
The Development of Normative Autonomous Agents: an
Approach

Marx Viana1, Paulo Alencar2, Donald Cowan2, Carlos J. P. de Lucena1

1PUC-Rio, Software Engineering Laboratory, LES - Rio de Janeiro – RJ – Brasil
{marxviana, lucena}@les.inf.puc-rio.br

2University Waterloo – Waterloo – ON – Canada
palencar@uwaterloo.ca

Technical Report CS-2015-05

Abstract. Open multi-agent systems (MASs) act as societies in which au-
tonomous and heterogeneous agents can work towards similar or different
goals. In order to cope with the heterogeneity, autonomy and diversity of inter-
ests among the different agents in the society, open MASs establish a set of be-
havioral norms that is used as a mechanism to ensure a state of cooperation
among agents. Such norms regulate the behavior of the agents by defining ob-
ligations, permissions and prohibitions. Fulfillment of a norm may be encour-
aged through a reward while violation of a norm may be discouraged through
punishment. Although norms are promising mechanisms to regulate an agent’s
behavior, we should note that each agent is an autonomous entity that is free to
fulfill or violate each associated norm. Thus, agents can use different strategies
when deciding to achieve their goals including whether to comply with their as-
sociated norms. Agents might choose to achieve their goals while ignoring their
norms, thus overlooking the rewards or punishments they may receive. In con-
trast agents may choose to comply with all the norms although some of their
goals may not be achieved. In this context, this paper proposes a framework for
simulation of normative agents providing a basis for understanding the impacts
of norms on agents.

1 Introduction

Open multi-agent systems (MASs) are societies in which autonomous, heterogene-
ous and independently designed entities work towards similar or different goals [9]. In
order to deal with both the autonomy and diversity of interests among the different
member agents, these complex systems can provide a set of norms as a mechanism to
manage social outcomes. In this way, they provide a structure in which agents strive
to meet both individual and societal goals [19].

Norms can be defined as mechanisms that regulate the behavior of agents by defin-
ing obligations (agents must accomplish a specific outcome), permissions (agents can
act in a particular way) and prohibitions (agents must not act in a specific way) [13].
Norms are promising mechanisms to regulate the behavior of software agents as

1

mailto:palencar@uwaterloo.ca

agents are autonomous, and free to fulfill or violate each system norm. This type of
agent reasoning is called a normative strategy [10].

Several approaches [4, 19] have been proposed for the specification and implemen-
tation of norms, while others have focused on the definition of parts of an infrastruc-
ture that can be used by belief-desire-intention (BDI) agents [14] to reason about
norms [7, 11]. However, there is still a need to define an agent-oriented framework to
support the implementation of goal-oriented normative agents; that is agents with the
main purpose of achieving their goals and desires while attempting to conform to
system norms. Although there are a number of existing agent-oriented platforms such
as [1, 5], none provides support for normative agents.

In this context, we present a framework for Normative Agent Java Simulation
(JSAN). This framework was defined to build and operate agents able to deal with
goals, desires and norms and thus agents that can support normative reasoning. JSAN
extends the JASON framework [1], which already provides support for the implemen-
tation of BDI agents and a set of hot-spots that enable the implementation of norma-
tive functions. By using these function extensions, it is possible to build BDI agents
that can check if they should (i) adopt a norm, (ii) evaluate the effects on their desires
with respect to the fulfillment or violation of a norm, (iii) detect and solve conflicts
among norms, and (iv) select desires and plans based on the decision on whether to
fulfill a norm. A preliminary overview of the framework is described in [21].

The paper is organized as follows. Section 2 focuses on the representation of
norms. Section 3 presents the JASON Platform. Section 4 discusses related work. In
Section 5 details of the JSAN framework are provided and Section 6 describes a case
study by showing how agents deal with norms in real situations. Finally, Section 7
presents our conclusions and future work.

2 The Representation of Norms

Since norms [9] are designed to regulate the behavior of agents, a norm’s definition
must include the address of the agent being regulated, when the norm should be ap-
plied, the nature of the norm (permission, obligation or prohibition), and the conse-
quences of fulfilling or violating the norm (reward or punishment). In this paper, we
use the norm representation in [18]. The representation has an element norm, which is
composed of several properties. Each of those properties is briefly described in Table
1. These properties include: Addressee, Activation, Expiration, Rewards, Punish-
ments, DeonticConcept and State. The description of each property is provided in this
table. For example, Addressee is used to specify the agents or roles responsible for
fulfilling the norm.

To understand the definition of norms and their representation better, imagine that
a Fireman Commander agent assumes the lead role in rescuing civilians who are in
hazardous areas. This agent is responsible for regulating the behavior of all the other
fireman agents and their use of available resources such as helicopters, vehicles and
troops. We assume that such resources are limited. In addition, each firemen agent
should attempt to perform a rescue according to specific norms. Eventually, a behav-

2

ioral norm is sent to each firemen agent that says: “protect lives of civilians in haz-
ardous areas.” This norm has the following attributes: (i) the addressees are the fire-
men agents; (ii) the required deontic concept is obligation; and (iii) an agent agreeing
to a norm means that agent will receive a reward which is either air or ground support
for the agent’s mission. If a fireman agent violates a related norm in the environment,
then the agent receives the punishment associated with that norm. For example, there
are situations when a fireman agent requests aircraft support to accomplish a specific
rescue operation that places him or her in a situation riskier than the one allowed by
the norm. In this case, this agent will suffer the punishment associated with the norm,
such as a warning or an order that he should be temporarily restricted to headquarters
to assist other rescuers.

Note that the norm is activated if there is any person in a risky situation. In turn,
the norm expires when all civilians are safe, and the state or element regulated by the
norm is the action of using aircraft.

Table 1 – Norm Elements.

Property Description

Addressee
It is the agent or role responsible for fulfilling
the norm.

Activation
It is the activation condition for the norm to
become active.

Expiration
It is the expiration condition for the norm to
become inactive

Rewards
It represents the set of rewards to be given to the
agent for fulfilling a norm.

Punishments
It is the set of punishments to be given to the
agent for violating a norm

DeonticConcept
It indicates if the norm states an obligation, a
permission or a prohibition.

State It describes the set of states being regulated.

3 The JASON Platform

The JASON platform enables the development and implementation of Belief, De-
sire and Intention (BDI) agents using a language called AgentSpeak. An overview of
how JASON interprets AgentSpeak programs is shown in Figure 1 [12]. In this figure,
sets of beliefs, events, plans and intentions are represented by rectangles. Diamonds
represent the selection of an element of a set and circles represent some of the pro-
cesses involved in the interpretation process.

Each interpretation cycle updates the list of events based on the agent’s perception
of the environment, the messages the agent receives and the information coming from
the agent’s own execution of a plan. The Belief Review Function (BRF) revises the
Belief Base with both a literal to be added or deleted, and the intention structure that
required the belief change. A single event is selected by the Event selection function

3

(SE) and this event is unified with the triggering events in the heads of plans by the
Unify Event cycle that generates a set of all relevant plans. The context of such plans
is verified according to the Belief Base by the Check Context cycle, which generates a
set of options. The Option Select Function (SO) selects a single applicable option
from the set of options, which becomes the intended means for handling the selected
event. The option either pushes the plan on top of an existing intention (if the event
was an internal one), or creates a new intention in the set of intentions (if the event
was external, i.e., generated from perceptions of the environment). The Intention Se-
lect Function (SI) selects one of the agent’s intentions and this intention is executed
by the Execute Intention cycle. When all formulas in the body of a plan have been
executed, the whole plan is removed from the intention list, and so is the achievement
goal that generated the plan. This ends a cycle of execution, and the interpretation
starts over again, checking the state of the environment after agents have acted upon it
and generated the relevant events.

Figure 1. An Interpretation Cycle of an AgentSpeak Program [13].

4 Related Work

Some approaches have been proposed in the literature for developing agents that
evaluate the effects of fulfilling or violating norms.

4

The n-BDI architecture [3] presents a model for designing agents capable of oper-
ating in environments governed by norms. This architecture selects objectives to be
performed based on the priority associated with each objective. An objective’s priori-
ty is determined by the priority of the norms that govern the objective. However, it is
not clear in this approach how the components of a norm can be evaluated. In addi-
tion, the approach does not support a strategy to deal with conflicts between norms.

In [10], the authors propose a formal model, using the Z specification language,
for modeling agents that achieve their objectives based on the norms of the system.
According to [10] an agent created from such a model is able to: (i) check if it is the
one responsible for fulfilling a norm; (ii) verify the activation and expiration of a
norm based on the beliefs of the agent; (iii) evaluate and decide to fulfill or violate
every norm of the system; and (iv) make the decision to fulfill or violate a norm while
removing or adding agent goals. Besides not showing how the evaluation of a norm is
performed, the authors do not focus on identifying and resolving conflicts between
norms, checking fulfilled or violated norms, and showing the influence of norms on
the plan selection process and intentions of the agents.

In [8], the authors present a set of strategies that can be adopted by agents to deal
with norms. These strategies are: Social, Pressured, Opportunistic, and Rebellious.
The Social strategy focuses on the agents complying with the rules without worrying
about their individual goals. The Pressured strategy happens when agents fulfill the
norms to achieve their individual goals considering only the punishments that will
harm them. Another strategy is the Opportunistic strategy, in which agents consider
only the effects of rewards on their individual goals, and seek to fulfill only the norms
for which the rewards of the individual goals are more important than those of the
social goals. The Rebellious strategy implies that the agents focus on achieving their
individual goals, regardless of the punishments attached to the violation of the norms.
Finally, the Selfish strategy is the combination of the Pressured and Opportunistic
strategies.

5 JSAN - A Framework for Normative Agent Java Simulation

This section describes the main ideas behind the framework proposed in this pa-
per. We provide an overview of JSAN and discuss some of its details, including its
kernel (frozen-spots) and its flexible points (hot-spots) [22].

5.1 The Framework

The JSAN framework is implemented using software agents, as illustrated in Fig-
ure 2. As previously mentioned, JSAN extends the JASON framework [1], which is
an interpreter for an extended version of the AgentSpeak language proposed by Rao
[16]. The AgentSpeak language is an agent-oriented programming language that sup-
ports the creation of BDI agents and provides a platform for the development of mul-
ti-agent systems (MASs).

5

Figure 2. The JSAN Architecture.

JSAN is able to support three main functions: (i) representation of agents that can
deal with norms; (ii) visualization for agent simulations involving norms; and (iii)
creation of norms in the environment. In order to implement normative agents it is
necessary to instantiate the JSAN framework by implementing the agents’ goals,
movement strategies in terms of efficiency (low cost) and normative strategies (how
the agents deal with norms). JSAN already provides a normative process composed of
four activities, as detailed in Section 5.2.

5.2 The JSAN Architecture

The JSAN framework allows the implementation of Normative Agents (see Figure
3) and thus supports the creation of simulations to understand the impact of norms on
such agents. For this purpose there is a need to: (i) create the agent’s goals; (ii) create
different agent movement strategies; and (iii) represent how the agents will deal with
norms, so-called normative strategies.

Figure 3. The Internal Structure of the Normative Agents provided

by JSAN.

JSAN provides a normative application process represented by the NormStrategy
class, which is composed of four activities (see Figure 4): Norm Awareness (Section
5.2.1), Norm Adoption (Section 5.2.2), Norm Deliberation (Section 5.2.3) and Norm

6

Impact (Section 5.2.4). This normative application process was created based on the
process in [11]. Note that, although JSAN already provides such a process, it is possi-
ble to define alternative processes using the NormStrategy class. It is also possible to
implement different activities (or steps of the process) by extending the class
NormStrategy.

Figure 4. The Normative Strategy provided by the JSAN framework.

When we have an active norm in an agent’s environment, the following steps take
place when applying this norm [11].

1) Norm Awareness: Each agent identifies which norms are active in the envi-
ronment and determines which norms apply to that agent’s activities.

2) Norm Adoption: Each agent adopts the norms that are addressed to that
agent.

3) Norm Deliberation: Each agent assesses the agent’s goals that might be hin-
dered by satisfying a norm, and the agent’s goals that might benefit from the associat-
ed rewards and decides whether to comply with the norm and then acts accordingly.

4) Norm Impact: After an agent complies with a norm (step 3), the agent’s goals
will be updated. The cycle continues and the agent identifies other related norms.

It is important to note that these steps must take into account not only the goals of
agents, but also the mechanisms the society of agnts uses to avoid the violation of
norms, such as rewards and punishments. In other words, the agents must consider the
“social pressure” of norms before making any decision regarding norms.

5.3 Hot-Spots and Frozen-Spots

As JSAN is an extension of JASON, they share the same core functionality and
hot-spots. For example, the process used by agents to communicate and identify other
agents is an example of a hot-spot that JSAN inherited from JASON.
The hot-spots defined in JSAN are:

7

• Environment (EnvironmentSimulation class): The ExecuteAction method
was extended from the Environment. Whenever an agent tries to perform an
action, the agent’s identification and its chosen actions are passed to this
method. The code ExecuteAction method must verify that the action is valid
and then perform the action. The action could possibly change the state of
the agent. The method returns true if the action was performed successfully.

• Normative Agent (NormativeAgent class): By extending this class and im-
plementing the execute method it is possible to define different algorithms to
execute the plans of an agent.

• Create Norms (GenerateNormStrategy class): It is possible to define new
strategies to create norms in the environment.

• Norm Strategies (NormStrategy class): It is possible to define new strategies
(or plans) for the agents to interact with norms, and to execute the normative
application process. JSAN provides a default process implemented in the
classes Selfish, Rebellious and Social.

• Created Agent Goals (GenerateGoalStrategy class): It is possible to create
new goals for agents.

• Movement Strategies (MovementStrategy class): It is possible to create new
movement strategies for the agents in the environment.

• Simulation Environment Report (ReportStrategy class): It is possible to de-
fine reports as the output of the simulation. In order to use this mechanism it
is necessary to extend the ReportStrategy class, where the following parame-
ters should be provided: (i) the environment in which the simulation is being
carried out; and (ii) an object of NormStrategy class, which contains the
strategy used by the agent to handle the norms.

6 Application Scenario

6.1 Evacuating People from Areas of Risk

The need to build platforms to assist experts in both risk analysis and civilian
evacuation planning is a critical problem as more of the population migrates to cities.
[3]. Because of size and concentration of population, cities experience situations in
which people need to be rescued as a result of floods, landslides or other natural phe-
nomena often caused by climate change. Landslides, for example, are difficult to pre-
dict since they depend on many factors such as climate, soil properties and humidity
and their specific relationship. The annual number of landslides globally is estimated
to be in the thousands, and the associated infrastructure damage is billions of dollars
[17]. Planning evacuations from these areas of risk can be assisted by simulations
using the JSAN framework. For example, these simulations can be used to implement
different scenarios in which fireman agents regulated by norms rescue civilians at
risk.

8

6.1.1 Overview
The implementation of the system is composed of fireman agents, civilian agents

and norms, as illustrated in Figure 5. The goal of the fireman agents is to rescue civil-
ians who are at risk. The civilians are not governed by norms. The norms are struc-
tured to extend JSAN GenerateNormStrategy class as proposed in [18].

These simulations are normative multi-agent systems that receive data containing
information about (i) a hazardous area, (ii) the existence of civilian personnel at risk,
(iii) ways of removing civilians from these dangerous locations with troops, land ve-
hicles or aircraft, (iv) norms that fireman agents must follow during the rescue opera-
tion, and (v) rescue plans to be used in the simulation. Using the simulations, it is
possible to propose different solutions the fireman agents can follow in order to evac-
uate civilians from the areas of risk.

Figure 5. Conceptual model of the usage scenario.

The fireman agents in handling the information just described and in understand-

ing their associated norms must have: (i) a set of objectives that meets the needs of
each fireman agent; (ii) an information base to characterize the risky locations; and
(iii) a base of strategies to be used when working with norms. The Selfish strategy of
the firemen agents (See description in Section III) was implemented using the calcu-
late method of the Selfish class (see Figure 3). This method analyses the situation
where norm compliance will help the agent to meet its individual goals, without for-
getting the social goals, since norm compliance is directly linked to the benefits re-
ceived by the agent.

9

We used the PlanGenerateNorms class, an extension of the GenerateGoalsStrate-
gy class (see Figure 2) that uses the generateGoals method to create the goals for the
fireman agents based on their plans. The objectives generated for the simulation were:
(i) to save civilians in areas of risk; (ii) not to put civilian lives at risk; and (iii) to
receive aircraft support. The generateNorms method of the GenerateNormStrategy
class was used to create norms in the environment aimed only at fireman agents, pro-
vided by the PerceptGenerateNorms class in the JSAN framework. The Movement-
Strategy class has been extended to implement the method to specify how to move the
fireman agents. For this purpose, we used the ReactiveMovement class, which extends
the MovementStrategy class. The movement strategy of the fireman agents checks if
any civilian is at risk. If that is the case then one or more fireman agents must make
the rescue, and put their lives at risk. Each fireman agent may ask for help in the form
of land vehicles, aircraft, or even fire.

In the Norm class (see Table 1), the attributes were defined so that the sanctions,
activation and expiration conditions can be created. These are elements that will be
regulated by the norm, and the norm’s deontic concept (see Section II). The Enviro-
mentSimulation class is also responsible for managing a set of strategies for visualiz-
ing the simulation information represented by the ReportStrategy class. The social
contribution strategy provided by the JSAN framework is used to check the social
contribution of a norm in case the norm is fulfilled or violated by the fireman agents.
The norm-related information namely (i) the rewards and punishments linked to
norms; (ii) the norm’s deontic concept; and (iii) the plans adopted to comply with the
norm; is also tested.

Figure 6. Flow of the start of the JSAN simulation.

In Figure 6, the Fireman Commander agent receives a message about bad weather
and a second message indicating there are civilians in a hazardous location. After
receiving the latter message, the Fireman Commander agent sends an alert to the
fireman agents about the civilians at risk.

10

Figure 7. Emergency plans described in the simulation.

The plans for the rescue operation for this situation involve the use of aircraft,
ground vehicles, and whether the fireman agents need reinforcements (see Figure 7).
These plans are related to the goal: “protect the lives of civilians in areas of risk.”

Figure 8. Norm created in the simulation.

The deontic concept embedded in the norm instantiation is an obligation. Specifi-
cally a reward is granted if the norm is met and the agent gets air or ground support,
and if the norm is violated the agent will not get ground support for the rescue. Fur-
ther the element that the norm regulates is the action of using aircraft and the norm is
enabled if there is any person at risk and the norm is disabled when all civilians are
safe. The norm Rewards in Figure 8 are the rewards associated with the norm and
Reward Norm shows how the agent will get the reward if the agent complies with the
norm.

11

Figure 9. Fireman agents dealing with active norms in the usage

scenario.

Figure 9 shows the specific plans the fireman agents decided to use after the norm
has been activated because of the existence of civilians in areas of risk. If they choose
to use aerial vehicles, this will contribute negatively, and if they choose to use land
vehicles, their contribution will be positive. Because of the simulation fireman agents
use the Selfish strategy to deal with the norms and they decide to evacuate civilians
who were in this risky area using ground vehicles.

6.2 Crime Prevention

Crime prevention is a major area within criminology [2] with the challenges of
prediction and prevention particularly in the emergence of new locations with a high
crime rate. An approach used to find these new crime locations involves the use of
social simulations combining research results in criminology and computer science.

In [2], the authors present a simulation to support crime prevention by analyzing
the location of crime in a specific region. In this simulation, they explore different
strategies for moving the police to protect civilians and prevent criminal assaults.

In this paper, we present an extension of the simulation for crime prevention in
which the insertion of norms was implemented using the JSAN framework to support
the police personnel. This framework provides the necessary mechanisms to create
the norms in the simulation environment and to extend several strategies to deal with
the norms related to police personnel. JSAN provides some pre-defined strategies
already implemented in the framework.

The simulations to support crime prevention need information about the number of
criminals, the number of police personnel and the number of civilians. Next, it is as-
sumed that the city can be represented in terms of a number of separate areas or bor-
roughs. It is important to know the density of each type of agent that is present in each
city location. For example, we compute the density of criminals in a given location by
dividing the number of crimes in that area by the total number of criminals in the city.

12

In addition, in order to describe the migration of the different types of local agents to
other locations, information about the reputation (or attractiveness) of each location is
required. This reputation factor is different for each type of agent. For example, police
personnel may not normally be attracted to places where civilians are safe, that is,
places where some policemen are already present and where there is little criminal
activity. Police personnel are certainly attracted to areas with a significant number of
criminals, where there are many civilians and no policemen. The interaction among
the concepts described in the previous paragraph is shown in Figure 10. This Figure
depicts the influence among different groups in one location, where circles refer to
concepts and arrows indicate the influence of the concepts (e.g., the influence related
to attractiveness is shown by a dotted arrow). The norms included in the simulation
are only directed to policemen, who use the Selfish strategy for dealing with the
norms (see Section 4). For example, a norm created for this simulation by Ran-
domGenerateNorms class was "not put civilian lives at risk." The norm has the fol-
lowing structure: (i) the norm’s deontic concept is an obligation; (ii) if the norm is
fulfilled the agent is rewarded by being allowed to drive faster on the way to fulfilling
the norm and punished by being obligated to drive slower and thus losing the ability
to make arrests in other situations; (iii) the norm is activated if the policeman is an
active civil servant and civilians are at risk in a certain location and deactivated when
that location is safe for civilians; and (v) the element that the norm regulates is the
action of arresting criminals.

When a policeman receives the previously mentioned norm, being Selfish, their
strategy will be to compare this norm with their individual goals and assess whether
they will suffer sanctions that may affect their individual goals if they violate the
norm, and whether they will receive rewards to reach their individual goals if they
satisfy the norm. After comparing benefits (in terms of rewards) from satisfying the
norm against losses (in terms of punishments) if they violate the norm, the agents
make their decisions based on their self-interests.

The policemen receive information from various areas of the city, and they can use
this information to fight crime using different movement strategies. In this case, they
choose their movement according to the environmental situation. For example, if
there are several burglaries in a particular site, they will act reactively by getting to
the location immediately after the robberies occur [2]. Alternatively, it is possible to
act proactively. If a large number of civilians are gathered in a specific location for a
demonstration and that area has a high crime rate, the policemen can be instructed
(according to the chosen strategy) to get to the area of the location before robberies
happen. In this way the policemen try to anticipate the movement of criminals to en-
sure people are safe [2]. There is still the possibility of adopting a hybrid scheme,
which can be a combination of a reactive and a proactive approach, in order to be
more successful in the fight against crime.

13

Figure10. Interaction between criminals, police personnel and

passers-by [Bosse and Gerritsen 2010].

In the simulation (i) each agent has an identifier to indicate whether the agent is a
criminal or civil guard; (ii) the city is divided into different zones and it is possible to
know the location of each agent; and (iii) the rate of crime is calculated during every
time unit of the simulation. In addition, the agents have: (i) objectives that are con-
nected directly to their individual objective; (ii) information collected in the simula-
tion environment to assist them in capturing criminals; and (iii) strategies to handle
the norms.

In order to adopt the Selfish strategy to deal with the norms the police personnel
used the Selfish class (See Selfish class in Figure 3), which is one of the extensions of
NormStrategy class. In the Selfish class provided by the JSAN framework a method
called calculate was implemented, which receives the identity of the agents as a pa-
rameter. This method helps the agents to analyze the situation and assess whether
compliance with the existing norms can help them to achieve their individual goals.

The EnvironmentSimulation class is responsible for managing a set of strategies for
the creation of the individual goals of the agents, and the choice of the goals is made
by the GenerateGoalStrategy abstract class. We used the class RandomGenerate-
Goals and the generateGoals method and a set of previously known objectives, to
choose certain goals for the policemen randomly. The goals generated for the simula-
tion were: (i) to increase the travel speed of the policemen in the arrest of criminals;
(ii) not to put civilian lives at risk; and (iii) to win a medal for relevant services ren-
dered to society. The EnvironmentSimulation class is responsible for managing a set
of strategies for generating norms represented by the GenerateNormStrategy abstract
class, which has the abstract method generateNorms. This method will generate
norms for the simulation given a set of norms previously known by the RandomGen-
erateNorms class provided by the JSAN framework. An example of norms that can be
generated has been previously discussed.

To support crime prevention, different strategies regarding the movement of the
policeman agents are implemented through extensions of the MovementStrategy class,

14

an extension point provided by JSAN. The Reactive and Anticipatory classes were
used to implement the Execute method to define how the strategy will be used. The
reactive strategy implemented in the Reactive class assumes that the number of agents
that need to move to a new location is proportional to the percentage of crimes that
recently happened at that place. The Execute method of the Anticipatory class as-
sumes that the number of policemen that move to a new place of duty is proportional
to the predicted density of civilians that are passing through the area. Finally, a new
class was created, the Hybrid class, in which the Execute method sets the number of
policeman agents who move to a new location to the average sum of the agents de-
termined by two strategies.

In the Norm class attributes were defined so that some elements can be created
namely: (i) the sanctions, activation and expiration conditions; (ii) the agent that will
be regulated by the norm; and (iii) the deontic concept that is associated with the
norm. For example, the norm: “Do not put civilian lives at risk” has the following
attributes: (i) the addressees are the policeman agents; (ii) the required deontic con-
cept is obligation; and (iii) a reward for agreeing to a norm is either more guns or
support in the mission to capture criminals. If a policeman agent violates a related
norm, then the agent receives the associated punishment. For example, there are situa-
tions when a policeman agent requests more guns to accomplish a specific capture
operation in a dangerous location and that places the agent in a situation riskier than
the one allowed by the norm. In this case, this agent is punished according to the
norm, by receiving a warning or an order to be temporarily restricted to headquarters
to assist other policemen in administrative work.

The scenario in this article consists of four locations L1, L2, L3 and L4 [2], which
undergo changes in their attraction factor for local civilians over time. In the example
scenario number two (2), all locations start with the same basic attraction value for the
calendar where L1 = L2 = L3 = L4 = 0.25. In addition the movement strategy shown
in the graphs is anticipatory (see Figure 10). After reaching time 39 in phase two, the
base attractiveness of the location L1 and L2 are increased where L1 and L2 = 0.7 and
L3 = L4 = 0.25. Such a change in attraction can be caused by an event such as a rock
concert or circus coming to town. Later, in phase three, the event is over and moves to
another city at time 90, and the attraction value for all locations becomes equal again
(0.25). The other parameters were chosen as follows (for all scenarios). The total
population is made up of 800 offenders, 400 policemen agents and 4,000 civilians.
Initially, these agents are distributed equally over the four locations (that is, each area
contains 200 criminals, 100 policemen and 1000 civilians). The speed of the agents is
set to 0.5, and the total simulation time is 100 units of time.

To illustrate the development of the crime prevention support application using the
JSAN, we present the graphs generated by the extension of the ReportStrategy class
in Figures 11 through 14 (See section 5.3).

15

Figure 11. Details about the numbers of civilians.

Figure 11 shows the number of civilians in different locations. In all the figures
(11, 12, 13 and 14), the graphs are plotted in different colors: the red line shows the
number of civilians in the locality L1, the blue line shows the number in L2, the green
line shows the number in L3, and the yellow line shows the number in L4. In the case
of Figures 12, 13 and 14, the numbers of civilians in the locations L2, L3 and L4 are
the same as the number of civilians in the location L1 (the blue line).

Figure 12. Details about the numbers of criminals.

Figure 12 shows the number of criminals who have moved to the locality L1, be-
cause of the arrival of a circus in town, and shows that there is a decrease in the num-
ber of criminals in the time period between 39 and 90 because the police agents began
to act according to norms and start to move to that location, as seen in Figure 13.

16

Figure 13. Details about the numbers of policeman agents.

Figure 14 shows the rate of assaults that happened during the simulation time. The
crime rate increases in almost all locations until the time instant 39.

Figure 14. Details about the numbers of crimes.

After the police agents start to move to a specific location based on the norms and
begin to help prevent crimes in that location we note that the slope of the curves de-
crease.

7 Conclusions and Future Work

This paper proposes the JSAN framework, a framework for Normative Agent Java
Simulation, to build goal-oriented agents that can reason about norms. The implemen-
tation helps agents (i) to check if they should adopt or violate their related norm; (ii)

17

to evaluate the effects of the fulfillment or violation of the norm on their desires and
intentions; and (iii) to select desires and plans based on their choices (i.e., fulfilling or
violating a norm).
The applicability of such implementation can be verified by using the scenario pre-
sented in Section 6, where in the first scenario, agents are responsible for planning the
evacuation of people in hazardous locations [3]. In the second scenario, agents are
responsible for arresting criminals [2]. The agents, built according to the proposed
implementation, were able to reason about the norms they would like to fulfill, and to
select plans related to their intention of fulfilling or violating the norms.

As future work we are in the process of defining an experimental study in order to
complete the evaluation of our approach. It is also our aim to study other BDI archi-
tectures and platforms to investigate the possibility of extending them to support the
development of BDI normative agents. We also plan to implement new mechanisms
to deal with different levels of agent autonomy and show how different restriction
levels and communities can influence the satisfaction of a norm application [9], [18].
In the current version of the framework the autonomy-related restriction levels were
not taken into account. However, the framework can be enhanced with different levels
of restrictions, thus offering the possibility of achieving better results in terms of
promoting a desirable social order. As a result, agents can work toward the common
goals of the society in which they are inserted.

8 References

1. Bordini, R. H.; Hübner, J. F.; Wooldridge, M. Programming Multi-Agent Systemns in
AgentSpeak using Jason. [S.l.]: [s.n.], 2007.

2. Bosse, T.; Gerritsen, C. An Agent-Based framework to Support Crime Prevention,
AAMAS, Toronto, 2010. 525-532.

3. Cerqueira, S. L. R. et al. Plataforma GeoRisc Engenharia da Computação Aplicada à
Análise de Riscos Geo-ambientais. PUC-RIO. Rio de Janeiro, 2009.

4. Criado, N., Argente, E., Noriega, P., and Botti, V. Towards a Normative BDI Architecture
for Norm Compliance. COIN@ MALLOW2010, pages 65–81, 2010.

5. Garcia-Camino, A., Rodriguez-Aguilar, J., Sierra, C., Vasconcelos, W.: Norm-oriented
programming of electronic institutions. In: AAMAS, 2006.

6. Jadexhomepage,http://jade.tilab.com/.
7. Jennings, N.; Wooldridge, M. Software Agents, IEEE Review,. p. 17-20, 1996.
8. Kollingbaum, M.: Norm-Governed Practical Reasoning Agents. PhD thesis, University of

 A berdeen, 2005.
9. Lopez, F. L.; Luck, M.; D'Inverno, M. Constraining Autonomy through Norms, AAMAS,

2002.
10. Lopez, Fabiola López. Social Power and Norms. Diss. University of Southampton, 2003.
11. Lopez, L. F.; Marquez, A. A. An Architeture for Autonomous Normative Agents, IEEE,

Puebla, México, 2004.
12. Meneguzzi, F., Luck, M.: Norm-based behaviour modification in bdi agents. In: Proc. of

8th Int. Conf. on Autonomous Agents and Multiagent Systems, 2009.
13. Machado, R. Bordini, R. H. “Running AgentSpeak(L) agents on SIM AGENT”, August 1–

3, 2002.

18

14. Oren, N., Luck, M., Norman, T.: Argumentation for normative reasoning. In: Proc. Symp.
 B ehaviour R egulation in M ulti-Agent Systems, pp. 55–60, 2008.

15. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-architecture. In: Proc.
2nd  Int. C onf. on Principles of K now ledge Representation and Reasoning, 1991.

16. Rao, A.S.:Agentspeak(l): BDI agents speak out in a logical computable language.
In:Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038. Springer, Hei-
delberg, 1996.

17. Santos Neto, B. F. D.; Lucena, C. J. P. D. JAFF: implementando agentes auto-adaptativos
orientados a serviços, Pontifícia Universidade Católica do Rio de Janeiro, Departamento
de Informática, 2010.

18. Santos Neto, A deontic Approach for the Development of Autonomous Agents Normative.
Pontifical Catholic University - PUC-Rio – Rio de Janeiro, RJ – Brazil, 2012.

19. Silva, V. T. D.; Lucena, C. J. P. D. Modeling Multi-agente Systems, Communica-tions of
ACM, p. 103-108, 2007.

20. Silva, V.: From the specification to the implementation of norms: an automatic approach to
generate rules from norms to govern the behavior of agents. In: JAAMAS, pp. 113–155,
2008.

21. Viana, M. L., Cunha, F. P., Santos Neto, B., Alencar, P., Lucena, C. J. P. A Framework for
Supporting Simulation with Normative Agents. WESAAC, 2015. (To Appear).

22. Wooldridge, M. and Jennings, “N. R. Pitfalls of agent-oriented development,” Proceedings
of the Second International Conference on Autonomous Agents (Agents'98), ACM Press,
pp. 385-391

19

	1 Introduction
	2 The Representation of Norms
	3 The JASON Platform
	4 Related Work
	5 JSAN - A Framework for Normative Agent Java Simulation
	5.1 The Framework
	5.2 The JSAN Architecture
	5.3 Hot-Spots and Frozen-Spots

	6 Application Scenario
	6.1 Evacuating People from Areas of Risk
	6.1.1 Overview

	6.2 Crime Prevention

	7 Conclusions and Future Work
	8 References

