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Abstract

Symbolic interactionist principles of sociology are based on the idea that human action is guided by
culturally shared symbolic representations of identities, behaviours, situations and emotions. Shared
linguistic, paralinguistic, or kinesic elements allow humans to coordinate action by enacting identities

in social situations. Structures of identity-based interactions can lead to the enactment of social
orders that solve social dilemmas (e.g., by promoting cooperation). Our goal is to build an arti�cial
agent that mimics the identity-based interactions of humans, and to compare networks of such agents
to human networks. In this paper, we take a �rst step in this direction, and describe a study in
which humans played a repeated prisoner's dilemma game against other humans, or against one of
three arti�cial agents (bots). One of the bots has an explicit representation of identity (for self and
other), and attempts to optimise with respect to this representation. We compare the human play
against bots to human play against humans, and show how the identity-based bot exhibits the most
human-like behaviour.

1 Introduction

Recent advances in computational social science (CSS) have enabled better understanding of the net-
work structures that constrain �ows of information and patterns of interaction in social systems. Most
approaches are driven by empirical measures and algorithmic analyses of network structures, based in
part on the new abundance of digital social media data. However, besides a general observation of
homophilic tendencies in social networks, we know little about the micro-level mechanisms of social in-
teraction that give rise to the shape of networks. It has recently been proposed that a new type of agent
called BayesAct [17], which models the emotional control of social interaction by humans, can explain the
emergence of stable role relations and patterns of interaction [26]. Here, we are taking this work further
by empirically studying a particular class of interactions, namely social dilemma games, a fundamental
paradigm in the social sciences aimed at understanding the dynamics of human cooperation vs. compe-
tition. Preliminary results are encouraging in terms of supporting the validity of the BayesAct agent as
a mechanistic model of human networked interactions.
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BayesAct [3, 16, 17, 26] is a partially observable Markov decision process (POMDP) model of a�ective
interactions between a human and an arti�cial agent. BayesAct arises from the symbolic interactionist
tradition in sociology, and more precisely from �A�ect Control Theory� (ACT) [12]. BayesAct generalises
this theory by modeling a�ective states as probability distributions, and allowing decision-theoretic rea-
soning about a�ect. BayesAct proposes that humans learn and maintain a set of shared cultural a�ective
sentiments about people, objects, behaviours, and about the dynamics of interpersonal events. Humans
use a simple a�ective mapping to appraise individuals, situations, and events as sentiments in a three
dimensional vector space of evaluation (good vs. bad), potency (strong vs. weak) and activity (active
vs. inactive). These mappings can be measured, and the culturally shared consistency has repeatedly
been demonstrated to be extremely robust in large cross-cultural studies [13, 23]. Many believe this
consistency �gestalt� is a keystone of human intelligence. Humans use it to make predictions about what
others will do, and to guide their own behaviour. Importantly, this need to align implicitly de�nes an
a�ective heuristic (a prescription) for making decisions quickly in interactions. The shared sentiments,
and the resulting a�ective ecosystem of vector mappings, encodes a set of social prescriptions that, if
followed by all members of a group, results in an equilibrium or social order [10] which is optimal for the
group as a whole, rather than for individual members. Humans living at the equilibrium �feel� good and
want to stay there. The evolutionary consequences of this individual need are bene�cial for the species.
However, agents with su�cient resources can plan beyond the prescription, allowing them to manipulate
other agents to achieve individual pro�t in collaborative games.

For example, in the repeated prisoner's dilemma, cooperation has a di�erent emotional signature than
defection: it is usually viewed as nicer and more powerful. Rationality predicts an agent will try to
optimize over his expected total payout, perhaps modifying this payout by some additional intrinsic
reward for altruism. The BayesAct view is quite di�erent: it says that an agent will take the most
aligned action given her estimates of her own and her partner's a�ective identity. If she believes herself
to be a friend, but believes her opponent to be a scrooge or a traitor, she will be more likely to defect,
but may collaborate in an attempt to reform or befriend her opponent. On the other hand, if an agent
believes himself to be a scrooge, he will defect by default, but may cooperate in order to manipulate his
opponent.

As elucidated by Squazzoni [28], models of social networks must take into account the heterogeneity of
individuals, behaviours, and dynamics in order to better account for the available evidence. Similarly, in
this paper we argue that the principles encoded in a�ect control theory and BayesAct are ideally suited
to capture these complex heterogeneities in individuals acting in groups. We present preliminary results
from an experiment in which participants played a repeated prisoner's dilemma (PD) game against each
other and against a set of computer programs, one of them BayesAct.

2 Background

2.1 A�ect Control Theory

A�ect Control Theory (ACT) arises from work on the psychology and sociology of human social interac-
tion [12]. ACT proposes that social perceptions, behaviours, and emotions are guided by a psychological
need to minimize the di�erences between culturally shared fundamental a�ective sentiments about social
situations and the transient impressions resulting from the interactions between elements within those
situations. Fundamental sentiments, f , are representations of social objects, such as interactants' identi-
ties and behaviours, as vectors in a 3D a�ective space, hypothesised to be a universal organising principle
of human socio-emotional experience [23]. The basis vectors of a�ective space are called Evaluation/-
valence, Potency/control, and Activity/arousal (EPA). EPA pro�les of concepts can be measured with
the semantic di�erential, a survey technique where respondents rate a�ective meanings of concepts on
numerical scales with opposing adjectives at each end (e.g., good, nice vs. bad, awful for E, weak, little
vs. strong, big for P, and calm, passive vs. exciting, active for A). A�ect control theorists have compiled
lexicons of a few thousand words along with average EPA ratings obtained from survey participants who
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are knowledgeable about their culture [13]. For example, most English speakers agree that professors
are about as nice as students (E), more powerful (P) and less active (A). The corresponding EPAs are
[1.7, 1.8, 0.5] for professor and [1.8, 0.7, 1.2] for student1. In Japan, professor has the same P (1.8) but
students are less powerful ( 0.21).

The three dimensions were found by Osgood to be extremely robust across time and cultures. More
recently these three dimensions are also thought to be related directly to intrinsic reward [8]. That
is, it seems that reward is assessed by humans along the same three dimensions: Evaluation roughly
corresponds with expected value, Potency with risk (e.g. powerful things are more risky to deal with,
because they do what they want and ignore you), and Activity corresponds roughly with uncertainty,
increased risk, and decreased values (e.g. faster and more excited things are more risky and less likely
to result in reward) [8]. Similarly, Scholl argues that the three dimensions are in correspondence with
the major factors governing choice in social dilemmas [25]. Evaluation is a measure of a�liation or
correspondence between outcomes: agents with similar goals will rate each other more positively. Potency
is a measure of dependence: agents who can reach their goals independently of other agents are more
powerful. Activity is a measure of the magnitude of dependence: agents with bigger payo�s will tend to
be more active.

Social events can cause transient impressions, τ (also three dimensional in EPA space) of identities and
behaviours that may deviate from their corresponding fundamental sentiments, f . ACT models this
formation of impressions from events with a grammar of the form actor-behaviour-object. Consider for
example a professor (actor) who yells (behaviour) at a student (object). Most would agree that this
professor appears considerably less nice (E), a bit less potent (P), and certainly more active (A) than the
cultural average of a professor. Such transient shifts in a�ective meaning caused by speci�c events are
described with models of the form τ ′ = MG (f ′, τ ), where M is a matrix of statistically estimated pre-
diction coe�cients from empirical impression-formation studies and G is a vector of polynomial features
in f ′ and τ . In ACT, the weighted sum of squared Euclidean distances between fundamental sentiments
and transient impressions is called de�ection, and is hypothesized to correspond to an aversive state
of mind that humans seek to avoid. This a�ect control principle allows ACT to compute prescriptive
actions for humans: those that minimize the de�ection. Emotions in ACT are computed as a function
of the di�erence between fundamentals and transients (ε = E × (τ −Rf − d), where E, R, and d are
parameters learned from survey data), and are thought to be communicative signals of vector de�ection
that help maintain alignment between cooperative agents [12]. ACT has been shown to be highly accu-
rate in explaining verbal behaviours of mock leaders in a computer-simulated business [27], and group
dynamics [14], among others [21].

2.2 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) [4] is a stochastic control model that consists
of a �nite set S of states; a �nite set A of actions; a stochastic transition model Pr : S × A → ∆(S),
with Pr(s′|s, a) denoting the probability of moving from state s to s′ when action a is taken, and ∆(S)
is a distribution over S; a �nite observation set Ωs; a stochastic observation model, Pr(ωs|s), denoting
the probability of making observation ωs ∈ Ωs while the system is in state s; and a reward assigning
R(a, s′) to a transition to s′ induced by action a. A policy maps belief states (i.e., distributions over
S) into actions, such that the expected discounted sum of rewards is (approximately) maximised. We
use factored POMDPs in which the state is represented by the cross-product of a set of variables or
features. POMDPs have been used as models for many human-interactive domains, including assistive
technologies [15].

1 All EPA labels and values in the paper are taken from the Indiana 2002-2004 ACT lexicon [13]. Values range by
historical convention from −4.3 to +4.3.
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2.3 Bayesian A�ect Control Theory

Recently, ACT was generalised and formulated as a POMDP for human-interactive arti�cially intelligent
systems [17]. This new model, called BayesAct, generalises the original theory in three ways. First,
sentiments and impressions are viewed as probability distributions over latent variables (e.g., f and τ )
rather than points in the EPA space, allowing for multimodal, uncertain and dynamic a�ective states
to be modeled and learned. Second, a�ective interactions are augmented with propositional states and
actions (e.g. the usual state and action space considered in AI applications). Third, an explicit reward
function allows for goals that go beyond simple de�ection minimization.

A BayesAct POMDP models an interaction between two agents (human or machine) denoted agent and
client. The state, s, is the product of six 3-dimensional continuous random variables corresponding to
fundamental and transient sentiments about the agent's identity (Fa,Ta), the current (agent or client)
behaviour (Fb,Tb) and the client's identity (Fc,Tc). We use F = {Fa,Fb,Fc} and T = {Ta,Tb,Tc}.
The state also contains an application-speci�c set of random variables X that are interpreted as propo-
sitional (i.e. not a�ective) elements of the domain (e.g. whose turn it is, game states - see Section 3),
and we write s = {f , τ ,x}. Here the turn is deterministic (agent and client take turns), although this
is not necessary in BayesAct. The BayesAct reward function is application-speci�c over x. The state is
not observable, but observations Ωx and Ωf are obtained for X and for the a�ective behaviour Fb, and
modeled with probabilistic observation functions Pr(ωx|x) and Pr(ωf |fb), respectively. Actions in the
BayesAct POMDP are factored in two parts: ba and a, denoting the a�ective and propositional compo-
nents, respectively. For example, if a tutor gives a hard exercise to do, the manner in which it is presented,
and the di�culty of the exercise, combine to form an a�ective impression ba that is communicated. The
actual exercise (content, di�culty level, etc) is the propositional part, a. The state dynamics factors
as Pr(s′|s,ba,a)= Pr(τ ′|τ ,f ′,x)Pr(f ′|f ,τ ,x,ba)Pr(x

′|x,f ′,τ ′,a), and the fundamental behaviour, Fb, denotes either
observed client or taken agent a�ective action, depending on whose turn it is (see below). That is, when
the agent acts, there is a deterministic mapping from the a�ective component of his action (ba) to the
agent's behaviour Fb. When client acts, agent observes Ωf (the a�ective action of the other agent). The
third term in the factorization of the state dynamics is the Social Coordination Bias (SCB). The SCB
gives an estimate of how the state will grow based on the previous state and the current sentiments.

The transient impressions, T, evolve according to the impression-formation operator in ACT (MG ), so
that Pr(τ ′|...) is deterministic. Fundamental sentiments are expected to stay roughly constant over time,
but are subject to random drift (with noise Σf ) and are expected to be close to the transient impressions
because of the a�ect control principle. Thus, the dynamics of F is2:

Pr(f ′|f , τ ) ∝ e−ψ(f
′,τ )−ξ(f ′,f) (1)

where ψ ≡ (f ′−MG (f ′, τ ))TΣ−1(f ′−MG (f ′, τ )) combines the a�ect control principle with the impression
formation equations, assuming Gaussian noise with covariance Σ. The inertia of fundamental sentiments
is ξ ≡ (f ′−f)TΣ−1f (f ′−f), where Σf is diagonal with elements βa, βb, βc. The state dynamics are non-linear
due to the features in G . This means that the belief state will be non-Gaussian in general, and BayesAct
uses a bootstrap �lter to compute belief updates.

The distribution in (1) gives the prescribed (if agent turn), or expected (if client turn), action as the
component f ′b of f ′. Thus, by integrating over f ′a and f ′c and the previous state, we obtain a probability
distribution, π†, over f ′b that acts as a normative action bias (NAB): it tells the agent what to expect
from other agents, and what action is expected from it in belief state b(s):

π†(f ′b) =

∫
f ′a,f
′
c

∫
s

Pr(f ′|f , τ ,x)b(s) (2)

BayesAct agents in the experiment choose actions using a Monte-Carlo tree search (MCTS) algorithm [3].
The important thing here is that the action space is explored using the NAB as in Equation 2. The �rst

2We leave out dependence on x for clarity, and on ba since this is replicated in f ′b.
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Table 1: Optimal (de�ection minimising) behaviours for two BayesAct agents with �xed identities.

distance from
agent client optimal behaviour closest labels collaborate abandon
friend friend 1.98, 1.09, 0.96 treat/toast 0.4 23.9
friend scrooge 0.46, 1.14, 0.27 reform/lend money to 1.7 10.5
scrooge friend 0.26, 0.81, 0.77 curry favor/look away from 8.5 4.2
scrooge scrooge 0.91, 0.80, 0.01 borrow money/chastise 9.6 2.7

tree expansion in MCTS is the expected behaviour (arg maxf ′
b
π†(f ′b)), and subsequent tree expansions

are randomly sampled from π†. An 'action resolution' (δa) is speci�ed as the maximum distance from
an existing branch (action) beyond which a new action is added to the tree. Similarly, an 'observation
resolution' (δo) is the same, but for observations. We use δa = 0.1, δo = 0.1. The MCTS is anytime, and
we use a timeout of 5 seconds. Adding time would allow for more action-space exploration.

3 Experiments and Results

3.1 Repeated Prisoner's Dilemma and BayesAct

The prisoner's dilemma is a classic two-person game in which each person can either defect by taking
$1 from a (common) pile, or cooperate by giving $2 from the same pile to the other person. There is
one Nash equilibrium in which both players defect, but when humans play the game they often are able
to achieve cooperation. A rational agent will optimise over his expected long-term payo�s, possibly by
averaging over his expectations of his opponent's type (or strategy).

A BayesAct agent computes what a�ective action (an EPA vector) is prescribed in the situation (given his
estimates of his and the other's identities, and of the a�ective dynamics), and then seeks the propositional
action (∈ {cooperate, defect}) that, according to a stored cultural de�nition, is most consistent with the
prescribed a�ective action. This propositional action forms part of Ω′x when it is the other player's
turn, and so the distance from the propositional action choices to the prescribed a�ective action is the
social coordination bias. As the game is repeated, the BayesAct agent updates his estimates of identity
(for self and other), and adjusts his play accordingly. For example, a player who defects will be seen
as quite negative, and appropriate a�ective responses will be to defect. However, the actual mapping
is more complex, as the BayesAct agent maintains multiple identity hypotheses about his opponent,
probabilistically re-weighted as the game progresses.

The normative action bias (NAB) for BayesAct agents is the usual de�ection minimizing a�ective fb
given distributions over identities of agent and client (Equation 2). Thus, if agent thought of himself
as a friend (EPA:{2.75, 1.88, 1.38}) and knew the other agent to be a friend, the de�ection minimizing
action would likely be something good (high E). Indeed, a simulation shows that one would expect a
behaviour with EPA={1.98, 1.09, 0.96}, with closest labels such as treat or toast1. Intuitively, cooperate
seems like a more aligned propositional action than defect. This intuition is con�rmed by the distances
from the predicted (a�ectively aligned) behaviour to collaborate with (EPA:{1.44, 1.11, 0.61}) and abandon
(EPA:{ 2.28, 0.48, 0.84}) of 0.4 and 23.9, respectively3. Table 1 shows all combinations if each agent
could also be a scrooge (EPA:{ 2.15, 0.21, 0.54}). We see that a friend would still collaborate with a
scrooge (in an attempt to reform the scrooge), a scrooge would abandon a friend (look away from in
shame), and two scrooges would defect.

The agent will predict the client's behavior using the same principle: compute the de�ection minimising
a�ective action, then deduce the propositional action based on that. Thus, a friend would predict that a
scrooge would defect. If a BayesAct agent has su�cient resources, he could search for an a�ective action

3Here, we choose collaborate with and abandon as representative of the a�ective meaning of the actions in the game [3]
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near to his optimal one, but that would still allow him to defect. Importantly, he is not trading o� costs in
the game with costs of disobeying the social prescriptions: his resource bounds and action search strategy
are preventing him from �nding the more optimal (individual) strategy, implicitly favoring those actions
that bene�t the group and solve the social dilemma.

We use propositional X = {Turn,Ag_play, Cl_play} denoting whose turn it is and agent and client
state of play (∈ {not_played, cooperate, defect}). The agents' reward is only over the game (e.g. 2, 1, or
0), and we use a two time-step game in which both agent and client choose their actions at the �rst time
step, and then communicate this to each other on the second step.

3.2 Description of Experiment

In order to compare the predictions of BayesAct to human play, we recruited 70 students (55 male and
15 female) from an undergraduate class on arti�cial intelligence at a large Canadian university. The
participants had to sign up online �rst, and were given an automatically generated username. They read
an information and consent form and chose to either withhold or consent to the use of their data. The
participants were divided into four groups of size 12-20 by last name, with each group playing together for
40 minutes in a computer lab environment. Groups of this size were necessary to minimize the time taken
in �nding new opponents. In total, 360 games were played, where the length of each game was randomly
chosen between 12 − 18 rounds (plays of cooperation or defection). For any given game, a participant
played against either (1) another randomly chosen participant; (2) an automated tit-for-tat player; (3) a
BayesAct agent as described above; or (4) a �xed strategy of cooperate three times followed by always
defect, hereafter referred to as jerkbot. Participants played through all opponent types on a rotation,
which was randomized individually for each participant at the start of play. On sign-up and after each
game (of between 12− 18 rounds), participants were asked the following by providing them with a slider
for each dimension (Evaluation, Potency and Activity or EPA), known as a semantic di�erential [13]:

• how they felt about the plays in the game (take 1 or give 2), out of context. This is a measure of the
social coordination bias (SCB). BayesAct agents then interpret actions in the game by comparing the
actions to these two vectors.

• how they felt about themselves (their self identity). This gives BayesAct its self-identity, fa (as we
want it to replicate a participant). We use the raw data from all student responses across all questions
as fa for BayesAct.

• how they felt about their opponent in the game they just played. Before the �rst game we asked they
how they felt about a generalised opponent in this game, giving the BayesAct client identity fc.

For more detail on the information on the prisoner's dilemma application and its interface, please refer
to the Appendix, section 6.

The BayesAct agent for the �rst session was initialised as described above using the initial responses of
the students during the sign-up phase (48 responses). The BayesAct agent for the second session was
initialised as described above using all the responses during both sign-up and the �rst session4.

A total of 89 samples were used for identities (resampled to get N=2000 samples used in the BayesAct
particle �lter) and an average of 89 samples used for the SCB. From this sample, we measured for Give 2
an EPA of {1.4, 0.10, 0.18}, and for Take 1, {−0.65, 0.85, 0.70}. Take 1 is seen as more negative and more
powerful and active. Figure 1 shows the self and other identities as rated by the participants during the
signup phase. The self is seen as more positive than the opponent or �other� (means 1/0.25 for self/other),
but about the same power (0.56/0.64) and activity (0.41/0.33).

Table 2 shows an example game played by a human against the BayesAct agent used in the second phase of
the study (so the identities and SCB were learned from the survey data during the initial and �rst phases).

4In both cases, the BayesAct agent played with a reward matrix corresponding to actions of Give 10 and Take 1.
However, it is unlikely that this resulted in a signi�cant deviation in play, as the BayesAct agent's planning time was
limited to 1 second, a time short enough to make its decisions nearly independent of the reward matrix.
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Figure 1: Out-of-context ratings of self (blue) and other (red).

Table 2: Example run of human playing BayesAct agent showing plays, identities and emotions as
inferred by the BayesAct agent. EPA = mean Evaluation, Potency, Activity for the given quantity.

play BayesAct id human id BayesAct emotion human emotion
BayesAct human EPA label EPA label EPA label EPA label
take 1 give 2 1.4, 0.8, 0.8 spokeswoman 0.3, 0.3, 0.3 questioner −0.3, −0.5, 0.2 exasperated 0.7, −0.2, −0.2 feminine
give 2 give 2 1.3, 1.2, 0.8 right-hand_man 0.5, 0.2, 0.2 stepbrother 0.9, 0.5, −0.1 reverent 1.2, −0.0, 0.0 sentimental
give 2 give 2 1.3, 1.2, 0.9 right-hand_man 0.5, 0.1, 0.0 stepdaughter 0.6, 0.5, −0.4 nostalgic 1.2, −0.1, 0.2 feminine
give 2 give 2 1.5, 1.3, 1.0 customer 0.4, 0.1, 0.1 convalescent −0.6, −0.8, −0.8 lovesick 0.9, −0.3, 0.1 feminine
take 1 give 2 1.4, 1.4, 1.1 customer 0.2, 0.1, 0.1 convalescent −1.0, −1.1, −0.9 embarrassed 0.7, −0.4, 0.1 feminine
give 2 take 1 1.3, 1.2, 1.0 right-hand_man 0.1, 0.1, 0.1 stepparent −0.7, −1.1, −0.9 submissive 0.1, 0.1, 0.6 defensive
give 2 take 1 1.0, 1.0, 0.9 purchaser 0.1, 0.0, 0.1 stepparent −0.6, −0.9, −0.6 disapproving −0.2, 0.2, 0.6 defensive
give 2 give 2 1.0, 1.1, 0.9 purchaser 0.1, 0.0, 0.1 stepparent −0.4, −0.5, −0.9 aloof 0.6, −0.1, 0.2 feminine
take 1 give 2 1.1, 1.3, 1.1 right-hand_man 0.1, 0.0, 0.1 stepparent −0.4, −0.3, −0.8 placid 0.7, −0.3, 0.1 feminine
give 2 take 1 0.9, 1.2, 0.9 stud 0.0, 0.0, 0.1 stepparent −0.1, −1.3, −1.2 melancholy 0.3, 0.4, 0.6 defensive
take 1 give 2 0.8, 1.3, 1.0 stud 0.1, 0.0, 0.1 stepparent −0.2, −0.6, −0.7 aloof 0.7, −0.1, 0.2 feminine
give 2 take 1 0.7, 1.0, 0.7 matriarch −0.0, 0.0, 0.1 stepmother −0.5, −1.0, −0.4 disapproving −0.0, 0.1, 0.5 defensive
take 1 give 2 0.8, 1.2, 0.9 boyfriend 0.0, 0.0, 0.1 stepparent −0.4, −0.5, −0.4 contrite 0.6, −0.2, 0.1 feminine
take 1 give 2 0.8, 1.2, 0.9 boyfriend 0.1, 0.0, 0.1 stepparent −0.9, 0.0, 0.1 envious 0.1, −0.7, 0.0 contrite
give 2 take 1 0.9, 1.2, 1.0 stud 0.0, 0.0, 0.1 stepparent −0.9, −1.5, −0.9 submissive −0.2, 0.1, 0.5 defensive
take 1 take 1 0.8, 1.0, 0.7 consultant 0.0, 0.0, 0.1 stepparent −0.9, −1.0, −0.5 disapproving −0.3, 0.1, 0.6 sarcastic
take 1 take 1 0.7, 0.7, 0.5 steady −0.0, 0.0, 0.2 stepmother −0.7, −0.7, −0.2 dependent −0.3, 0.2, 0.6 sarcastic
take 1 give 2 0.8, 0.8, 0.6 steady −0.0, 0.0, 0.1 stepmother −0.4, −0.1, −0.3 contemptuous 0.3, −0.2, 0.2 feminine
give 2 give 2 0.9, 0.8, 0.6 head_nurse −0.0, 0.0, 0.1 stepparent −0.5, −0.7, −0.3 dependent 0.7, −0.2, 0.0 feminine
give 2 give 2 1.1, 0.9, 0.6 head_nurse 0.0, 0.0, 0.1 stepparent −0.3, −0.5, −0.2 contrite 0.9, −0.3, 0.0 feminine
give 2 give 2 1.2, 0.9, 0.7 businesswoman 0.0, 0.0, 0.1 stepparent −0.7, −0.9, −0.4 disapproving 0.8, −0.3, 0.1 feminine
give 2 give 2 1.4, 1.0, 0.8 workmate 0.0, 0.0, 0.1 stepparent −0.4, −0.3, −0.4 placid 1.0, −0.2, 0.1 feminine
take 1 give 2 1.6, 1.2, 1.0 Air_Force_reservist 0.1, 0.1, 0.1 stepparent −1.4, 0.2, −0.0 scornful −0.0, −0.8, 0.1 exasperated
take 1 take 1 1.4, 1.1, 0.9 right-hand_man 0.1, 0.1, 0.1 stepparent −1.6, −0.2, −0.1 displeased −0.3, −0.3, 0.5 raunchy
give 2 take 1 1.4, 1.0, 0.8 businesswoman 0.0, 0.0, 0.1 stepparent −1.3, −0.9, −0.5 �ustered −0.3, 0.1, 0.6 sarcastic
take 1 give 2 1.4, 1.1, 0.9 right-hand_man 0.1, 0.1, 0.1 stepparent −1.1, 0.3, 0.0 vengeful −0.1, −0.6, 0.2 exasperated
take 1 take 1 1.2, 1.0, 0.8 businesswoman 0.0, 0.0, 0.1 stepparent −1.2, 0.0, 0.2 scornful −0.3, −0.1, 0.5 pompous
take 1 take 1 1.1, 0.8, 0.5 head_nurse 0.0, 0.0, 0.1 stepmother −1.0, −0.6, −0.1 cynical −0.3, 0.1, 0.7 sarcastic
take 1 take 1 0.9, 0.8, 0.5 head_nurse 0.0, 0.0, 0.1 stepmother −0.9, −0.7, −0.2 �nicky −0.3, 0.2, 0.7 sarcastic
take 1 0.9, 0.8, 0.5 head_nurse −0.0, 0.0, 0.1 stepmother −0.8, −0.5, −0.2 shaken −0.3, −0.2, 0.3 exasperated

In this example, the BayesAct agent starts with a defection, while the human starts by cooperating. The
BayesAct agent and human both then cooperate for three more games, after which the BayesAct agent
again defects, but feels embarrassed about it. The human responds with a defection, and feels defensive.
The game resolves into a tit-for-tat play, followed by mutual defection, mutual cooperation, and �nally
by mutual defection.

Table 3: Summary statistics for each opponent type. coops: number of cooperations after 10th game.
num. avg. game agent (human) client (human or bot)

opponent games length payo� coops payo� coops
jerkbot 83 15.01 15.86± 3.00 0.09± 0.24 22.33± 6.00 0.00± 0.00
bayesact 73 14.85 27.05± 5.92 0.54± 0.40 22.19± 7.87 0.69± 0.32
human 35 15.43 24.11± 7.55 0.56± 0.45 26.00± 5.92 0.51± 0.47
titfortat 82 14.82 27.66± 5.39 0.81± 0.35 26.96± 6.00 0.83± 0.34

We eliminated 8 participants from the sample whose pattern of ratings indicated that they did not take
the experiment seriously. To make these determinations, we considered each participant's proportion of
extreme ratings, as well as their relative proportions of positive, neutral, and negative ratings. Speci�cally,
a participant's data was eliminated if that participated met at least two of the following conditions.

• The participant rated more than 50% of the questions in an extreme manner (between 4 and 4.3)

• The participant rated more than 50% of the questions in a neutral manner (between 0 and 0.3)
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Figure 2: Blue=human; Red=agent (human, bayesact, titfortat and jerkbot); dashed=std.dev.; solid
(thin, with markers): mean; solid (thick): median.

• The participant rated more than 65% of the questions in a single direction on the slider (either positive
or negative).

• The participant rated more than 65% of the questions at exactly 0.

Table 3 shows the summary satistics across all games played against the di�erent opponents.

Figure 2 shows the mean, standard deviation, and median reward gathered at each step of the game, for
each of the opponents. The blue lines show the human play, while the red lines show the opponent (one
of human, BayesAct, tit-for-tat, or jerkbot). We see that humans mostly manage to cooperate together
until about 4-5 games before the end. The tit-for-tat strategy ensures more even cooperation, but is
signi�cantly di�erent from humans. Jerkbot is obvious, as a few defections after three games convinces
the human to defect thereafter. The BayesAct agent play is very similar to the human play, but the
human participants seem to be able to take advantage of the BayesAct agents late in the game. This
may be because the BayesAct agent is using a short (5 second) planning timeout, and we would need to
compare to a zero timeout (so only using the ACT prescriptions) and to longer timeouts to see how this
behaviour changes.

Table 4: Means of pre-game (initial) and post-game impressions for each opponent type.
give 2 take 1 self (human) other (human/bot)

opponent E P A E P A E P A E P A
(initial) 1.4 0.1 0.2 0.6 0.9 0.6 1.1 0.6 0.3 0.2 0.6 0.3
jerkbot 1.3 0.3 0.1 1.3 0.8 0.7 1.3 0.1 0.9 1.9 0.4 0.5
bayesact 1.3 0.1 0.0 0.9 1.1 1.0 0.7 1.4 1.2 0.4 0.1 0.3
human 1.7 0.7 0.3 1.2 0.4 0.3 1.5 1.2 1.0 0.5 0.0 0.1
titfortat 2.3 1.2 1.1 1.2 0.5 0.3 1.9 1.7 1.7 2.2 1.1 1.1

To further investigate the di�erences between the di�erent opponents, we measure the mean fraction of
cooperative actions on the part of the human after (and including) the 10th game. We �nd that, when
playing against another human, humans cooperate in 0.56 ± 0.45 of these last games. This number was
almost the same when playing BayesAct agent at 0.54 ± 0.40. Against tit-for-tat, there was much more
cooperation (0.81 ± 0.35). Finally, against jerkbot, it was very low 0.09 ± 0.24. We also computed the
mean EPA ratings of the self and other after each game, as shown in Table 4. We found that jerkbot
(EPA:{−1.9, 0.4, 0.5}) is seen as much more negative, and tit-for-tat (EPA:{2.2, 1.1, 1.1}) much more
positive, than human (EPA:{0.5, 0.0, 0.1}) or BayesAct (EPA:{0.4,−0.1,−0.3}), and that the human
feels less powerful when playing jerkbot (EPA of self:{1.3,−0.1, 0.9}) than when playing BayesAct (EPA
of self:{0.7, 1.4, 1.2}), or another human (EPA of self:{1.5, 1.2, 1.0}). Humans felt more powerful, positive
and active when playing tit-for-tat (EPA of self:{1.9, 1.7, 1.7}).
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4 Related Work

Many authors have now presented the idea that human handling of an in�nite action space may be
governed largely by a�ective processes [2, 20, 3]. Shared a�ective structures allow agents to focus on a
subset of possibilities, being those that provide aligned interactions according to the shared structure. The
subset of possibilities is the �cultural prescriptions� for behaviours that are �rational relative to the social
conventions and ethics� ([2], p200). Some social identity theorists have attempted to integrate models
of these shared structures (as identities) into utility theory [1], in order to provide Kahneman's �fast
thinking� [19]. Interestingly, ACT gives a functional account of this �fast� pathway as sentiment encoding
prescriptive behaviour, while BayesAct extends this with a slow pathway that enables exploration and
planning away from the prescription [3].

The prisoner's dilemma has long been studied, starting with the work of [5]. Recent work has looked at
modeling both rational choice and social imitation to simulate more human-like behaviour in networked
PD games [29]. Other researchers have looked at using emotional signals to in�uence play in PD games,
for example by changing expectations of future games using emotional signals [7], by linking valence with
an exploration bonus [18], or by using emotional appraisals as intrinsic reward signals [22]. Our work is
the �rst to propose a method based on a�ective identity alone, e�ectively ignoring the payo� matrix and
seeking socio-emotional balance rather than utility as the main driving force behind human behaviour in
PD [3]. The dynamic nature of our proposal coheres well with recent work showing that, in networked
social dilemmas, cooperation is maintained by �exible tie formation and cues of shared identities. Recent
work on evolutionary models addressing the highly dynamic nature of identity and tie formation in small
groups (e.g. [9]) has been promoted as promising avenues in this domain (cf. [24]).

5 Conclusion

We have presented a model for a�ectively guided play in the prisoner's dilemma. Our hypothesis is that
we can design agents that are more human-like in their behaviours by basing the agents on symbolic
interactionist principles. The idea is that the agents follow the social prescriptions for action based
on their sense of self, or their identity. We show preliminary results from a study of human play in
the iterated prisoner's dilemma, and discuss some of the early �ndings. We are currently looking at
learning the parameters of the model (e.g. Σ and Σf ) from data. Other research avenues include
intelligent tutoring [17] and other games [3], Our long-term objective is to run simulations of BayesAct
agents (learned from human data) in a network. In previous work, we have observed the emergence
of identity structures from the learning process in dyads of BayesAct agents [26]. We believe these
emergent structures may provide a demonstration that the clustering of complementary and competitive
identities (e.g, friends and enemies) [6] predicted by structural balance theory [11] is a property of identity
maintenance generally.

6 Appendix

Here, we reproduce the prisoner's dilemma application as it was seen by participants of the study. Upon
entering the prisoner's dilemma URL, participants arrived at the welcome screen shown in section 6.1.
They were instructed to review the game information given in section 6.2 before signing up. Signing up
consisted of three phases: answering a short demographic questionnaire, reviewing and accepting/declin-
ing an informed consent form, and assigning E, P, and A values to each of the key concepts of "Self",
"Other Player", "Give", and "Take". These materials can be found in sections 6.3 and 6.4 respectively.

Once signed up, participants were able to begin play. Upon being assigned a match, a participant would
arrive at the Start of Game screen given in section 6.5 with the option to either Give 2 or Take 1. After
making a selection, the participant had to wait for the server to respond with her opponent's move. Note
that, even in the case where the opponent was a bot, some time was always allowed before a reply was
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sent to preserve the illusion that all players were human. On completion of the �nal round (decided
randomly to be a value in the range 12-18), the participant was asked to again evaluate E, P, and A
values for each of the four key concepts. An example End of Game screen can be found in section 6.5
and sliders, as before, in section 6.4.

When the allotted play time of a group of participants ran out, they were instructed to stop playing and
open the (previously hidden) debrie�ng page. This page, which can be found in section 6.6, revealed
to the participants that they played against bots as well as each other, and gave them the option to
withdraw their data from the study. This was the �nal interactions participants had with the prisoner's
dilemma application.

6.1 Welcome Screen
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6.2 Game Information
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6.3 Sign-Up Questionnaire

Consent Information

Study Title: Applying BayesACT to the Iterated Prisoner's Dilemma

Faculty Supervisor: Dr. Jesse Hoey, Department of Computer Science, (***) ***-**** ext. *****,
****@****

Student Investigator: Josh Jung, Department of Computer Science, (***) ***-**** ext. *****, ****@****

Course Assignment

During class on October 20 and 22, instead of the lectures, you will be asked to play a series of iterated
prisoner's dilemma games in ****/****. You may bring your own laptop or use one of the Macs in the
lab. The game is very simple; you select one of two options and receive a score based on the combined
choices made by you and your opponent. After each set of approximately 20 such games, you will be
asked to rate both yourself and your opponent on the evaluation, potency, and activity scales prescribed
by A�ect Control Theory. You will then be matched with another player to play another set.

For this course assignment you will be asked to sign up online at **********. You will be asked for your
UWaterloo ID, as well as your major and gender, which you can choose not to share if you wish. You
will also be assigned an ID, which you must bring to class on the days of the assignment. Completion of
the assignment is worth 5% of your mark and is expected to take approximately 3 hours of your time.
At the end of the assignment each point you earn while playing the game will be counted as one entry
into a draw for one of ten (10) $20 Amazon gift cards.

If you are unable to attend these two classes you can choose to complete a paper review instead and will
still be entered into the draw with odds equivalent to the median player participating in the study. This
requires that you choose a research paper in arti�cial intelligence, read it, and write a 2-page review of
the paper. Reviews will be assigned a pass/fail (5%/0%) grade based on the suitability of the review,
where a suitable review is one that is coherent and makes it clear that its author has read the paper.
Your odds of winning one of the prizes is based on the number of individuals who complete the in-class
assignment or paper review. We expect that approximately 120 individuals will complete the in-class
assignment.

You are invited to participate in a study

You are invited to participate in a study assessing the validity of Bayesian A�ect Control Theory
(BayesACT) as a predictor of human behaviour. The study is being conducted by Josh as a Master's
student in the Department of Computer Science under the supervision of Dr. Jesse Hoey.

A�ect Control Theory posits that people strive to behave in the manner most in line with the expectations
of their society. BayesACT extends this theory to allow it to deal with uncertainty. This study will provide
data from humans playing a game, the iterated prisoner's dilemma, for the purposes of comparing human
behaviour to the predictions of BayesACT.
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We would like to use the results from the course assignment described above (the Prisoner's dilemma
assignment) for our research.

You are under no obligation to provide your consent for the use of your assignment for our research.
Further, a decision to participate or not will have no impact on your grade in ****. Professor Hoey
will not know who consented to the use of their assignment in this research. Note that completion of
the assignment does not imply consent to use your assignment, which you may choose not to give after
reading this form. You will receive 5% credit for the assignment regardless of whether or not you give
consent to be part of the research.

Information collected to draw for the prizes will not be linked to the data in any way, and this identifying
information will be stored separately, then destroyed after the prizes have been provided. The amount
received is taxable. It is your responsibility to report this amount for income tax purposes.

You may opt out of the study at any time by contacting Josh. Also note that the student IDs of con-
senting students will not be viewable by Jesse Hoey or any of the TAs associated with this course.

Personal Bene�ts of the Study

This study will help to determine the e�cacy and generalizability of BayesACT. It will also produce
initial conditions based on real data that can be used in future BayesACT projects. BayesACT has,
for example, been used to create assisted living devices for patients with Alzheimer's disease, including
hand-washing stations developed at the University of Waterloo.

Risks to Participation in the Study

There is some risk that you may feel coerced into consenting to the use of your assignment due to Jesse
Hoey's dual roles as professor and researcher. However, we would like to assure you that he will never
see a list of students who give/don't give their consent, and that he will not be involved in the drawing
or distribution of Amazon gift cards.

Con�dentiality

All information you provide is considered completely con�dential; indeed, your name will not be included
or in any other way associated, with the data collected in the study. Furthermore, because the interest
of this study is in the average responses of the entire group of participants, you will not be identi�ed
individually in any way in any written reports of this research. The data, with identifying information
removed, will be kept for a period of 10 years following publication of the research, after which it will be
deleted. The data will be securely stored in the research laboratory of Dr. Jesse Hoey in the DC building
to which only researchers associated with this study have access.

Questions and Research Ethics Clearance

If after receiving this letter, you have any questions about this study, or would like additional information
to assist you in reaching a decision about participation, please feel free to ask the student investigator
or faculty supervisor listed at the top of this sheet. Alternatively, you may contact *****, a senior PhD
student in the Computational Health Informatics Lab, at ****@****, who is not directly a�liated with
the study, but can provide additional information to assist you in reaching a decision about consent.

We would like to assure you that this study has been reviewed and received ethics clearance through a
University of Waterloo Research Ethics Committee. However, the �nal decision about consent is yours.
Should you have any comments or concerns resulting from your participation in this study, please contact
*********, the Director, O�ce of Research Ethics, at *-***-***-****, Ext. ***** or ****@****.

Thank you for your interest in our research and for your assistance with this project.

Consent of Participant
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By consenting to the use of your assignment below, you are not waiving your legal rights or releasing the
investigator(s) or involved institution(s) from their legal and professional responsibilities.

I have read the information presented in the information letter about a study being conducted by Josh
Jung under the supervision of Dr. Jesse Hoey of the Department of Computer Science at the University
of Waterloo. I have had the opportunity to ask any questions related to this study, to receive satisfactory
answers to my questions, and any additional details I wanted. I am aware that I may withdraw consent
for the use of my assignment from the study without loss of credit at any time by advising Josh of this
decision.

This project has been reviewed by, and received ethics clearance through a University of Waterloo Re-
search Ethics Committee. I was informed that if I have any comments or concerns resulting from my
participation in this study, I may contact the Director, O�ce of Research Ethics, at *-***-***-****, Ext.
***** or ****@****.
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6.4 ACT Sliders

Note that each of "Yourself", "Other Player", "Give", and "Take" had its own page of three sliders.

6.5 Game Interface

Start of Game
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Example End of Game

6.6 Debrie�ng

Debrie�ng Letter

Study Title: Applying BayesACT to the Iterated Prisoner's Dilemma

Faculty Supervisor: Dr. Jesse Hoey, Department of Computer Science, (***) ***-**** ext. *****,
****@****

Student Investigator: Josh Jung, Department of Computer Science, (***) ***-**** ext. *****, ****@****

Thank-you for completing this assignment. When you began the assignment, you were told that the
purpose of this assignment was to observe human behavior in the iterated prisoner's dilemma game.
However, the game was slightly more complicated than we explained at the beginning. Only 25% of
the games you played were against your fellow classmates. The remainder were played in equal parts
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against three di�erent arti�cially intelligent (AI) opponents (bots). One of the three bots was built using
BayesACT and initialized with the ratings given by you over the course of the study. The other two
played static strategies: one played tit-for-tat (i.e. always did exactly the same as what you did the last
time you played), and the other cooperated three times and defected thereafter.

It was necessary to conceal this information to avoid spoiling the ratings you gave to yourselves and your
opponents. We thought it likely that if you knew there was a high probability that your opponent was a
bot, you would be unlikely to have a signi�cant emotional response to the plays of your opponent. We
apologize for omitting details about the tasks in this assignment. We hope that you understand the need
for not informing you of this aspect of the assignment now this it has been more fully explained to you.

If you consented to the use of your assignment in our research please note that once all the data are
collected and analyzed for this project, we plan on sharing this information with the research community
through seminars, conferences, presentations, and journal articles. If you are interested in receiving more
information regarding the results of this study, or would like a summary of the results, please email Josh
Jung, and when the study is completed, anticipated by December, 2015, to send you the information.

The information you provided will be kept con�dential by not associating your name with the responses.
The data will be stored with all identifying or potentially identifying information removed. Electronic
data will be stored 10 years on a password protected computer in DC 2584 then erased. No one other
than the researchers will have access to the data.

This project was reviewed by, and received ethics clearance through a University of Waterloo Research
Ethics Committee. Should you have any comments or concerns resulting from your participation in this
study, please contact *********, the Director, O�ce of Research Ethics, at *-***-***-****, Ext. *****
or ****@****.

We really appreciate your participation, and hope that this has been an interesting experience for you.

Please enter your username and choose a consent option below.
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