
Mayflower: Improving Distributed Filesystem Performance
Through SDN/Filesystem Co-Design

Sajjad Rizvi Xi Li Bernard Wong Xiao Cao Benjamin Cassell
School of Computer Science, University of Waterloo

{ sm3rizvi, x349li, bernard, x7cao, becassel}@uwaterloo.ca

Abstract
The increasing prevalence of oversubscribed networks and
fast solid-state storage devices in the datacenter has made
the network the new performance bottleneck for many dis-
tributed filesystems. As a result, distributed filesystems need
to be network-aware in order to make more effective use of
available network resources.

In this paper, we introduce Mayflower, a new distributed
filesystem that is not only network-aware, it is co-designed
from the ground up to work together with a network control
plane. In addition to the standard distributed filesystem com-
ponents, Mayflower has a flow monitor and manager running
inside a software-defined networking controller. This tight
coupling with the network controller enables Mayflower to
make intelligent replica selection and flow scheduling de-
cisions based on both filesystem and network information.
It also enables Mayflower to perform global optimizations
that are unavailable to conventional distributed filesystems
and network control planes. Our evaluation results from
both simulations and a prototype implementation show that
Mayflower reduces average read completion time by more
than 25% compared to current state-of-the-art distributed
filesystems with an independent network flow scheduler, and
more than 80% compared to HDFS with ECMP.

1. INTRODUCTION
Many data-intensive distributed applications rely heavily

on a shared distributed filesystem to exchange data and state
between nodes. As a result, distributed filesystems are often
the primary bandwidth consumers for datacenter networks,
and file placement and replica selection decisions can sig-
nificantly affect the amount and location of network conges-
tion. Similarly, with oversubscribed network architectures

This is a David R. Cheriton School of Computer Science technical report.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2015 the authors CS-2015-10.

and high-performance SSDs in the datacenter, it is becoming
increasingly common for the datacenter network to be the
performance bottleneck for large-scale distributed filesys-
tems.

However, despite their close performance relationship,
current distributed filesystems and network control planes
are designed independently and communicate over nar-
row interfaces that expose only their basic functionali-
ties. Network-aware distributed filesystems can, there-
fore, only use rudimentary network information in making
their filesystem decisions and are not reciprocally involved
in making network decisions that affect filesystem perfor-
mance. Consequently, they are only minimally effective at
avoiding network bottlenecks.

An example of a network-aware distributed filesystem is
HDFS [34], which makes use of network topology informa-
tion to perform static replica selection based on network dis-
tance. However, network distance does not capture dynamic
resource contention or network congestion. Moreover, in a
typical deployment with thousands of storage servers and a
replication factor of just three [22], it is highly likely that
a random client will be equally distant to all of the replica
hosts. In this scenario, HDFS is just performing random
replica selection.

Deploying a datacenter-wide dynamic network flow
scheduler [6, 11] can reduce network congestion and im-
prove distributed filesystem performance. However, be-
cause they are not involved in making the replica selec-
tion decision, flow schedulers are limited to finding the least
congested path between the requester and the pre-selected
replica. Therefore, they are unable to take advantage of re-
dundancies in the distributed filesystem, which makes them
ineffective when all paths between the requester and the pre-
selected replica are congested.

Sinbad [12] is the first system to leverage replica place-
ment flexibility in distributed filesystems to avoid congested
links for their write operations. It monitors end-host infor-
mation, such as the bandwidth utilization of each server, and
uses this information together with the network topology to
estimate the bottleneck link for each write request. Sinbad
is a significant improvement over random or static replica
placement strategies, but by working independently of the

1

network control plane, it has a number of limitations. For
example, by not accounting for the bandwidth of individ-
ual flows and the total number of flows in each link, Sin-
bad cannot accurately estimate path bandwidths, which can
sometimes lead to poor replica placement decisions. Band-
width estimation errors would be even more problematic if
a Sinbad-like approach was used for read operations since,
with only a small number of replicas to choose from, select-
ing the second best replica instead of the best replica can
significantly reduce read performance.

In this paper, we introduce Mayflower, a novel distributed
filesystem co-designed from ground up with a Software-
Defined Networking (SDN) control plane. Mayflower con-
sists of three main components: dataservers that perform
reads from and appends to file chunks, a nameserver that
manages the file to chunk mappings, and a Flowserver run-
ning within the SDN controller that monitors the bandwidth
utilization at the network edge, models the path bandwidth
of each Mayflower-related flow, and performs both replica
selection and network flow assignment.

The focus of this work is in improving read performance
since (1) the majority of datacenter workloads are read-
dominant, (2) moving computation to the data is only feasi-
ble for a small set of data-intensive applications, and (3) cur-
rent read replica selection strategies do not effectively utilize
the network.

The main advantage of using an SDN/filesystem co-
design approach is that it enables both filesystem and net-
work decisions to be made collaboratively by Mayflower and
the network control plane. For example, when performing
a read operation, instead of first selecting a replica based
on coarse grained network information and then choosing
a network path connecting the client and the replica host,
Mayflower can evaluate all the possible paths between the
client and all of the replica hosts.

Furthermore, Mayflower’s tight integration with the net-
work control plane enables it to select a replica and path that
greedily minimizes average request completion time. Unlike
optimizing for the bandwidth metrics used in previous sys-
tems [12], minimizing average request completion time re-
quires accounting for both the expected completion time of
the pending request, and the expected increase in completion
time of other in-flight requests. This is significantly difficult
for a filesystem or flow scheduler to do independently, and
we show in our evaluation that this is critically important for
achieving good read performance. An additional benefit to
this approach is that Mayflower can avoid unfortunate selec-
tion decisions that repeatedly increase the completion time
of the same in-flight request, which can significantly reduce
straggler-related problems.

Finally, Mayflower can also use flow bandwidth estimates
to determine if reading concurrently from multiple replica
hosts will improve performance, and what fraction of the
file should be read from each replica to maximize the perfor-
mance gain. This allows Mayflower to choose paths that in-

dividually have low bandwidth, but together provide higher
aggregate bandwidth than other path combinations.

Overall, this paper makes three contributions:

• We present Mayflower, a new distributed filesystem
that can make filesystem and network decisions col-
laboratively with a co-designed SDN control plane.

• We show that Mayflower can directly optimize for av-
erage request completion time and perform optimiza-
tions that are unavailable to conventional distributed
filesystems and network control planes.

• We evaluate Mayflower’s performance using both
simulations and a real implementation running on
Mininet [29]. Our results show that Mayflower reduces
average read completion time by more than 50% com-
pared to other distributed filesystem and network con-
trol plane designs.

2. BACKGROUND AND RELATED WORK
In this section, we outline past work on distributed filesys-

tems, replica selection, and network path selection. We
also describe the results of previous studies on datacenter
network traffic patterns and explain how they relate to dis-
tributed filesystem design.

2.1 Distributed Filesystems
Big-data applications rely heavily on distributed filesys-

tems for storing and retrieving large datasets. As a re-
sult, they have potentially high performance impact due to
the underlying filesystem. Several high performance dis-
tributed filesystems have been developed including Google
File System (GFS) [22], Hadoop Distributed File System
(HDFS) [34], Quantacast File System [33], Colossus [21],
and several others [36, 38, 20]. Mayflower’s basic filesys-
tem design aligns with these filesystems, yet it is signifi-
cantly different towards its approach for performance opti-
mizations. These filesystems can take advantage of network
topology information to select a replica for read operations
that minimizes the network distance to the client. However,
Mayflower stresses the need for coordinated operations of
both the filesystem and the network for their collective per-
formance improvements. Mayflower’s active coordination
with the network manager allows it to select the replica and
the network path that achieves higher throughput, and have
least impact on the existing flows in the system.

2.2 Network Traffic Characteristics
A recent study using Facebook and Microsoft datacen-

ters [12] reports that the network activity due to the filesys-
tems ranges from 54% to 85% of the total network traf-
fic. Distributed filesystems are therefore the primary source
of network bandwidth utilization in many datacenters. A
number of different network topologies [24, 23, 32, 25, 5],
have been proposed to increase the bisection bandwidth in

2

the network. This has been shown to improve storage sys-
tem performance when using flat storage model [31]. Nev-
ertheless, oversubscribed multi-tier hierarchical topologies
are still prevalent [12, 19] and are by far the most cited in
network measurement studies [27, 10, 9]. Moreover, the
increasing popularity of SSDs and in-memory applications
suggest that the network will remain the primary bottleneck
for many distributed datacenter applications.

A previous study [27] has found that network hotspots in
a datacenter is typically not at the edge tier in oversubscribed
networks. This suggests that there is an opportunity to im-
prove read performance by reading multiple replicas in par-
allel if the paths to the replicas do not share a bottleneck
link.

Placing data consumers close to the data can be an effec-
tive approach to reducing the network footprint of file read
operations. A number of techniques have been proposed [39,
7] that try to increase opportunities to place the data and the
client on the same machine (data locality) for reducing net-
work traffic. However, data locality is not always achiev-
able [11], and, in some cases, it has been shown to be irrele-
vant [8]. A previous study [12] has found that, even by tak-
ing advantage of data locality, 14% of Facebook traffic and
31% of Microsoft traffic are from remote distributed filesys-
tem read operations.

2.3 End-Point Location Selection
Most distributed filesystems place replicas in multiple

fault domains over the network for fault tolerance. Tra-
ditional replica selection algorithms [34] select the closest
replica in order to reduce aggregation and core tier network
traffic. Recent work [12] recognizes that there is signifi-
cant flexibility in selecting a replica location and investigates
algorithms for performing congestion-aware replica place-
ment. The ability to choose from intelligently-located repli-
cas is important, as closer replicas do not always translate
into faster flow completion times. Mayflower’s Flowserver
uses a more complex, network-aware metric to select repli-
cas to read operations.

2.4 Network Traffic Engineering
In order to take advantage of path diversity in a data-

center network, protocols such as ECMP [26] select a path
from the available shortest paths for each flow based only
on flow-related packet header information. This approach
works well for short flows, but may lead to persistent conges-
tion on some links for elephant flows. Recent flow schedul-
ing systems such as Hedera [6] and MicroTE [11] solve this
problem by making centralized path selection decisions us-
ing global network information. Mayflower uses a custom
multipath scheduling algorithm, centrally controlled by the
Flowserver, in order to direct flows to replicas that will min-
imize flow completion time.

There is a lengthy list of flow scheduling and network en-
gineering techniques [13, 15, 16, 17, 14, 35] for network

performance optimization. Unlike Mayflower, these tech-
niques cannot take advantage of the availability of multiple
replica choices.

3. DESIGN OVERVIEW
In this section, we first describe our assumptions regard-

ing the typical usage model for Mayflower and detail the
properties of Mayflower’s target workload. We then outline
Mayflower’s main design goals, and provide the details of its
system architecture.

3.1 Assumptions
Our design assumptions are heavily influenced by the re-

ported usage models of Google filesystem (GFS) and HDFS.
We believe that, given their large combined user base, their
usage models are representative of current data-intensive
distributed applications. Mayflower assumes the following
workload properties:

• The system only stores a modest number of files (on
the order of millions). File sizes typically range from
hundreds of megabytes to tens of gigabytes. The meta-
data for the entire filesystem can be stored in memory
on a single high-end server.

• Most reads are large and sequential, and clients often
fetch entire files. This is representative of applications
that partition work at the file granularity. In these ap-
plications, clients fetch and process files one at a time,
and the file access pattern is often determined by the
file contents (e.g., graph processing where edges are
embedded in the data). Large sequential reads are also
common for applications that need to prefetch or scan
large immutable data objects, such as sorted string ta-
bles (SSTs), or retrieve large media files in order to
perform video processing or transcoding.

• File writes are primarily large sequential appends to
files; random writes are less frequent. Applications
primarily mutate data by either extending it through
appends, or by creating new versions of it in the appli-
cation layer while retaining the previous versions.

• The workloads are heavily read-dominant. Read re-
quests come from both local and remote clients.

• Replicas are placed with some constraints with respect
to fault domains. For example, replicas should not be
on the same rack and at least one of the replicas should
be on a different pod, where we define a pod as the
collection of servers that share the same aggregation
switch in a 3-tier tree network.

• The network is the bottleneck resource due to a combi-
nation of high performance SSDs, efficient in-memory
caching, and oversubscription in datacenter networks.

3

Replica/path
selector

File Reader

Data size to read,
Replica locations

Selected replica

Flow
Stats

Edge
Switches

Selected
path’s setup

Nameserver

Dataserver

Replica
locations

Data

Fl
o

w
se

rv
er

Figure 1: Mayflower system components and their inter-
action in a read-file operation.

3.2 Design Goals
Mayflower’s primary design goal is to provide high-

performance reads to large files by circumventing net-
work hotspots. Additional design goals include offering
application-tunable consistency in order to meet different
application-specific correctness and performance require-
ments, and providing similar scalability, reliability, fault tol-
erance and availability properties to that of current widely-
deployed distributed filesystems, namely, GFS and HDFS.

3.3 Architecture
Mayflower’s basic system architecture consists of three

main components: dataserver, nameserver, and Flowserver.
The dataserver is responsible for storing and reading the ac-
tual data, the nameserver manages the filesystem’s names-
pace, and the Flowserver, which runs within the SDN con-
troller, monitors the network, and performs replica and path
selection. Figure 1 illustrates the different components and
their interactions with the client. In this example, the file
reader contacts the nameserver to determine the replica lo-
cations of its requested file and then contacts the Flowserver
to determine which replicas to read from. In addition to se-
lecting the replicas, the Flowserver will also install the flow
path for this request in the OpenFlow switches. Finally, the
client will contact the dataservers to retrieve the file.

Each file in Mayflower is partitioned into large chunks,
where the chunk size is a system parameter that is typically
equal or larger than 128 MB. The nameserver is responsible
for storing file to chunks and file to dataservers mappings.
To simplify chunk and replica management, replication is
performed at the file level instead of the chunk level. Each
file is replicated to a fixed number of dataservers, and each
of these dataservers has an entire copy of the file consisting
of one or more chunks.

Mayflower provides file-specific tunable consistency to

its clients. In order to reduce reader/writer contention and
strong consistency-related overhead, Mayflower does not
support random writes. Instead, files can only be modified
using atomic append operations. Random writes can be em-
ulated in the application layer by creating and modifying a
new copy of the file and using a move operation to overwrite
the original file.

Append-only semantics also simplify client-side caching
of file to chunks mappings by ensuring that existing map en-
tries cannot change unless the file is deleted. Clients can
therefore safely cache these mappings to reduce the load on
the nameserver. A client can discover new entries to the map,
created through appends by other clients, when it attemps to
read from the file since the dataserver includes the file’s size
with each read result it returns. File to dataservers mappings
can also be safely cached with cache expiry times that de-
pend on the mean time between replica migration and node
failure.

Replica placement decisions are made by the nameserver
when a file is initially created. The nameserver takes into
account system-wide fault-tolerance constraints, such as the
replication factor and the number of fault domains, when
determining replica locations. Currently, the nameserver
makes replica placement decisions independently using only
static information. This is because the focus of this work
is on improving read performance for read-dominant work-
loads. We expect that it would be relatively straightforward
to implement a Sinbad-like replica placement strategy by
having the nameserver make the placement decision collab-
oratively with the Flowserver.

3.3.1 Nameserver
The nameserver stores and manages file-to-chunks and

file-to-dataservers mappings. Clients contact the nameserver
when they need to create or delete a file, or lookup the
size of a file. The mappings are stored using LevelDB [2],
a persistent key-value database. By default, LevelDB is
configured with fsync off in order to speed up file cre-
ation and deletion, and the nameserver should be config-
ured with enough memory to ensure that LevelDB serves
requests entirely from memory. The purpose of using a per-
sistent database to store the mappings is to speed up name-
server restarts after a graceful shutdown. After an unex-
pected restart, instead of reading from the possibly stale
database, the nameserver rebuilds the mappings by scanning
the file metadata stored at the dataservers.

The nameserver is currently implemented as a centralized
service. We can improve the fault-tolerance of the name-
server by using a state machine replication algorithm, such
as Paxos [28], to replicate the nameserver to multiple nodes.

3.3.2 Dataserver
The dataserver is responsible for storing and retrieving

file chunks. Each file is represented as a directory in the
dataserver’s local filesystem, and the name of the directory

4

is the file’s UUID [4]. Each directory has a file that includes
name and other metadata information. Chunks are stored as
numbered files inside the directory (e.g., the first and sec-
ond chunks have filenames of 1 and 2 respectively). In order
to support atomic append requests, the dataserver only ser-
vices one append request at a time for each file. Because of
Mayflower’s append-only semantics, the dataserver can con-
currently service read requests with an append request as
long as the read requests are not requesting the last chunk.

Each file has a primary dataserver, which is responsible
for ordering all of the append requests for the file. The pri-
mary dataserver relays append requests to the other replica
hosts while servicing the request locally.

3.3.3 Flowserver
The Flowserver is responsible for monitoring the per port

bandwidth utilization of each edge switch, modeling the
path bandwidth of each Mayflower-related flow based on
the measured link bandwidth at the edge and the number of
flows sharing each link, and performing replica selection and
network flow assignment. Bandwidth monitoring involves
periodically fetching from the edge switches the byte coun-
ters for both Mayflower-related flows and each switch port.
This allows the Flowserver to compute the bandwidth uti-
lization of the flows, and determine the unused bandwidth of
each edge link.

The measured bandwidth information is used as an instan-
taneous snapshot of the network state. In between measure-
ments, the Flowserver tracks flow add and drop requests, and
recomputes an estimate of the path bandwidth of each flow
after each request. This ensures that completion time es-
timates are accurate, and also reduces the need to poll the
switches at very short intervals.

3.4 Consistency
By default, Mayflower provides sequential consistency for

each file where clients see the same interleaving of opera-
tions. This requires that all append requests are sent and
ordered by a file’s primary replica host. Upon receiving an
append request, the primary replica host relays the request
to the other replica hosts while performing the append lo-
cally. Clients can however send read requests to any replica
host and coordination between hosts is not required to ser-
vice the read request.

Alternatively, Mayflower can configured to provide strong
consistency with respect to read and write requests. The
traditional approach to ensuring strong consistency is to re-
quire all read requests are also ordered by the file’s primary
replica. However, Mayflower leverages its append-only se-
mantics to only require sending last chunk read requests to
the primary replica host. All other chunk requests can be
sent to the any of the replica hosts since every chunk ex-
cept the last one are essentially immutable. Therefore, for
large multi-gigabyte files, the vast majority of chunks can be
serviced by any replica host while still maintaining strong

consistency. The only limitation to this approach is that it
cannot provide strong consistency when read and append

requests are interleaved with delete requests; deleted files
in Mayflower can briefly appear to be readable due to client-
side caching. However, we believe that this is a reasonable
consistency concession for improving read performance.

4. REPLICA AND PATH SELECTION
When a Flowserver receives a replica selection request

from a client, it executes our replica–path selection algo-
rithm (§ 4.2) to select a replica host and network path for the
request. In order to perform the replica and path selection,
the Flowserver keeps track of the bandwidth share estimates
of the existing flows belonging to the filesystem’s read jobs,
and network path assignments for each flow.

To estimate bandwidth utilization of flows and the remain-
ing amount of data that still needs to be transferred for ex-
isting flows, the Flowserver periodically fetches flow stats
from the edge switches. The flow stats are collected for only
those flows that originate from dataservers attached to the
edge switch being queried.

Target performance metric: Our target performance met-
ric is average and 95th percentile job completion time. If we
assume the network is the bottleneck for a read operation, the
job completion time for the read request can be minimized
by maximizing the max-min bandwidth share of the job’s
flows. Unlike other flow scheduling systems [6, 12] which
are based on link utilization measurements, Mayflower max-
imizes max-min bandwidth share because, in addition to link
capacity, it also captures the number of existing flows in each
link and the bandwidth share of each flow. In contrast, ab-
solute link utilization only provides information on available
link capacity.

Even though the path with the most bandwidth share is a
good choice, it is not always the best choice in highly dy-
namic settings. This is because new flows affect the path
selection for already scheduled flows. We must therefore
account for the impact on existing flows when making a
scheduling decision for a new request.

4.1 Problem Statement
Our optimization goal is to select the network path among

the paths from all replicas to the client that minimizes the
completion time of both the new flow as well as existing
flows. The replica and path selection algorithm has at its
disposal the path of existing flows, capacity of each link,
data size of each request, current bandwidth share of existing
flows, and remaining size of existing flows.

4.2 Replica–Path Selection Process
Mayflower’s replica–path selection algorithm evaluates

all the paths from each replica to the client and selects the
path which has minimum cost:

5

Pseudocode 1 Replica and Path Selection
1: procedure SELECTREPLICAANDPATH(Request R)
2: costs← []
3: P← paths from R.replicas
4: for each path p ∈ P do
5: est_bw← MAXMINSHARE(p.links)
6: costs[p]← FLOWCOST(p, est_bw, R.size)
7: end for
8: path,replica← MINCOST(P, costs)
9: for each f low ∈ path do . Only those flows whose BW is changed

10: SETBW(f low, f low.new_bw)
11: end for
12: return path, replica
13: end procedure

Pseudocode 2 Cost of the new flow for the given path
1: procedure FLOWCOST(Path p, est_bw, f low_size)
2: cost← f low_size/ est_bw
3: f lows←{ flows assigned to p.links}
4: for each f ∈ f lows do
5: new_bw← NEWBANDWIDTH(f , p, est_bw)

6: cur_bw← CURRENTBANDWIDTH(f)
7: r← remaining size of f . From flow stats
8: cost = cost +[r /new_bw]− [r / cur_bw]
9: end for

10: return cost
11: end procedure

12: procedure UPDATEBW(Flow f , bw)
13: . Called by flow stats collector
14: if f .freezed = False or T > f .T then
15: f .bw← bw
16: f .freezed← False
17: end if
18: end procedure

19: procedure SETBW(Flow f , bw)
20: f .bw← bw
21: f .T← T +(f .remaining/bw)
22: f .freezed← True
23: end procedure

Pathmin(P) = argmin
∀p∈P

Cost(p) (1)

where P is the set of all distinct paths between the data reader
and the replica sources. We restrict to selecting from only
the shortest paths between two endpoints. This limits the
network path lengths to be 2, 4 or 6 in a traditional three-tier
tree network.

The cost of each path p ∈ P is the completion time of the
new read job j, and the increase in completion time of the
existing jobs in each link along that path:

Cost(p) =
d j

b j
+ ∑
∀ f∈Fp

[
r f

b′f
−

r f

b f

]
(2)

where d j is the requested data size and b j is the estimated
bandwidth share of a new flow on path p. The first half of
the equation is estimating the cost of the new flow while the
second half is estimating the impact of the new flow on exist-
ing flows Fp in path p. The cost of an existing flow f ∈ Fp is

the estimated increase in completion time to download its re-
maining data r f when the current bandwidth b f is decreased
to b′f due to the addition of the new flow in the path. The
current bandwidth share and remaining sizes of the exist-
ing flows are measured through flow stats collected from the
edge switches.

The bandwidth share of the new flow, and the change in
bandwidth share of the existing flows are estimated through
max-min fair share calculations. For each link, given a set
of flows with their bandwidth demands that use the link and
the link’s capacity, we equally divide the bandwidth across
each flow up to the flow’s demand while remaining within
the link’s capacity. The demand for the existing flows is set
to their current bandwidth share whereas the demand of the
new flow is set to infinity. The estimated bandwidth b j of the
new flow is its bandwidth in the bottleneck link in the path.
However, the new bandwidth estimate of the existing flows
is their bandwidth share when a new flow with bandwidth
demand b j is added in the links in the path.

Slack in updating bandwidth utilization: When a path is
selected by the Flowserver using our replica–path selection
algorithm, the bandwidth utilization for the new flow is set
to its estimated bandwidth share. Moreover, the bandwidth
share of the existing flows whose estimated share is changed
in the selected path are updated with their estimated values
and these flows are then placed in an update-freeze state.
The flows remain in this state for the time proportional to
their expected completion time (lines 12 to 18 in Pseudocode
2).

The flows are kept in the update-freeze state because a
flow’s recently updated bandwidth state can be overwritten
too soon in the next flow stats collection cycle. This will
invalidate the previous estimates and lead to incorrect calcu-
lations for the forthcoming flows. When a flow-stats update
is received by the Flowserver, the values are not updated for
a flow if it is in the update-freeze state. The values are up-
dated when the time period of the freeze state expires (lines
19 to 23 in Pseudocode 2).

Simplifying bandwidth estimations: The reduction in
bandwidth share of flows in a path may result in the increase
in bandwidth share of flows in other paths. This can in turn
have additional secondary and tertiary impact on nearly all
the flows in the system. To accurately measure the impact
of adding a new flow on a path, we need to not only update
the state of the flows on the selected path but also identify
and update the changes in the bandwidth utilization of flows
in other paths. This greatly increases the cost of bandwidth
estimation.

Therefore, for simplicity, we ignore the secondary and
tertiary effects and only estimate and update the bandwidth
share of flows in the paths between replicas and the client.
Estimation errors do not accumulate because we periodi-
cally update our bandwidth estimates from the switches’
flow stats. We also use the flow stat information to update

6

Replica source

Data reader

Switches

Direction of a flow and
its bandwidth share

x

First path

Second path

(a)

2, 2, 3, 3

7, 3

𝐶1 =
9

3
+

6

3
−
6

6
+

6

7
−

6

10
= 4.25

(b)

𝐶2 =
9

3
+

6

3
−
6

4
+

6

7
−
6

8
= 3.6

7, 3

2, 2, 3, 3

(c)

𝐶𝑖 Cost of path 𝑖

2, 2, 6

10

8

2, 2, 4

Figure 2: An example of cost calculation for replica–path selection: a) Existing flows’ bandwidth share along two paths
(10Mbps links). b) Bandwidth share of the flows if a new flow is added on the first path where C1 is the cost of adding
the new flow on the path. New flow’s size is 9Mb whereas the remaining size of the existing flows is 6Mb. c) Bandwidth
share of the flows if the new flow is added on the second path and its corresponding cost C2.

the bandwidth utilization of the remaining flows in the net-
work. In this way, we significantly reduce the complexity
of the problem while still having good bandwidth utilization
approximations.

An illustrative example: Consider an example of a client
reading 9Mb data from a replica source, illustrated in Figure
2. The figure shows the arrangement of two edge switches
connected with two aggregate switches. All the links have
10Mbps bandwidth capacity. There are two equal length
paths between the reader and the data source. Both paths
have three flows on the second link, which connects the edge
to the aggregate, and one flow on the third link, which con-
nects the aggregate to the edge.

To evaluate the first path (as shown in Figure 2b), first the
max-min fair share of the new flow is calculated on that path.
The second link is the bottleneck link because it gives 3Mbps
share to the new flow as compared to 5Mbps share on the
third link. Therefore, the new flow will have 3Mbps share
on the first path and the read job will take 9/3 = 3 seconds
to complete. Adding this new flow may result in a reduction
of the bandwidth share of some of the existing flows and
will increase their completion times. According to the max-
min fair share calculations, the existing flow with 6Mbps
share in the second link will be reduced to 3Mbps and the
10Mbps-flow on the third link will be reduced to 7Mbps. As
a result, the completion time of the flows will be increased
by [(6/3)− (6/6)] = 1 and [(6/7)− (6/10)] = 0.25 sec-
onds respectively, assuming the flows’ remaining size to be
6Mb. Therefore, the estimated cost of the first path, which
is a measure of the increase in total completion time, is
3+ 1+ 0.25 = 4.25. Similarly, the cost of the second path
turns out to be 3.6 and therefore the second path will be se-
lected for the read operation.

In this example, the bandwidth share of the new flow is
the same for both paths. The difference in cost is due to the

impact of the new flow on the existing flows. The second
path has an increase of 0.6 seconds in the job completion
time of the existing flows, compared to 1.4 seconds for the
first path. In a more realistic network setting, there are addi-
tional factors affecting the bandwidth share and completion
time of flows, such as oversubscription and heterogeneous
link capacities. For instance, if we assume that the second
link in the first path has 20Mbps capacity, then the cost of
the first path will become 2.4 seconds and thus the first path
will be selected.

4.3 Reading from Multiple Replicas
Mayflower reads from multiple replicas in parallel if do-

ing so results in a reduction of the completion time. In our
replica–path selection algorithm, a read job is only split into
multiple sub-jobs if the combined estimated bandwidth share
of the subflows is greater than the bandwidth share of the
flow to a single replica. After selecting the network paths
for the subflows and estimating their bandwidth shares, the
data read size for each flow is divided such that the subflows
finish at the same time. The subflows are assigned different
replicas to avoid the same network bottlenecks.

Multiple replicas selection process: While estimating the
bandwidth share and path for two subflows, for the first sub-
flow f1, select a replica–path p1 using the replica–path selec-
tion algorithm (§ 4.2). Assume that the estimated bandwidth
share of f1 is b1. Add a temporary flow in path p1 and tem-
porarily update the bandwidth shares of existing flows in the
path. For the second subflow f2, select another replica–path
p2 using the same replica–path selection algorithm. Assume
that the estimated bandwidth share to be b2. The second
subflow may reduce the bandwidth share of f1 and thus b1 is
adjusted to b′1 accordingly. If the combined bandwidth share
b = b′1 +b2 exceeds b1, the two replica-paths p1 and p2 are
selected for the subflows. Otherwise, the temporary changes

7

are rolled back and only p1 with estimated bandwidth b1 is
selected. If the subflows are selected, the flow size Si for
each subflow i is adjusted proportional to their bandwidth
share: Si = d ∗ bi/b, where d is the size of the requested
data. The Flowserver returns the replica–path and the data
size associated with each of them to the client.

Our results show that the completion time of read jobs is
further reduced up to 10% on average. Moreover, the aver-
age difference of finish time between the two subflows of a
read job is less than a second when reading a 256 MB block.

5. IMPLEMENTATION
We implemented Mayflower in C++, with the exception

of the Flowserver which is built on top of the Java-based
Floodlight [18] controller. Our Mayflower prototype con-
sists of 7500 lines of C++ code and 3700 lines of Java code.
We used Apache Thrift [1] RPC framework for control mes-
sages between the servers and the clients. Files are trans-
ferred using the Linux Sendfile function. Sendfile is a
zero-copy mechanism which reduces I/O latency and com-
plexity by transferring data directly from kernel buffers to
the NIC, avoiding copying to userspace.

The Flowserver is implemented as a Floodlight controller
application. The replica-path function is exposed as an
RPC service. The Flowserver implementation is not tied to
Mayflower, and can be integrated with any distributed ap-
plication through its RPC framework. The RPC call to the
Flowserver accepts a list of source/destination IP addresses,
port numbers, and the size of the data to be transferred. The
RPC call returns a list of replicas and the corresponding data
size to be downloaded from those replicas.

The Nameserver stores the filesystem information in a
LevelDB [2] key-value store. LevelDB provides data persis-
tence and fast lookup through in-memory data caching. File
metadata consists of filenames and block information, occu-
pying at least 67 bytes per file. The block size and replication
factor are system-wide configurable parameters with default
values of 256 MB blocks and 3 replicas, respectively. The
default replica placement strategy follows an HDFS rack-
aware placement approach: Two replicas are placed in the
same rack and any further replicas are placed in other ran-
domly selected racks.

The Mayflower client library provides an interface similar
to HDFS. It supports create, read, write and delete functions.
The client caches file metadata to reduce load on the Name-
server. During read operations, clients query the Flowserver
to select a replica to read from.

6. EVALUATION
We evaluate the effectiveness of Mayflower’s replica-path

selection using micro-benchmarks that compare it with sev-
eral other replica-path selection schemes. We also com-
pare the performance of our prototype implementation of
Mayflower with HDFS, which is widely used in commercial
datacenters.

6.1 Experimental Setup
We conducted our experiments by emulating a 3-tier dat-

acenter network topology with 8:1 oversubscription using
Mininet [29]. Mininet leverages Linux virtualization tech-
niques to emulate hosts, and uses software switches, such as
Open vSwitch [3], to emulate the OpenFlow switches. As
emulating a complete datacenter network in a single ma-
chine imposes network size and bandwidth limitations, we
partitioned our virtual network into several slices, and dis-
tributed these slices across a cluster of 13 machines. This
allowed us to increase edge link capacity up to 1 Gbps.

Each machine in our cluster consists of a 64 GB RAM,
a 200 GB Intel S3700 SSD, and two Intel Xeon E5-2620
processors having total 12 cores of 2.1 GHz each. The ma-
chines are connected through a Mellanox SX6012 switch via
10 Gbps links.

Our testbed consists of 64 virtual hosts distributed across
four aggregation groups called pods; a pod is a grouping of
four racks connected with two common aggregate switches,
as shown in Figure 3(a). Each pod is distributed across three
physical machines. Two machines emulate the hosts and the
rack switches, while the third machine emulates the aggre-
gate switches belonging to that pod. The pods are connected
through two core switches that are emulated in a separate
dedicated machine.

We stitched these network slices together through a com-
bination of IP and MAC address translations. We also con-
sidered using GRE tunneling and Maxinet [37]. However,
we developed our scheme that is tailored to our environment
in order to improve performance. We use 1 Gbps edge links
in the virtual topology and vary the higher tier links capacity
for different oversubscription ratios.

6.1.1 Traffic Matrix
To simulate and address a variety of traffic patterns for a

distributed filesystem deployed in a datacenter, we synthe-
sized the workload using probabilistic methods, where: (1)
job arrival follows the Poisson distribution, (2) file read pop-
ularity follows the Zipf distribution [7] with the skewness
parameter ρ = 1.1, and (3) the clients are placed based on
the staggered probability described by Hedera [6]: a client
is placed in the same rack as the primary replica with proba-
bility R, in another rack but in the same pod with probability
P, and in a different pod with probability O = 1− R− P.
The replica placement follows conventional constraints of
fault tolerance domains. The primary replica is placed in
a uniform-randomly selected server. The second replica is
placed in the same pod as the primary replica, and the third
replica is placed in a different pod.

6.2 Replica/Path Selection Comparison
We compared Mayflower’s replica-path selection with

four other methods that are a combination of static and dy-
namic replica selection with various network load balancing
methods:

8

(a) Logical structure of the testbed (b) Physical structure of the testbed

Figure 3: Testbed setup

Nearest with ECMP: In this method, the closest replica to
the client is selected, and the flows are spread across redun-
dant links using ECMP. This represents the methods where
only the static information is used for replica selection and
network load balancing.

Sinbad-R with ECMP: In this scheme, a replica is selected
based on the current network state by using our read-variant
implementation of Sinbad [12], which we call Sinbad-R.
Sinbad was originally designed for dynamic replica selec-
tion during file write operations. It collects end-hosts’ net-
work load information to estimate the network utilization for
higher tier links.

To tailor Sinbad for file-read operations in Sinbad-R, we
made two necessary modifications in the original method.
First, Sinbad-R estimates the network utilization for the
links facing towards the core layer, which is opposite to
the direction of the links used for estimation in the origi-
nal Sinbad scheme. This modification is necessary because
the data-flow direction is opposite for file-reads in compar-
ison with the file-write operations. Second, if there exists
a pod where both the client and any replica are co-located,
the replica search space is restricted to only that pod. There
are no such restrictions in the original Sinbad replica selec-
tion, because all the hosts in the network are considered as
potential replica write locations.

Dynamic path selection: To evaluate the effectiveness of
Nearest and Sinbad-R replica selection combined with
dynamic network load balancing, we coupled them with
Mayflower’s network flow scheduler. However, unlike
Mayflower’s combined replica and path selection, the opti-
mization space is limited to the pre-selected source and des-
tination pairs for these schemes. We refer to these methods
as Nearest Mayflower and Sinbad-R Mayflower in our
results.

6.3 Performance

0

1

2

3

4

5

Av
g.

 c
om

pl
et

io
n

tim
e

no
rm

al
iz

ed
 to

M
ay

flo
w

er

1x

1.
42

x

1.
69

x

3.
24

x

3.
42

x

0

5

10

15

20

25

95
th

 %
ile

 c
om

pl
et

io
n

tim
e

no
rm

al
iz

ed
 to

M
ay

flo
w

er

1x

Mayflower

1.
54

x

Sinbad-R
Mayflower

2.
08

x

Sinbad-R
ECMP

12
.4

x
Nearest

Mayflower

12
.4

x

Nearest
ECMP

Figure 4: Average (top) and 95th percentile (bottom) job
completion times normalized to Mayflower (first bar).
50% of the clients are located on the same rack as the
primary replica of the requested file.

We first evaluate the performance of Mayflower’s replica-
path selection. In these experiments, we run a simple
client/server application. Each client is given a set of files
to read.

Figure 4 illustrates the performance of Mayflower’s
replica–path selection in comparison with the other meth-
ods (§ 6.2). The bars in the figure show the average and 95th

percentile job completion times normalized to Mayflower re-
sults. The error bars represent 95% confidence interval cal-
culated using Fieller’s Method [30].The workload in these
experiments represents the common scenario where most of

9

the clients are co-located with the data source in the same
rack1, following the locality distribution of (0.5, 0.3, 0.2),
which implies that half of the clients are co-located with the
primary replica.

The results highlight the benefits of following the
network-filesystem co-design approach in Mayflower; the
other approaches require on average 1.4x to 3.4x the job
completion time compared to Mayflower. At 95th percentile,
the the completion times increases to 12.4x, which high-
lights the impact of stragglers on the system performance.

The Nearest replica selection based approaches perform
poorly because the replica selection is static and oblivious
to the network state. As half of the clients are located in the
same rack as the replica, the clients have only one replica and
path option. Therefore, the edge link of the primary replica
becomes congested. Moreover, the dynamic network load
balancing cannot help in this case as the congestion location
is at edge of the data source. As we see from the results with
other locality distributions (§6.4), such link congestion can
be reduced by placing more replicas at equal distance.

For similar reasons, Sinbad-R also suffers with lower
performance. However, Sinbad-R has more replicas and
paths to choose from; the pod having the primary replica
also has a secondary replica, which implies that 80% of the
clients have the choice of two replicas, and rest of them have
the choice of all three replicas. Sinbad-R selects the replica
based on the edge link’s utilization as compared to distance
based metric used in Nearest replica selection. Therefore,
it performs significantly better than that, but still perform
poorly than Mayflower. The performance difference be-
tween Sinbad-R Mayflower and Sinbad-R ECMP shows
the benefits of dynamic network load balancing on top of
dynamic replica selection.

Mayflower, on the other hand, has all three replica op-
tions for the clients. More replica options also increases the
number of possible network paths between the client and
the replica. Mayflower evaluates all possible replica-path
options, and selects the one which is estimated to reduce
overall job completion time. If the network paths from the
closer replicas are congested, and a farther replica is a better
choice, Mayflower selects the remote replica. As a result, it
effectively avoids network hotspots close to the edge tier.

At 95th percentile, the wider performance gap between
Mayflower and the other approaches shows Mayflower’s
strength in minimizing stragglers in the system. Stragglers
adversely affect the performance of the applications that
have barrier stages.

The presented results evaluate the performance of
Mayflower for a specific workload which is common in dat-
acenters. However, several variables affect the network dy-
namics and the performance of the replica and path selection
methods, including: (1) the location of the clients relative
to the replica, it impacts the location of the hotspots in the
network, (2) the rate at which the clients start a new read

1Results with other distributions are discussed later (§ 6.4).

0

1

2

3

4

5

Av
g.

 c
om

pl
et

io
n

tim
e

no
rm

al
iz

ed
 to

M
ay

flo
w

er

1.
42

1.
42

1.
5

1.
421.

69

1.
71

2.
82

2.
04

3.
24

1.
86

1.
52 1.
62

3.
42

2.
16 2.

78

2.
16

Sinbad-R
Mayflower

Sinbad-R
ECMP

Nearest
Mayflower

Nearest
ECMP

50% in the
same rack

50% in the
same pod

50% out of
the pod

Equally
distributed

Distribution of the clients' location relative to
the primary replica (λ=0.07)

0

5

10

15

20

25

95
th

 %
ile

 c
om

pl
et

io
n

tim
e

no
rm

al
iz

ed
 to

M
ay

flo
w

er

1.
54

1.
56

1.
56

1.
542.
08

2.
17 4.

1

2.
83

12
.4

3.
96

1.
67

2.
07

12
.4

4.
24

3.
92

3.
21

Figure 5: Average (top) and 95th percentile (bottom)
job completion times normalized to Mayflower. The x-
axis shows the distribution of clients relative to primary
replica of the file (R,P,O), being in the same rack R, in the
same pod P, and in another pod O. The groups have the
distributions (0.5, 0.3, 0.2), (0.3, 0.5, 0.2), (0.2, 0.3, 0.5)
and (0.33, 0.33, 0.33) in sequence from left to right.

job, it defines the load over the network and the filesystem,
and (3) the network oversubscription ratio, which impacts
the probability of congestion in the links. The subsequent
sections discuss and evaluate the performance of Mayflower
with these variations in the network and the workload.

6.4 Impact of the Clients’ Locality
A client can be located in several locations relative to the

replicas, that defines the network path length, and . A client
can be co-located with the data source in the same machine.
We ignore this scenario due to lack of network activity. A
client can be located in the same rack as one of the replicas,
in which case the closest replica is one hop away. If it is
located in the same rack as the primary replica, the nearest
replica is one hop away. If the client is located in the same
pod as the primary replica,

Figure 5 shows the effectiveness of Mayflower’s replica-
path selection with different distributions of client locality
relative to the primary replica. The bars are grouped accord-
ing to the probability distributions (R, P, O) of the clients
being in the same rack R, in the same pod P and in another
pod O relative to the location of the primary replica. The
groups have the probability distributions (0.5, 0.3, 0.2), (0.3,
0.5, 0.2), (0.2, 0.3, 0.5) and (0.33, 0.33, 0.33) in sequence
from left to right. The bars in the first group are replicated
from the previous figure for completeness and better visual

10

comparison.
The second group of bars in Figure 5 shows the perfor-

mance when 50% of the clients have to fetch data from a
remote rack in the same pod. That places more burden on
the aggregation tier of the network compared with that of the
edge tier. The results are not significantly different than the
first group where the edge tier has higher load. Mayflower
performs consistently well despite the higher oversubscrip-
tion of the aggregate tier as compared to the edge tier. Its
implications are significant for job scheduling in distributed
data processing applications. Mayflower increases the flexi-
bility of scheduling the jobs when the jobs cannot be sched-
uled on the same machine where the input data is located.
As a result, Mayflower can increase the number of possible
locations where jobs can be scheduled.

Consider a network with 40 servers per rack and 500 racks
in a pod. The data is replicated three times in the usual fault
domains. The preference of rack locality for job placement
requires the jobs to be scheduled on the same rack where
the input data is located. Thus, there are only 120 out of
20000 (0.6% of the total) servers where a job can be sched-
uled. If the data can be fetched from a remote rack with
equal performance, it will increase the number of possible
job scheduling locations from 120 to 20000 servers. There-
fore, Mayflower can significantly improve the performance
of the applications by eliminating the restriction to schedule
the jobs only on those machines where the data is located.

The third group of bars in Figure 5 represents the case
where 50% of the clients have to fetch the data by traversing
the core tier. With the network having 8:1 core-to-rack over-
subscription in these experiments, the core tier has higher
load as it is the most oversubscribed. In this scenario, the
replica and path selections become more important because
of the higher utilization of the core tier and the replicas being
equally distant for half of the clients. In such cases, Near-
est replica selection becomes merely a random replica se-
lection. The higher performance of Sinbad-R Mayflower

and Nearest Mayflower relative to their counterparts with
ECMP path selection shows the strength of Mayflower’s
path selection method. Mayflower picks the path that maxi-
mizes bandwidth for the new flow and minimizes its impact
on the existing flows.

Finally, the last set of bars in the Figure 5 show the results
for the case when the clients can be placed anywhere rela-
tive to the primary replica with equal probability. Mayflower
consistently outperforms other techniques in this scenario.

6.5 Impact of High Job Rates
Network and filesystem performance varies with the load

or the number of jobs in the system. For a system to sustain
under higher load, it has to maintian the job completion time,
or in other words, the average number of jobs in the system.
Otherwise, due to various congestion points and overloaded
links, the number of jobs in the system will keep increasing,
and the system will reach a stage where no job will be able to

finish within an acceptable time limit. We observe the same
effect in our experiments where Nearest Mayflower and
Nearest ECMP start failing at higher job arrival rate.

Figure 6 shows the variation of the average and 95th per-
centile job completion times with the increasing job arrival
rate. The job arrival is modeled as a poisson process and the
job arrival (λ) rate is defined per server. Thus the job arrival
rate of 0.07 means that, system wide, about 5 new read jobs
are started every second. Note that the y-axis in the figure
shows the completion time instead of the improvement fac-
tor, which was shown in the previous figures. Moreover, the
error bars show the 95% confidence interval calculated using
student-t distribution.

Figure 6(a) shows the results for the common scenario in
which mojority of the clients are situated in the same rack as
the primary replica of the requested file. As expected, all the
methods perform equally well at lower job rate because of
the light burden on the system.At higher job rates, links start
to become congested and the performance degrades quickly
for all the methods except Mayflower, which has a small in-
crease in completion time.

Moreover, the gap between Mayflower’s performance and
that of the other systems increases with the job rate. The
relatively small completion time of Mayflower at higher job
rates suggests that it effectively avoids congestion points in
the network which reduces the load over the system. More-
over, the smaller growth in completion time with the job rate
suggests that Mayflower can increase the throughput of the
system by serving relatively a larger number of jobs without
degrading performance.

Figure 6(b) shows a similar trend for the case where the
core tier has the highest load. The core tier is the most over-
subscribed and 50% of the clients read data by traversing the
core tier. In this workload, we see a higher rate of increase in
the completion time for all of the replica and path selection
methods. However, Mayflower shows relatively smaller in-
creases in completion time. The overlapping performance
of Sinbad ECMP and Nearest ECMP, and the consistent
performance difference of Mayflower compared to Sinbad

Mayflower and Nearest Mayflower further corroborates
the the effectiveness of Mayflower’s path selection mecha-
nism.

6.6 Impact of Oversubscription
Figure 7 shows the performance of Mayflower with dif-

ferent network oversubscription ratios. The results shown in
the previous sections are with 8:1 core-to-rack oversubscrip-
tion ratio. Higher oversubscription increases the chances for
network congestion. We show the results for Mayflower and
Sinbad-R Mayflower as those are the best among all the
methods. Both Mayflower and Sinbad-R Mayflower have
higher impact due to higher oversubscription. Job comple-
tion times almost double when we double the oversubscrip-
tion ratio.

6.7 Comparison With HDFS

11

0
2
4
6
8

10
12
14
16
18

Av
er

ag
e

tim
e

(s
ec

)
Mayflower Sinbad

Mayflower
Sinbad
ECMP

Nearest
Mayflower

Nearest
ECMP

0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14
Job arrival rate λ (per server)

0
20
40
60
80

100
120
140
160

95
th

 p
er

ce
nt

ile
tim

e
(s

ec
)

(a) When the clients locality distribution is (0.5,0.3,0.2) — 50%
of the clients are located in the same rack as the primary replica.

0
5

10
15
20
25
30
35
40
45

Av
er

ag
e

tim
e

(s
ec

)

Mayflower Sinbad
Mayflower

Sinbad
ECMP

Nearest
Mayflower

Nearest
ECMP

0.06 0.07 0.08 0.09 0.10
Job arrival rate λ (per server)

0

50

100

150

200

250

95
th

 p
er

ce
nt

ile
tim

e
(s

ec
)

(b) When the clients locality distribution is (0.2,0.3,0.5) — 50%
of the clients fetch data which traverses the core tier.

Figure 6: Impact of the arrival rate of the new jobs per client. Mayflower can handle a relatively large number of jobs
in the system with sub-linear scalability.

0
5

10
15
20
25
30
35

Av
er

ag
e

tim
e

(s
ec

)

Mayflower Sinbad
Mayflower

8:1 16:1 24:1
Core-to-rack oversubscription (λ=0.07)

0

20

40

60

80

100

120

95
th

 p
er

ce
nt

ile
tim

e
(s

ec
)

Figure 7: Impact of network oversubscription. 50% of
the clients are located in the same rack as the primary
replica.

Figure 8 shows the performance of our Mayflower imple-
mentation compared with HDFS. We used the same network
setup and traffic matrix that we used for replica–path selec-
tion evaluation. However, we run the real filesystem in these
experiments instead of running a client/server application.
We configured HDFS to use rack awareness for replica se-
lection – HDFS selects the replica in the same rack where
the client is located, if any such replica exists. For network

0

5

10

15

20

25
Av

er
ag

e
tim

e
(s

ec
)

2.
91

3.
09

3.
36

8.
93

13
.2

11
.313

.4 14
.9

16

Mayflower HDFS-Mayflower HDFS-ECMP

0.06 0.07 0.08
Job arrival rate (λ)

0
20
40
60
80

100
120
140

95
th

 p
er

ce
nt

ile
tim

e
(s

ec
)

5.
41

5.
99

6.
87

36
.5

70
.3

35

67
.4

67
.5

66
.5

Figure 8: Mayflower real implementation comparison
with HDFS.

flow scheduling, we performed HDFS experiments with both
ECMP and Mayflower flow scheduling. For file placement,
we use the same primary replica location for both Mayflower
and HDFS.

Mayflower’s experimental results are consistent with our
simulation results. Mayflower shows a small increase in the
completion time as the job arrival rate grows. On the other
hand, the completion times for HDFS grow quickly with the
job rate. However, the default rack-aware replica selection
limits the performance of HDFS. The better performance of

12

HDFS-Mayflower when compared with HDFS-Mayflower

indicates that the network load balancing helps in reducing
the congestion in the network. Nevertheless, coordinated
replica selection with network management is key to achiev-
ing the best network and filesystem performance.

7. CONCLUSIONS
We presented Mayflower, a new distributed filesystem that

follows a network/filesystem co-design approach to improv-
ing read performance. Mayflower’s novel replica and net-
work path selection algorithm can directly optimize for aver-
age job completion time using network measurement statis-
tics collected by the SDN. We evaluated Mayflower using
both simulations and a deployment on an emulated network
using a fully functional prototype. Our results showed that
existing systems require 1.5x the completion time compared
to Mayflower using common datacenter workloads.

8. REFERENCES
[1] Apache Thrift RPC framework.

https://thrift.apache.org.
[2] Leveldb key-value store.

www.github.com/google/leveldb.
[3] Open vSwitch: Production Quality, Multilayer Open Virtual

Switch. www.openvswitch.org.
[4] Universally unique identifier (UUID).

www.bit.ly/1vjAJ2X.
[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In SIGCOMM
CCR, volume 38, pages 63–74. ACM, 2008.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, volume 10, pages 19–19, 2010.

[7] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris. Scarlett:
coping with skewed content popularity in mapreduce
clusters. In Proceedings of the sixth conference on Computer
Systems, pages 287–300. ACM, 2011.

[8] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica.
Disk-locality in datacenter computing considered irrelevant.
In Proceedings of the 13th USENIX conference on Hot topics
in operating systems, pages 12–12. USENIX Association,
2011.

[9] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In IMC, pages
267–280. ACM, 2010.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang.
Understanding data center traffic characteristics. SIGCOMM
CCR, 40(1):92–99, 2010.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE:
Fine Grained Traffic Engineering for Data Centers. In
CoNEXT, page 8. ACM, 2011.

[12] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging
endpoint flexibility in data-intensive clusters. In SIGCOMM
2013, pages 231–242. ACM, 2013.

[13] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing data transfers in computer clusters with
orchestra. In SIGCOMM CCR, volume 41, pages 98–109.
ACM, 2011.

[14] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow
scheduling with varys. In SIGCOMM, pages 443–454. ACM,
2014.

[15] W. Cui and C. Qian. Difs: Distributed flow scheduling for
data center networks. arXiv preprint arXiv:1307.7416, 2013.

[16] A. R. Curtis, W. Kim, and P. Yalagandula. Mahout:
Low-overhead datacenter traffic management using
end-host-based elephant detection. In INFOCOM, pages
1629–1637. IEEE, 2011.

[17] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron.
Decentralized task-aware scheduling for data center
networks. In SIGCOMM, pages 431–442. ACM, 2014.

[18] D. Erickson. Floodlight: open source SDN controller.
www.projectfloodlight.org.

[19] N. Farrington and A. Andreyev. Facebook’s data center
network architecture. In IEEE Optical Interconnects
Conference, pages 5–7, 2013.

[20] D. Fetterly, M. Haridasan, M. Isard, and S. Sundararaman.
Tidyfs: A simple and small distributed file system. In
USENIX ATC, 2011.

[21] A. Fikes. Storage architecture and challenges.
http://bit.ly/1Q0jhh6.

[22] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. In ACM SIGOPS Operating Systems Review,
volume 37, pages 29–43. ACM, 2003.

[23] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a
scalable and flexible data center network. In SIGCOMM,
pages 51–62. ACM, 2009.

[24] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: a high performance,
server-centric network architecture for modular data centers.
In SIGCOMM, pages 63–74. ACM, 2009.

[25] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a
scalable and fault-tolerant network structure for data centers.
In SIGCOMM, pages 75–86. ACM, 2008.

[26] C. E. Hopps. RFC 2992: Analysis of an equal-cost multi-path
algorithm, 2000. www.tools.ietf.org/html/rfc2992.

[27] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The nature of data center traffic: measurements
& analysis. In IMC, pages 202–208. ACM, 2009.

[28] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[29] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: Rapid prototyping for software-defined networks. In
SIGCOMM HotNets workshop, pages 19:1–19:6. ACM,
2010.

[30] H. Motulsky. Intuitive biostatistics, volume 1. Oxford
University Press, New York, 1995.

[31] E. B. Nightingale, J. Elson, J. Fan, O. S. Hofmann,
J. Howell, and Y. Suzue. Flat datacenter storage. In OSDI,
pages 1–15, 2012.

[32] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
Portland: a scalable fault-tolerant layer 2 data center network
fabric. In SIGCOMM, pages 39–50. ACM, 2009.

[33] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and
J. Kelly. The quantcast file system. Proceedings of the VLDB
Endowment, 6(11):1092–1101, 2013.

[34] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
hadoop distributed file system. In Proceedings of the 26th
IEEE Symposium on Mass Storage Systems and
Technologies, pages 1–10. IEEE, May 2010.

[35] F. P. Tso and D. P. Pezaros. Improving data center network
utilization using near-optimal traffic engineering. Parallel
and Distributed Systems, IEEE Transactions on,
24(6):1139–1148, 2013.

[36] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed

13

https://thrift.apache.org
www.github.com/google/leveldb
www.openvswitch.org
www.bit.ly/1vjAJ2X
www.projectfloodlight.org
http://bit.ly/1Q0jhh6
www.tools.ietf.org/html/rfc2992

file system. In OSDI, pages 307–320. USENIX Association,
2006.

[37] P. Wette, M. Draxler, and A. Schwabe. MaxiNet: Distributed
Emulation of Software-Defined Networks. In Networking
Conference, 2014 IFIP, pages 1–9. IEEE, 2014.

[38] L. Xu, J. Cipar, E. Krevat, A. Tumanov, N. Gupta, M. A.
Kozuch, and G. R. Ganger. Springfs: bridging agility and
performance in elastic distributed storage. In FAST, pages
243–255, 2014.

[39] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: a simple
technique for achieving locality and fairness in cluster
scheduling. In EuroSys, pages 265–278. ACM, 2010.

14

	Introduction
	Background and Related Work
	Distributed Filesystems
	Network Traffic Characteristics
	End-Point Location Selection
	Network Traffic Engineering

	Design Overview
	Assumptions
	Design Goals
	Architecture
	Nameserver
	Dataserver
	Flowserver

	Consistency

	Replica and Path Selection
	Problem Statement
	Replica–Path Selection Process
	Reading from Multiple Replicas

	Implementation
	Evaluation
	Experimental Setup
	Traffic Matrix

	Replica/Path Selection Comparison
	Performance
	Impact of the Clients' Locality
	Impact of High Job Rates
	Impact of Oversubscription
	Comparison With HDFS

	Conclusions
	References

