two cases by which e → e ′:

Subcase [E-Let-Ctx]: In letx = e1 in e2, we have that e1 → e ′
1
and Γ ⊢ e1 : τ1. Applying the

induction hypothesis yields Γ ⊢ e ′
1
: τ1. Applying [T-Let], we conclude letx = e ′

1
in e2 : τ2.

Subcase [E-Let]: If e → e ′ by [E-Let] then we know that e1 is a value v and that e ′ = e2[x 7→
v]. We must show that e2[x 7→ v] : τ2 which holds by the substitution lemma.

Case [T-Compose]: If the last rule in the derivation is [T-Compose], we know that the expression

must be of the form e1 <+> e2 for some e1 and e2. We must also have sub-derivations with the

conclusions Γ ⊢ e1 : r , Γ ⊢ e1 : r
′
, and r � r ′. We must prove that if e takes a step it produces an

expression of type r . Now, looking at the evaluation contexts and evaluation rules with e1 <+> e2
on the left-hand side, we find there are three cases by which e → e ′:

Subcase [E-Compose-Ctx-1]: In e1 <+> e2, we have that e1 → e ′
1
and Γ ⊢ e1 : r . Applying the

induction hypothesis yields: Γ ⊢ e ′
1
: r . Applying [T-Compose], we conclude e ′

1
<+> e2 : r .
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Subcase [E-Compose-Ctx-2]: Similar.

Subcase [E-Compose]: If e → e ′ by [E-Compose] then we know that e1 = #{C1

1
, · · · ,C1

n}, e2 =
#{C2

1
, · · · ,C2

m}, Γ ⊢ e1 : r , Γ ⊢ e2 : r
′
, and r � r ′.Wemust show that #{C1

1
, · · · ,C1

n,C
2

1
, · · · ,C2

m}

has type r . The only rule that applies to constraint sets is [T-Constraint-Set], from which

we know that ∀i .C1

i : r
1

i ∧ r
1

i � r and ∀i .C2

i : r
2

i ∧ r
2

i � r ′. By transitivity of �, ∀i, r 2i � r . By
applying [T-Constraint-Set] we get #{C1

1
, · · · ,C1

n,C
2

1
, · · · ,C2

m} : r , as required.

Case [T-Solve]: If the last rule in the derivation is [T-Subset], we know that the expression

must be of the form solve e1 for some e1. We must also have a sub-derivation with conclusion

Γ ⊢ e1 : r . We must prove that if e takes a step it produces an expression of type r . Now, looking at

the evaluation contexts and evaluation rules with solve e1 on the left-hand side, we find there are

two cases by which e → e ′:

Subcase [E-Solve-Ctx]: In solve e1, we have that e1 → e ′
1
and Γ ⊢ e1 : r . Applying the

induction hypothesis yields: Γ ⊢ e ′
1
: r . Applying [T-Solve], we conclude solve e ′

1
: r .

Subcase [E-Solve]: If e → e ′ by [E-Solve] then e ′ = S(#{C1, · · · ,Cn}) and we know that

#{C1, · · · ,Cn} : r . By [T-Select] we have: S(#{C1, · · · ,Cn}) : r .

Case [T-Subset]: If the last rule in the derivation is [T-Subset], we know that the expression

e must be of the form subset e1 e2 for some e1 and e2. We must also have sub-derivations with

conclusions: Γ ⊢ e1 : r , Γ ⊢ e2 : r ′, and r � r ′. We must prove that if e takes a step it produces

an expression of type Bool. Now, looking at the evaluation contexts and evaluation rules with

subset e1 e2 on the left-hand side, we find there are four cases by which e → e ′:

Subcase [E-Subset-Ctx-1]: In subset e1 e2, we have that e1 → e ′
1
and Γ ⊢ e1 : r . Applying the

induction hypothesis yields: Γ ⊢ e ′
1
: r . Applying [T-Subset], we conclude: subset e ′

1
e2 : Bool.

Subcase [E-Subset-Ctx-2]: Similar.

Subcase [E-Subset-T]: If e → e ′ by [E-Subset-T] then e ′ = true and by the canonical forms

lemma true must have type Bool.
Subcase [E-Subset-F]: Similar.

Case [T-Project]: If the last rule in the derivation is [T-Project], we know that the expression

e must be of the form projectp e1 for some e1. We must also have a sub-derivation with the

conclusion: Γ ⊢ e1 : {p = (τ1, · · · , τn) | r }. We must prove that if e takes a step to e ′ then
e ′ : {p = (τ1, · · · , τn) | r

′}. Now, looking at the evaluation contexts and evaluation rules with

projectp e1 on the left-hand side, we find there are two cases by which e → e ′:

Subcase [E-Project-Ctx]: In projectp e1, we have that e1 → e ′
1
and Γ ⊢ e1 : {p = (τ1, · · · , τn) |

r }. Applying the induction hypothesis yields: Γ ⊢ e ′
1
: {p = (τ1, · · · , τn) | r }. Applying

[T-Project], we conclude projectp e ′
1
: {p = (τ1, · · · , τn) | r }.

Subcase [E-Project]: If e → e ′ by [E-Project] then e = projectp #{C1, · · · ,Cn} and e
′
is a

constraint set containing those constraints #{C1, · · · ,Cn} that are facts (i.e. have no body)

and have p as their predicate. By inversion of the typing Γ ⊢ e1 : {p = (τ1, · · · , τn) | r } and
inversion of the [T-Constraint] and [T-Head-Atom] rules, each such constraint must be of

the form p(th
1
, . . . thn ) where ∀i .Γ ⊢ t

h
i : τi . Then by [T-Head-Atom] with r instantiated as r ′

and by [T-Constraint], each of these constraints has type {p = (τ1, · · · , τn) | r
′}. Finally, by

[T-Constraint-Set], the overall constraint set e ′ has this type as well, as required.

Case [T-Select]: If the last rule in the derivation is [T-Select], we know that the expression e
must be of the form S(e1). We must also have a sub-derivation with the conclusion Γ ⊢ e1 : r . We
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must prove that if e : r takes a step to e ′ then e ′ : r . Now, looking at the evaluation contexts and

evaluation rules with S(e1) on the left-hand side, we find there are three cases to consider:

Subcase [E-Select-Ctx]: In S(e1), we have that e1 → e ′
1
and Γ ⊢ e1 : r . Applying the induction

hypothesis yields: Γ ⊢ e ′
1
: r . Applying [T-Select], we conclude: Γ ⊢ S(e ′

1
) : r .

Subcase [S-Rule]: If e → e ′ by [S-Rule] then e1 = #{C1, · · · ,Cn}, Γ ⊢ e1 : r , and e ′ =

H(ν (A),ν (e), #{C1, · · · ,Cn})where there is someCi = ∀(x1 : τ1, · · · , xm : τm).A
e
⇐ B1, · · · ,Bn

and ν is a primitive valuation that respects the types τi . By inversion of [T-Constraint-Set]

Ci has type r
′
where r � r ′. Then by inversion of [T-Constraint] e must have type Bool

and A has type r ′ where A is the head atom of the constraint Ci .

We want to apply [T-Extend] to get the desired result. To do so, we must show three things:

(i) ν (A) has type r ′, (ii) ν (e) has type Bool, and (iii) #{C1, · · · ,Cn} has type r with r
′ � r .

Case (i) we know that A has type r , then by the substitution lemma ν (A) has type r .
Case (ii) we know that e has type Bool, then by the substitution lemma ν (e) has type Bool.
Case (iii) is immediate from the fact that #{C1, · · · ,Cn} has type r .
Subcase [S-Finish]: If e → e ′ by [S-Finish] then e1 = #{C1, · · · ,Cn}, Γ ⊢ e1 : r , and e ′ =
#{C1, · · · ,Cn}. The former two facts tells us that Γ ⊢ #{C1, · · · ,Cn} : r which gives us the

required result.

Case [T-Extend]: If the last rule in the derivation is [T-Extend], we know that the expression

e must be of the formH(A, e1, e2) of type r for some r , A, e1, and e2. We must have sub-derivations

with the conclusions: Γ ⊢c A : r , Γ ⊢ e1 : Bool, Γ ⊢ e2 : r
′
, and r � r ′. We must prove that if e takes a

step to e ′ then e ′ : r . Now, looking at the evaluation contexts and evaluation rules withH(A, e1, e2)
on the left-hand side, we find there are five cases to consider:

Subcase [E-Extend-Ctx-1]: InH(A, e1, e2), we have that e2 → e ′
2
and Γ ⊢ e2 : r

′
. Applying the

induction hypothesis yields: Γ ⊢ e ′
2
: r ′. Applying [T-Extend], we conclude: Γ ⊢ H(A, e1, e

′
2
) :

r .
Subcase [E-Extend-Ctx-2]: Similar.

Subcase [E-Extend-Ctx-3]: For some i , we have that:

H(p(t1, · · · , ti , · · · , tn), e1, e2) → H(p(t1, · · · , t
′
i , · · · , tn), e1, e2)

We know that Γ ⊢ ti : τi . Applying the induction hypothesis yields Γ ⊢ t ′i : τi . By the

hypotheses of e and by applying [T-Extend], we conclude Γ ⊢ H(A, e1, e
′
2
) : r .

Subcase [H-True]: If e → e ′ by [H-True] then we know that e2 = #{C1, · · · ,Cn} and e ′ =
S(#{A,C1, · · · ,Cn}). By inversion of Γ ⊢ e2 : r

′
, every Γ ⊢c Ci : ri � r ′. Moreover, Γ ⊢c A : r .

Since r � r ′ all of the ri ’s are congruent to r . By [T-Constraint-Set], #{A,C1, · · · ,Cn} has

type r , and by [T-Select] e ′ has type r .
Subcase [H-False]: If e → e ′ by [H-False] then we know that e ′ = S(e2). We also know that

e2 : r . Applying [T-Select], we conclude that e
′
: r .

□

B.3 Generalization

Lemma B.3 (Generalization). If Γ, x : σ ′ ⊢ e : τ and σ ⊑ σ ′, then Γ, x : σ ⊢ e : τ .

Proof. The proof is by induction on the derivation of Γ, x : σ ′ ⊢ e : τ . All cases except [T-Var]
and [T-Let] are resolved directly with the induction hypothesis. In the [T-Var] case, we know

that Γ, x : σ ⊢ x : τ ′ for some τ ′ such that σ ′ ⊑ τ ′. We need to show that Γ, x : σ ′ ⊢ x : τ ′. This
follows using the [T-Let] rule and the fact that σ ⊑ σ ′ ⊑ τ ′. In the [T-Let] case, we know that
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Γ, x : σ ′ ⊢ e1 : τ1 and Γ, x : σ ′, x ′ : gen(Γ, x : σ ′, τ1) ⊢ e2 : τ for some e1, e2, τ1. Since σ ⊑ σ ′,
it is also the case that gen(Γ, x : σ , τ1) ⊑ gen(Γ, x : σ ′, τ1). We apply the induction hypothesis

to infer Γ, x : σ ⊢ e1 : τ1. We then apply the induction hypothesis twice, on both x : σ ′ and
x ′ : gen(Γ, x : σ ′, τ1), to infer Γ, x : σ , x ′ : gen(Γ, x : σ , τ1) ⊢ e2 : τ . Then by [T-Let], we infer the

required fact Γ, x : σ ⊢ e : τ . □

B.4 Substitution

Theorem B.4 (Substitution). The typing judgments ⊢, ⊢c , and ⊢p satisfy the implications:

• If Γ, x0 : ∀α,∀ρ.τ0 ⊢ e : τ , and x0 < dom(Γ), and Γ ⊢ v0 : τ0, and (α ∪ ρ) ∩ ftv(Γ) = ∅, then
Γ ⊢ e[x0 7→ v0] : τ .
• If Γ, x0 : ∀α,∀ρ.τ0 ⊢c C : r , and x0 < dom(Γ), and Γ ⊢c v0 : τ0, and (α ∪ ρ) ∩ ftv(Γ) = ∅, then
Γ ⊢c C[x0 7→ v0] : r .
• If Γ, x0 : ∀α,∀ρ.τ0 ⊢p A : r , and x0 < dom(Γ), and Γ ⊢p v0 : τ0, and (α ∪ ρ) ∩ ftv(Γ) = ∅, then
Γ ⊢p A[x0 7→ v0] : r .

Proof. By mutual induction on the derivation of the premises:

• Γ, x0 : ∀α,∀ρ.τ0 ⊢ e : τ ,
• Γ, x0 : ∀α,∀ρ.τ0 ⊢c C : r
• Γ, x0 : ∀α,∀ρ.τ0 ⊢p A : r

We proceed by cases on the final typing rule used in the typing derivation.

Case [T-Cst]: Immediate from the definition of (S-Cst).

Case [T-Constraint-Set]: By the premises of the rule, we know that e = #{C1, · · · ,Cn}, and

τ = r , and:

∀i .(Γ, x0 : α, ρ .τ0 ⊢c Ci : ri ∧ ri � r ) (1)

Using the induction hypothesis on (1) yields:

∀i .(Γ ⊢c Ci [x0 7→ v0] : ri ∧ ri � r ) (2)

By the definition of substitution, the expression:

#{C1[x0 7→ v0], · · · ,Cn[x0 7→ v0]}

is equivalent to:

(#{C1, · · · ,Cn})[x0 7→ v0]

By (2) and [T-Constraint-Set] the type of this expression is r , as required.

Case [T-Var]: This case can be proved in the same way as in [Wright and Felleisen, 1994] (see

Lemma 4.4).

Case [T-Abs]: This case can be proved in the same way as in [Wright and Felleisen, 1994] (see

Lemma 4.4).

Case [T-App]: By the premises of the rule, we know that: e = e1 e2 and:

Γ, x0 : α, ρ.τ0 ⊢ e1 : τ
′→ τ (3)

Γ, x0 : α, ρ.τ0 ⊢ e2 : τ
′

(4)

Using the induction hypothesis on (3) and (4) yields:

Γ ⊢ e1[x0 7→ v0] : τ
′→ τ (5)

Γ ⊢ e2[x0 7→ v0] : τ
′

(6)
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By the definition of substitution, the expression:

(e1[x0 7→ v0]) (e2[x0 7→ v0])

is equivalent to:

(e1 e2)[x0 7→ v0]

By (5) and (6) and [T-App], the type of this expression is τ , as required.

Case [T-Let]: This case can be proved in the same way as in [Wright and Felleisen, 1994] (see

Lemma 4.4).

Case [T-Compose]: By the premises of the rule, we know that: e = e1 <+> e2, and r � r ′, and:

Γ, x0 : α, ρ .τ0 ⊢ e1 : r (7)

Γ, x0 : α, ρ .τ0 ⊢ e2 : r
′

(8)

Using the induction hypothesis on (7) and (8) yields:

Γ ⊢ e1[x0 7→ v0] : r (9)

Γ ⊢ e2[x0 7→ v0] : r
′

(10)

By the definition of substitution, the expression:

(e1[x0 7→ v0]) <+> (e2[x0 7→ v0])

is equivalent to:

(e1 <+> e2)[x0 7→ v0]

By (9) and (10) and [T-Compose], the type of this expression is r .

Case [T-Solve]: By the premises of the rule, we know that e = solve e1 and:

Γ, x0 : α, ρ.τ0 ⊢ e1 : r (11)

Using the induction hypothesis on (11) yields:

Γ ⊢ e1[x0 7→ v0] : r (12)

By the definition of substitution, the expression:

solve (e1[x0 7→ v0])

is equivalent to:

(solve (e1))[x0 7→ v0]

By (12) and [T-Solve], the type of this expression is r , as required.

Case [T-Subset]: By the premises of the rule, we know that: e = subset e1 e2, r � r ′, τ = Bool,
and:

Γ, x0 : α, ρ .τ0 ⊢ e1 : r (13)

Γ, x0 : α, ρ .τ0 ⊢ e2 : r
′

(14)

Using the induction hypothesis on (13) and (14) yields:

Γ ⊢ e1[x0 7→ v0] : r (15)

Γ ⊢ e2[x0 7→ v0] : r
′

(16)

By the definition of substitution, the expression:

subset (e1[x0 7→ v0]) (e2[x0 7→ v0])

is equivalent to:

(subset e1 e2)[x0 7→ v0]
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By (15) and (16) and [T-Subset], the type of this expression is Bool, as required.

Case [T-Project]: By the premises of the rule, we know that e = projectp e1 and:

τ = {p = (τ1, · · · , τn) | r
′}

and

Γ, x0 : α, ρ.τ0 ⊢ e1 : {p = (τ1, · · · , τn) | r } (17)

Using the induction hypothesis on (17) yields:

Γ ⊢ e1[x0 7→ v0] : {p = (τ1, · · · , τn) | r } (18)

By the definition of substitution, the expression:

projectp (e1[x0 7→ v0])

is equivalent to:

(projectp e1)[x0 7→ v0]

By (18) and [T-Project], the type of this expression is {p = (τ1, · · · , τn) | r
′}, as required.

Case [T-Select]: By the premises of the rule, we know that e = S(e1), and τ = r
′
and:

Γ, x0 : α, ρ.τ0 ⊢ e1 : r (19)

Using the induction hypothesis on (19) yields:

Γ ⊢ e1[x0 7→ v0] : r (20)

By the definition of substitution, the expression:

S(e1[x0 7→ v0])

is equivalent to:

(S(e1))[x0 7→ v0]

By (20) and [T-Select], the type of this expression is r , as required.

Case [T-Extend]: By the premises of the rule, we know that e = H(A, e1, e2) and:

Γ, x0 : α, ρ.τ0 ⊢c A : r (21)

Γ, x0 : α, ρ.τ0 ⊢ e1 : Bool (22)

Γ, x0 : α, ρ.τ0 ⊢ e2 : r
′

(23)

r � r ′ (24)

Using the induction hypothesis on (21), (22), and (23) yields:

Γ ⊢c A[x0 7→ v0] : r (25)

Γ ⊢ e1[x0 7→ v0] : Bool (26)

Γ ⊢ e2[x0 7→ v0] : r
′

(27)

By the definition of substitution, the expression:

H(A[x0 7→ v0], e1[x0 7→ v0], e2[x0 7→ v0])

is equivalent to:

(H(A, e1, e2))[x0 7→ v0]

By (24), (25), (26), (27), and [T-Extend], the type of this expression is r , as required.

Case [T-Constraint]: By the premises of the rule, we know that:

e = ∀(x1 : τ1, · · · , xm : τm).A0

eд
⇐ B1, · · · ,Bn
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and:

Γ, x0 : α, ρ.τ0, x1 : τ1, · · · , xm : τm ⊢p A0 : r (28)

∀i . Γ, x0 : α, ρ.τ0, x1 : τ1, · · · , xm : τm ⊢p Bi : ri (29)

Γ, x0 : α, ρ.τ0, x1 : τ1, · · · , xm : τm ⊢ eд : Bool (30)

∀i . r � ri (31)

By the convention that we can always rename variables, we may assume that ∀i > 0. x0 , xi .
Applying the permutation lemmas for ⊢p and ⊢, we may rearrange:

Γ, x1 : τ1, · · · , xm : τm, x0 : α, ρ .τ0 ⊢p A0 : r (32)

∀i . Γ, x1 : τ1, · · · , xm : τm, x0 : α, ρ .τ0 ⊢p Bi : ri (33)

Γ, x1 : τ1, · · · , xm : τm, x0 : α, ρ .τ0 ⊢ eд : Bool (34)

Applying the induction hypotheses for ⊢p and ⊢ on (32), (33), and (34), we obtain:

Γ, x1 : τ1, · · · , xm : τm ⊢p A0[x0 7→ v0] : r (35)

∀i . Γ, x1 : τ1, · · · , xm : τm ⊢p Bi [x0 7→ v0] : ri (36)

Γ, x1 : τ1, · · · , xm : τm ⊢ eд[x0 7→ v0] : Bool (37)

By the definition of substitution, the expression:

∀(x1 : τ1, · · · , xm : τm).A0[x0 7→ v0]
eд [x0 7→v0]

⇐ B1[x0 7→ v0], · · · ,Bn[x0 7→ v0]

is equivalent to:

(∀(x1 : τ1, · · · , xm : τm).A0

eд
⇐ B1, · · · ,Bn)[x0 7→ v0]

By (31), (35), (36), (37), and [T-Constraint], the type of this expression is r , as required.

Case [T-Head-Atom]: By the premises of the rule, we know that A = p(th
1
, · · · , thn ), and τ =

{p = (τ1, · · · , τn) | r }, and:

∀i . Γ, x0 : α, ρ .τ0 ⊢ t
h
i : τi (38)

Using the induction hypothesis on (38) yields:

∀i . Γ ⊢ thi [x0 7→ v0] : τi (39)

By the definition of substitution, the head atom:

p(th
1
[x0 7→ v0], · · · , t

h
n [x0 7→ v0])

is equivalent to:

(p(th
1
, · · · , thn ))[x0 7→ v0]

By (39) and [T-Head-Atom] the type of this head atom is {p = (τ1, · · · , τn) | r }, as required.

Case [T-Body-Atom-1]: Similar.

Case [T-Body-Atom-2]: Similar. □

Lemma B.5 (Permutation). We prove the following implications for the three typing judgments:

• If Γ ⊢ e : τ and ∆ is a permutation of Γ, then ∆ ⊢ e : τ .
• If Γ ⊢c C : r and ∆ is a permutation of Γ, then ∆ ⊢c C : r .
• If Γ ⊢p A : r and ∆ is a permutation of Γ, then ∆ ⊢p A : r .

Proof. Straightforward mutual induction on typing derivations. □
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Lemma B.6 (Weakening). We prove the following implications for the three typing judgments:

• If Γ ⊢ e : τ and x < dom(Γ), then Γ, x : τ ′ ⊢ e : τ .
• If Γ ⊢c C : r and x < dom(Γ), then Γ, x : τ ′ ⊢ C : r .
• If Γ ⊢p A : r and x < dom(Γ), then Γ, x : τ ′ ⊢ A : r .

Proof. Straightforward mutual induction on typing derivations. □

Lemma B.7 (Type Substitution). If Γ ⊢ e : τ and S is type substitution then S(Γ) ⊢ e : S(τ ).

Proof. Straightforward mutual induction on typing derivations. □

B.5 Canonical Forms

Lemma B.8 (Canonical-Forms). The lemma tells us the shape of values of certain types:

(i) If v is a value of type Bool, then v = true or v = false.
(ii) If v is a value of type τ1 → τ2, then v = λx : τ1 e .
(iii) If v is a value of type {} or {p = (τ1, · · · , τn) | r } then v is of the form #{C1, · · · ,Cn}.

Proof. There are 3 type rules that apply to values: [T-Cst], [T-Abs] and [T-Constraint-Set].

• For part (i), [T-Abs] and [T-Constraint-Set] cannot apply because the primitive type Bool
is not a function type nor a row type. Thus, [T-Cst] requires the value to be a boolean.

• For part (ii), [T-Cst] and [T-Constraint-Set] cannot apply because an arrow type is not a

primitive type nor a row type. Thus, [T-Abs] requires the value to be lambda abstraction.

• For part (iii), [T-Cst] and [T-Abs] cannot apply because a row type is not a primitive type

nor a function type. Thus, [T-Constraint-Set] requires the value to be a constraint set.

□

B.6 � is an Equivalence Relation

Theorem B.9 (� is an Eqivalence Relation). We must show that the relation � is reflexive

(τ � τ ), symmetric τ1 � τ2 ⇔ τ2 � τ1, and transitive τ1 � τ2 ∧ τ2 � τ3 ⇒ τ1 � τ3.

Lemma B.10. The relation � is reflexive.

Proof. Immediate from [Eq-Refl]. □

Lemma B.11. The relation � is symmetric.

Proof. By induction on the derivation rules.

Case [Eq-Refl]: Immediate.

Case [Eq-Arrow]: We know that τ1 � τ ′
1
and τ2 � τ ′

2
. For symmetry, we must show that

τ ′
1
→ τ ′

2
� τ1 → τ2. By the induction hypothesis we know that τ ′

1
� τ1 and τ ′

2
� τ2. Applying

[Eq-Arrow] yields the desired result.

Case [Eq-Tuple]:We know that ∀i . τi � τ ′i . For symmetry, we must show that (τ ′
1
, · · · , τ ′n) �

(τ1, · · · , τn). By the induction hypothesis we know that ∀i . τ ′i � τi . Applying [Eq-Tuple] yields the
desired result.

Case [Eq-Trans]: We know that τ1 � τ2 and τ2 � τ3. For symmetry, we must show that τ3 � τ1.
By the induction hypothesis we know that τ2 � τ1 and τ3 � τ2. Applying [Eq-Trans] yields the

desired result.
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Case [Eq-Head]: We know that τ � τ ′ and r � s . For symmetry, we must show that Lp : τ ′ |
sM � Lp : τ | rM. By the induction hypothesis we know τ ′ � τ and s � r . Applying [Eq-Head] yields
the desired result.

Case [Eq-Swap]: Immediate. □

Lemma B.12. The relation � is transitive.

Proof. Immediate from [Eq-Trans]. □
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