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Abstract. Open multi-agent systems (MASs) act as societies in which au-
tonomous and heterogeneous agents can work towards similar or different 
goals. In order to cope with the heterogeneity, autonomy and diversity of inter-
ests among the different agents in the society, open MASs establish a set of be-
havioral norms that is used as a mechanism to ensure a state of cooperation 
among agents.  Such norms regulate the behavior of the agents by defining ob-
ligations, permissions and prohibitions. Fulfillment of a norm may be encour-
aged through a reward while violation of a norm may be discouraged through 
punishment. Although norms are promising mechanisms to regulate an agent’s 
behavior, we should note that each agent is an autonomous entity that is free to 
fulfill or violate each associated norm. Thus, agents can use different strategies 
when deciding to achieve their goals including whether to comply with their as-
sociated norms. Agents might choose to achieve their goals while ignoring their 
norms, thus overlooking the rewards or punishments they may receive. In con-
trast agents may choose to comply with all the norms although some of their 
goals may not be achieved. In this context, this paper proposes a framework for 
simulation of normative agents providing a basis for understanding the impacts 
of norms on agents. 

1 Introduction 

Open multi-agent systems (MASs) are societies in which autonomous, heterogene-
ous and independently designed entities work towards similar or different goals [9]. In 
order to deal with both the autonomy and diversity of interests among the different 
member agents, these complex systems can provide a set of norms as a mechanism to 
manage social outcomes. In this way, they provide a structure in which agents strive 
to meet both individual and societal goals [19]. 

Norms can be defined as mechanisms that regulate the behavior of agents by defin-
ing obligations (agents must accomplish a specific outcome), permissions (agents can 
act in a particular way) and prohibitions (agents must not act in a specific way) [13]. 
Norms are promising mechanisms to regulate the behavior of software agents as 
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agents are autonomous, and free to fulfill or violate each system norm. This type of 
agent reasoning is called a normative strategy [10]. 

Several approaches [4, 19] have been proposed for the specification and implemen-
tation of norms, while others have focused on the definition of parts of an infrastruc-
ture that can be used by belief-desire-intention (BDI) agents [14] to reason about 
norms [7, 11]. However, there is still a need to define an agent-oriented framework to 
support the implementation of goal-oriented normative agents; that is agents with the 
main purpose of achieving their goals and desires while attempting to conform to 
system norms. Although there are a number of existing agent-oriented platforms such 
as [1, 5], none provides support for normative agents. 

In this context, we present a framework for Normative Agent Java Simulation 
(JSAN). This framework was defined to build and operate agents able to deal with 
goals, desires and norms and thus agents that can support normative reasoning. JSAN 
extends the JASON framework [1], which already provides support for the implemen-
tation of BDI agents and a set of hot-spots that enable the implementation of norma-
tive functions. By using these function extensions, it is possible to build BDI agents 
that can check if they should (i) adopt a norm, (ii) evaluate the effects on their desires 
with respect to the fulfillment or violation of a norm, (iii) detect and solve conflicts 
among norms, and (iv) select desires and plans based on the decision on whether to 
fulfill a norm. A preliminary overview of the framework is described in [21]. 

The paper is organized as follows. Section 2 focuses on the representation of 
norms. Section 3 presents the JASON Platform. Section 4 discusses related work. In 
Section 5 details of the JSAN framework are provided and Section 6 describes a case 
study by showing how agents deal with norms in real situations. Finally, Section 7 
presents our conclusions and future work. 

2 The Representation of Norms 

Since norms [9] are designed to regulate the behavior of agents, a norm’s definition 
must include the address of the agent being regulated, when the norm should be ap-
plied, the nature of the norm (permission, obligation or prohibition), and the conse-
quences of fulfilling or violating the norm (reward or punishment). In this paper, we 
use the norm representation in [18]. The representation has an element norm, which is 
composed of several properties. Each of those properties is briefly described in Table 
1. These properties include: Addressee, Activation, Expiration, Rewards, Punish-
ments, DeonticConcept and State. The description of each property is provided in this 
table. For example, Addressee is used to specify the agents or roles responsible for 
fulfilling the norm. 

To understand the definition of norms and their representation better, imagine that 
a Fireman Commander agent assumes the lead role in rescuing civilians who are in 
hazardous areas. This agent is responsible for regulating the behavior of all the other 
fireman agents and their use of available resources such as helicopters, vehicles and 
troops. We assume that such resources are limited. In addition, each firemen agent 
should attempt to perform a rescue according to specific norms. Eventually, a behav-
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ioral norm is sent to each firemen agent that says: “protect lives of civilians in haz-
ardous areas.” This norm has the following attributes: (i) the addressees are the fire-
men agents; (ii) the required deontic concept is obligation; and (iii) an agent agreeing 
to a norm means that agent will receive a reward which is either air or ground support 
for the agent’s mission. If a fireman agent violates a related norm in the environment, 
then the agent receives the punishment associated with that norm. For example, there 
are situations when a fireman agent requests aircraft support to accomplish a specific 
rescue operation that places him or her in a situation riskier than the one allowed by 
the norm. In this case, this agent will suffer the punishment associated with the norm, 
such as a warning or an order that he should be temporarily restricted to headquarters 
to assist other rescuers.  

Note that the norm is activated if there is any person in a risky situation. In turn, 
the norm expires when all civilians are safe, and the state or element regulated by the 
norm is the action of using aircraft. 

Table 1 – Norm Elements. 

Property Description 

Addressee 
It is the agent or role responsible for fulfilling 
the norm. 

Activation 
It is the activation condition for the norm to 
become active.  

Expiration 
It is the expiration condition for the norm to 
become inactive 

Rewards 
It represents the set of rewards to be given to the 
agent for fulfilling a norm. 

Punishments 
It is the set of punishments to be given to the 
agent for violating a norm 

DeonticConcept 
It indicates if the norm states an obligation, a 
permission or a prohibition. 

State It describes the set of states being regulated. 

3 The JASON Platform 

The JASON platform enables the development and implementation of Belief, De-
sire and Intention (BDI) agents using a language called AgentSpeak. An overview of 
how JASON interprets AgentSpeak programs is shown in Figure 1 [12]. In this figure, 
sets of beliefs, events, plans and intentions are represented by rectangles. Diamonds 
represent the selection of an element of a set and circles represent some of the pro-
cesses involved in the interpretation process. 

Each interpretation cycle updates the list of events based on the agent’s perception 
of the environment, the messages the agent receives and the information coming from 
the agent’s own execution of a plan. The Belief Review Function (BRF) revises the 
Belief Base with both a literal to be added or deleted, and the intention structure that 
required the belief change. A single event is selected by the Event selection function 
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(SE) and this event is unified with the triggering events in the heads of plans by the 
Unify Event cycle that generates a set of all relevant plans. The context of such plans 
is verified according to the Belief Base by the Check Context cycle, which generates a 
set of options. The Option Select Function (SO) selects a single applicable option 
from the set of options, which becomes the intended means for handling the selected 
event. The option either pushes the plan on top of an existing intention (if the event 
was an internal one), or creates a new intention in the set of intentions (if the event 
was external, i.e., generated from perceptions of the environment). The Intention Se-
lect Function (SI) selects one of the agent’s intentions and this intention is executed 
by the Execute Intention cycle. When all formulas in the body of a plan have been 
executed, the whole plan is removed from the intention list, and so is the achievement 
goal that generated the plan. This ends a cycle of execution, and the interpretation 
starts over again, checking the state of the environment after agents have acted upon it 
and generated the relevant events. 

 

 
Figure 1. An Interpretation Cycle of an AgentSpeak Program [13]. 

4 Related Work 

Some approaches have been proposed in the literature for developing agents that 
evaluate the effects of fulfilling or violating norms. 
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The n-BDI architecture [3] presents a model for designing agents capable of oper-
ating in environments governed by norms. This architecture selects objectives to be 
performed based on the priority associated with each objective. An objective’s priori-
ty is determined by the priority of the norms that govern the objective. However, it is 
not clear in this approach how the components of a norm can be evaluated. In addi-
tion, the approach does not support a strategy to deal with conflicts between norms. 

In [10], the authors propose a formal model, using the Z specification language, 
for modeling agents that achieve their objectives based on the norms of the system. 
According to [10] an agent created from such a model is able to: (i) check if it is the 
one responsible for fulfilling a norm; (ii) verify the activation and expiration of a 
norm based on the beliefs of the agent; (iii) evaluate and decide to fulfill or violate 
every norm of the system; and (iv) make the decision to fulfill or violate a norm while 
removing or adding agent goals. Besides not showing how the evaluation of a norm is 
performed, the authors do not focus on identifying and resolving conflicts between 
norms, checking fulfilled or violated norms, and showing the influence of norms on 
the plan selection process and intentions of the agents. 

In [8], the authors present a set of strategies that can be adopted by agents to deal 
with norms. These strategies are: Social, Pressured, Opportunistic, and Rebellious. 
The Social strategy focuses on the agents complying with the rules without worrying 
about their individual goals. The Pressured strategy happens when agents fulfill the 
norms to achieve their individual goals considering only the punishments that will 
harm them. Another strategy is the Opportunistic strategy, in which agents consider 
only the effects of rewards on their individual goals, and seek to fulfill only the norms 
for which the rewards of the individual goals are more important than those of the 
social goals. The Rebellious strategy implies that the agents focus on achieving their 
individual goals, regardless of the punishments attached to the violation of the norms. 
Finally, the Selfish strategy is the combination of the Pressured and Opportunistic 
strategies. 

5 JSAN - A Framework for Normative Agent Java Simulation 

This section describes the main ideas behind the framework proposed in this pa-
per. We provide an overview of JSAN and discuss some of its details, including its 
kernel (frozen-spots) and its flexible points (hot-spots) [22]. 

5.1 The Framework 

The JSAN framework is implemented using software agents, as illustrated in Fig-
ure 2. As previously mentioned, JSAN extends the JASON framework [1], which is 
an interpreter for an extended version of the AgentSpeak language proposed by Rao 
[16]. The AgentSpeak language is an agent-oriented programming language that sup-
ports the creation of BDI agents and provides a platform for the development of mul-
ti-agent systems (MASs).  
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Figure 2. The JSAN Architecture. 

JSAN is able to support three main functions: (i) representation of agents that can 
deal with norms; (ii) visualization for agent simulations involving norms; and (iii) 
creation of norms in the environment. In order to implement normative agents it is 
necessary to instantiate the JSAN framework by implementing the agents’ goals, 
movement strategies in terms of efficiency (low cost) and normative strategies (how 
the agents deal with norms). JSAN already provides a normative process composed of 
four activities, as detailed in Section 5.2. 

5.2 The JSAN Architecture 

The JSAN framework allows the implementation of Normative Agents (see Figure 
3) and thus supports the creation of simulations to understand the impact of norms on 
such agents. For this purpose there is a need to: (i) create the agent’s goals; (ii) create 
different agent movement strategies; and (iii) represent how the agents will deal with 
norms, so-called normative strategies. 

 

 
Figure 3. The Internal Structure of the Normative Agents provided 

by JSAN. 

JSAN provides a normative application process represented by the NormStrategy 
class, which is composed of four activities (see Figure 4): Norm Awareness (Section 
5.2.1), Norm Adoption (Section 5.2.2), Norm Deliberation (Section 5.2.3) and Norm 
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Impact (Section 5.2.4). This normative application process was created based on the 
process in [11]. Note that, although JSAN already provides such a process, it is possi-
ble to define alternative processes using the NormStrategy class. It is also possible to 
implement different activities (or steps of the process) by extending the class 
NormStrategy.  

 
Figure 4. The Normative Strategy provided by the JSAN framework. 

When we have an active norm in an agent’s environment, the following steps take 
place when applying this norm [11].  

1) Norm Awareness: Each agent identifies which norms are active in the envi-
ronment and determines which norms apply to that agent’s activities. 

2) Norm Adoption: Each agent adopts the norms that are addressed to that 
agent. 

3) Norm Deliberation: Each agent assesses the agent’s goals that might be hin-
dered by satisfying a norm, and the agent’s goals that might benefit from the associat-
ed rewards and decides whether to comply with the norm and then acts accordingly.  

4) Norm Impact: After an agent complies with a norm (step 3), the agent’s goals 
will be updated. The cycle continues and the agent identifies other related norms.  

It is important to note that these steps must take into account not only the goals of 
agents, but also the mechanisms the society of agnts uses to avoid the violation of 
norms, such as rewards and punishments. In other words, the agents must consider the 
“social pressure” of norms before making any decision regarding norms. 

5.3 Hot-Spots and Frozen-Spots 

As JSAN is an extension of JASON, they share the same core functionality and 
hot-spots. For example, the process used by agents to communicate and identify other 
agents is an example of a hot-spot that JSAN inherited from JASON. 
The hot-spots defined in JSAN are: 
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• Environment (EnvironmentSimulation class): The ExecuteAction method 
was extended from the Environment. Whenever an agent tries to perform an 
action, the agent’s identification and its chosen actions are passed to this 
method. The code ExecuteAction method must verify that the action is valid 
and then perform the action. The action could possibly change the state of 
the agent. The method returns true if the action was performed successfully. 

• Normative Agent (NormativeAgent class): By extending this class and im-
plementing the execute method it is possible to define different algorithms to 
execute the plans of an agent. 

• Create Norms (GenerateNormStrategy class): It is possible to define new 
strategies to create norms in the environment. 

• Norm Strategies (NormStrategy class): It is possible to define new strategies 
(or plans) for the agents to interact with norms, and to execute the normative 
application process. JSAN provides a default process implemented in the 
classes Selfish, Rebellious and Social. 

• Created Agent Goals (GenerateGoalStrategy class): It is possible to create 
new goals for agents. 

• Movement Strategies (MovementStrategy class): It is possible to create new 
movement strategies for the agents in the environment. 

• Simulation Environment Report (ReportStrategy class): It is possible to de-
fine reports as the output of the simulation. In order to use this mechanism it 
is necessary to extend the ReportStrategy class, where the following parame-
ters should be provided: (i) the environment in which the simulation is being 
carried out; and (ii) an object of NormStrategy class, which contains the 
strategy used by the agent to handle the norms. 

6 Application Scenario  

6.1 Evacuating People from Areas of Risk 

The need to build platforms to assist experts in both risk analysis and civilian 
evacuation planning is a critical problem as more of the population migrates to cities. 
[3]. Because of size and concentration of population, cities experience situations in 
which people need to be rescued as a result of floods, landslides or other natural phe-
nomena often caused by climate change. Landslides, for example, are difficult to pre-
dict since they depend on many factors such as climate, soil properties and humidity 
and their specific relationship. The annual number of landslides globally is estimated 
to be in the thousands, and the associated infrastructure damage is billions of dollars 
[17]. Planning evacuations from these areas of risk can be assisted by simulations 
using the JSAN framework. For example, these simulations can be used to implement 
different scenarios in which fireman agents regulated by norms rescue civilians at 
risk. 
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6.1.1 Overview 
The implementation of the system is composed of fireman agents, civilian agents 

and norms, as illustrated in Figure 5. The goal of the fireman agents is to rescue civil-
ians who are at risk. The civilians are not governed by norms. The norms are struc-
tured to extend JSAN GenerateNormStrategy class as proposed in [18]. 

These simulations are normative multi-agent systems that receive data containing 
information about (i) a hazardous area, (ii) the existence of civilian personnel at risk, 
(iii) ways of removing civilians from these dangerous locations with troops, land ve-
hicles or aircraft, (iv) norms that fireman agents must follow during the rescue opera-
tion, and (v) rescue plans to be used in the simulation. Using the simulations, it is 
possible to propose different solutions the fireman agents can follow in order to evac-
uate civilians from the areas of risk. 

 

 

Figure 5. Conceptual model of the usage scenario. 

 
The fireman agents in handling the information just described and in understand-

ing their associated norms must have: (i) a set of objectives that meets the needs of 
each fireman agent; (ii) an information base to characterize the risky locations; and 
(iii) a base of strategies to be used when working with norms. The Selfish strategy of 
the firemen agents (See description in Section III) was implemented using the calcu-
late method of the Selfish class (see Figure 3). This method analyses the situation 
where norm compliance will help the agent to meet its individual goals, without for-
getting the social goals, since norm compliance is directly linked to the benefits re-
ceived by the agent. 
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We used the PlanGenerateNorms class, an extension of the GenerateGoalsStrate-
gy class (see Figure 2) that uses the generateGoals method to create the goals for the 
fireman agents based on their plans. The objectives generated for the simulation were: 
(i) to save civilians in areas of risk; (ii) not to put civilian lives at risk; and (iii) to 
receive aircraft support. The generateNorms method of the GenerateNormStrategy 
class was used to create norms in the environment aimed only at fireman agents, pro-
vided by the PerceptGenerateNorms class in the JSAN framework. The Movement-
Strategy class has been extended to implement the method to specify how to move the 
fireman agents. For this purpose, we used the ReactiveMovement class, which extends 
the MovementStrategy class. The movement strategy of the fireman agents checks if 
any civilian is at risk. If that is the case then one or more fireman agents must make 
the rescue, and put their lives at risk. Each fireman agent may ask for help in the form 
of land vehicles, aircraft, or even fire. 

In the Norm class (see Table 1), the attributes were defined so that the sanctions, 
activation and expiration conditions can be created. These are elements that will be 
regulated by the norm, and the norm’s deontic concept (see Section II). The Enviro-
mentSimulation class is also responsible for managing a set of strategies for visualiz-
ing the simulation information represented by the ReportStrategy class. The social 
contribution strategy provided by the JSAN framework is used to check the social 
contribution of a norm in case the norm is fulfilled or violated by the fireman agents. 
The norm-related information namely (i) the rewards and punishments linked to 
norms; (ii) the norm’s deontic concept; and (iii) the plans adopted to comply with the 
norm; is also tested. 

 
Figure 6. Flow of the start of the JSAN simulation.  

In Figure 6, the Fireman Commander agent receives a message about bad weather 
and a second message indicating there are civilians in a hazardous location. After 
receiving the latter message, the Fireman Commander agent sends an alert to the 
fireman agents about the civilians at risk. 

10 
 



 
Figure 7. Emergency plans described in the simulation. 

The plans for the rescue operation for this situation involve the use of aircraft, 
ground vehicles, and whether the fireman agents need reinforcements (see Figure 7). 
These plans are related to the goal: “protect the lives of civilians in areas of risk.”  

 
Figure 8. Norm created in the simulation. 

The deontic concept embedded in the norm instantiation is an obligation. Specifi-
cally a reward is granted if the norm is met and the agent gets air or ground support, 
and if the norm is violated the agent will not get ground support for the rescue. Fur-
ther the element that the norm regulates is the action of using aircraft and the norm is 
enabled if there is any person at risk and the norm is disabled when all civilians are 
safe. The norm Rewards in Figure 8 are the rewards associated with the norm and 
Reward Norm shows how the agent will get the reward if the agent complies with the 
norm. 
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Figure 9. Fireman agents dealing with active norms in the usage 

scenario. 

Figure 9 shows the specific plans the fireman agents decided to use after the norm 
has been activated because of the existence of civilians in areas of risk. If they choose 
to use aerial vehicles, this will contribute negatively, and if they choose to use land 
vehicles, their contribution will be positive. Because of the simulation fireman agents 
use the Selfish strategy to deal with the norms and they decide to evacuate civilians 
who were in this risky area using ground vehicles. 

6.2 Crime Prevention 

Crime prevention is a major area within criminology [2] with the challenges of 
prediction and prevention particularly in the emergence of new locations with a high 
crime rate. An approach used to find these new crime locations involves the use of 
social simulations combining research results in criminology and computer science. 

In [2], the authors present a simulation to support crime prevention by analyzing 
the location of crime in a specific region. In this simulation, they explore different 
strategies for moving the police to protect civilians and prevent criminal assaults. 

In this paper, we present an extension of the simulation for crime prevention in 
which the insertion of norms was implemented using the JSAN framework to support 
the police personnel.  This framework provides the necessary mechanisms to create 
the norms in the simulation environment and to extend several strategies to deal with 
the norms related to police personnel. JSAN provides some pre-defined strategies 
already implemented in the framework.  

The simulations to support crime prevention need information about the number of 
criminals, the number of police personnel and the number of civilians. Next, it is as-
sumed that the city can be represented in terms of a number of separate areas or bor-
roughs. It is important to know the density of each type of agent that is present in each 
city location. For example, we compute the density of criminals in a given location by 
dividing the number of crimes in that area by the total number of criminals in the city. 
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In addition, in order to describe the migration of the different types of local agents to 
other locations, information about the reputation (or attractiveness) of each location is 
required. This reputation factor is different for each type of agent. For example, police 
personnel may not normally be attracted to places where civilians are safe, that is, 
places where some policemen are already present and where there is little criminal 
activity. Police personnel are certainly attracted to areas with a significant number of 
criminals, where there are many civilians and no policemen. The interaction among 
the concepts described in the previous paragraph is shown in Figure 10. This Figure 
depicts the influence among different groups in one location, where circles refer to 
concepts and arrows indicate the influence of the concepts (e.g., the influence related 
to attractiveness is shown by a dotted arrow). The norms included in the simulation 
are only directed to policemen, who use the Selfish strategy for dealing with the 
norms (see Section 4). For example, a norm created for this simulation by Ran-
domGenerateNorms class was "not put civilian lives at risk." The norm has the fol-
lowing structure: (i) the norm’s deontic concept is an obligation; (ii) if the norm is 
fulfilled the agent is rewarded by being allowed to drive faster on the way to fulfilling 
the norm and punished by being obligated to drive slower and thus losing the ability 
to make arrests in other situations; (iii) the norm is activated if the policeman is an 
active civil servant and civilians are at risk in a certain location and deactivated when 
that location is safe for civilians; and (v) the element that the norm regulates is the 
action of arresting criminals.  

When a policeman receives the previously mentioned norm, being Selfish, their 
strategy will be to compare this norm with their individual goals and assess whether 
they will suffer sanctions that may affect their individual goals if they violate the 
norm, and whether they will receive rewards to reach their individual goals if they 
satisfy the norm. After comparing benefits (in terms of rewards) from satisfying the 
norm against losses (in terms of punishments) if they violate the norm, the agents 
make their decisions based on their self-interests. 

The policemen receive information from various areas of the city, and they can use 
this information to fight crime using different movement strategies. In this case, they 
choose their movement according to the environmental situation. For example, if 
there are several burglaries in a particular site, they will act reactively by getting to 
the location immediately after the robberies occur [2]. Alternatively, it is possible to 
act proactively. If a large number of civilians are gathered in a specific location for a 
demonstration and that area has a high crime rate, the policemen can be instructed 
(according to the chosen strategy) to get to the area of the location before robberies 
happen. In this way the policemen try to anticipate the movement of criminals to en-
sure people are safe [2]. There is still the possibility of adopting a hybrid scheme, 
which can be a combination of a reactive and a proactive approach, in order to be 
more successful in the fight against crime. 
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Figure10. Interaction between criminals, police personnel and 

passers-by [Bosse and Gerritsen 2010].  

In the simulation (i) each agent has an identifier to indicate whether the agent is a 
criminal or civil guard; (ii) the city is divided into different zones and it is possible to 
know the location of each agent; and (iii) the rate of crime is calculated during every 
time unit of the simulation. In addition, the agents have: (i) objectives that are con-
nected directly to their individual objective; (ii) information collected in the simula-
tion environment to assist them in capturing criminals; and (iii) strategies to handle 
the norms. 

In order to adopt the Selfish strategy to deal with the norms the police personnel 
used the Selfish class (See Selfish class in Figure 3), which is one of the extensions of 
NormStrategy class. In the Selfish class provided by the JSAN framework a method 
called calculate was implemented, which receives the identity of the agents as a pa-
rameter. This method helps the agents to analyze the situation and assess whether 
compliance with the existing norms can help them to achieve their individual goals. 

The EnvironmentSimulation class is responsible for managing a set of strategies for 
the creation of the individual goals of the agents, and the choice of the goals is made 
by the GenerateGoalStrategy abstract class. We used the class RandomGenerate-
Goals and the generateGoals method and a set of previously known objectives, to 
choose certain goals for the policemen randomly. The goals generated for the simula-
tion were: (i) to increase the travel speed of the policemen in the arrest of criminals; 
(ii) not to put civilian lives at risk; and (iii) to win a medal for relevant services ren-
dered to society. The EnvironmentSimulation class is responsible for managing a set 
of strategies for generating norms represented by the GenerateNormStrategy abstract 
class, which has the abstract method generateNorms. This method will generate 
norms for the simulation given a set of norms previously known by the RandomGen-
erateNorms class provided by the JSAN framework. An example of norms that can be 
generated has been previously discussed.  

To support crime prevention, different strategies regarding the movement of the 
policeman agents are implemented through extensions of the MovementStrategy class, 
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an extension point provided by JSAN. The Reactive and Anticipatory classes were 
used to implement the Execute method to define how the strategy will be used. The 
reactive strategy implemented in the Reactive class assumes that the number of agents 
that need to move to a new location is proportional to the percentage of crimes that 
recently happened at that place. The Execute method of the Anticipatory class as-
sumes that the number of policemen that move to a new place of duty is proportional 
to the predicted density of civilians that are passing through the area. Finally, a new 
class was created, the Hybrid class, in which the Execute method sets the number of 
policeman agents who move to a new location to the average sum of the agents de-
termined by two strategies. 

In the Norm class attributes were defined so that some elements can be created 
namely: (i) the sanctions, activation and expiration conditions; (ii) the agent that will 
be regulated by the norm; and (iii) the deontic concept that is associated with the 
norm. For example, the norm: “Do not put civilian lives at risk” has the following 
attributes: (i) the addressees are the policeman agents; (ii) the required deontic con-
cept is obligation; and (iii) a reward for agreeing to a norm is either more guns or 
support in the mission to capture criminals. If a policeman agent violates a related 
norm, then the agent receives the associated punishment. For example, there are situa-
tions when a policeman agent requests more guns to accomplish a specific capture 
operation in a dangerous location and that places the agent in a situation riskier than 
the one allowed by the norm. In this case, this agent is punished according to the 
norm, by receiving a warning or an order to be temporarily restricted to headquarters 
to assist other policemen in administrative work. 

The scenario in this article consists of four locations L1, L2, L3 and L4 [2], which 
undergo changes in their attraction factor for local civilians over time. In the example 
scenario number two (2), all locations start with the same basic attraction value for the 
calendar where L1 = L2 = L3 = L4 = 0.25. In addition the movement strategy shown 
in the graphs is anticipatory (see Figure 10). After reaching time 39 in phase two, the 
base attractiveness of the location L1 and L2 are increased where L1 and L2 = 0.7 and 
L3 = L4 = 0.25. Such a change in attraction can be caused by an event such as a rock 
concert or circus coming to town. Later, in phase three, the event is over and moves to 
another city at time 90, and the attraction value for all locations becomes equal again 
(0.25). The other parameters were chosen as follows (for all scenarios). The total 
population is made up of 800 offenders, 400 policemen agents and 4,000 civilians. 
Initially, these agents are distributed equally over the four locations (that is, each area 
contains 200 criminals, 100 policemen and 1000 civilians). The speed of the agents is 
set to 0.5, and the total simulation time is 100 units of time. 

To illustrate the development of the crime prevention support application using the 
JSAN, we present the graphs generated by the extension of the ReportStrategy class 
in Figures 11 through 14 (See section 5.3). 
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Figure 11. Details about the numbers of civilians. 

Figure 11 shows the number of civilians in different locations. In all the figures 
(11, 12, 13 and 14), the graphs are plotted in different colors: the red line shows the 
number of civilians in the locality L1, the blue line shows the number in L2, the green 
line shows the number in L3, and the yellow line shows the number in L4. In the case 
of Figures 12, 13 and 14, the numbers of civilians in the locations L2, L3 and L4 are 
the same as the number of civilians in the location L1 (the blue line). 

 
Figure 12. Details about the numbers of criminals. 

Figure 12 shows the number of criminals who have moved to the locality L1, be-
cause of the arrival of a circus in town, and shows that there is a decrease in the num-
ber of criminals in the time period between 39 and 90 because the police agents began 
to act according to norms and start to move to that location, as seen in Figure 13. 
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Figure 13. Details about the numbers of policeman agents. 

Figure 14 shows the rate of assaults that happened during the simulation time. The 
crime rate increases in almost all locations until the time instant 39. 

 
Figure 14. Details about the numbers of crimes. 

After the police agents start to move to a specific location based on the norms and 
begin to help prevent crimes in that location we note that the slope of the curves de-
crease.  

7 Conclusions and Future Work  

This paper proposes the JSAN framework, a framework for Normative Agent Java 
Simulation, to build goal-oriented agents that can reason about norms. The implemen-
tation helps agents (i) to check if they should adopt or violate their related norm; (ii) 
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to evaluate the effects of the fulfillment or violation of the norm on their desires and 
intentions; and (iii) to select desires and plans based on their choices (i.e., fulfilling or 
violating a norm). 
The applicability of such implementation can be verified by using the scenario pre-
sented in Section 6, where in the first scenario, agents are responsible for planning the 
evacuation of people in hazardous locations [3]. In the second scenario, agents are 
responsible for arresting criminals [2]. The agents, built according to the proposed 
implementation, were able to reason about the norms they would like to fulfill, and to 
select plans related to their intention of fulfilling or violating the norms.  

As future work we are in the process of defining an experimental study in order to 
complete the evaluation of our approach. It is also our aim to study other BDI archi-
tectures and platforms to investigate the possibility of extending them to support the 
development of BDI normative agents. We also plan to implement new mechanisms 
to deal with different levels of agent autonomy and show how different restriction 
levels and communities can influence the satisfaction of a norm application [9], [18]. 
In the current version of the framework the autonomy-related restriction levels were 
not taken into account. However, the framework can be enhanced with different levels 
of restrictions, thus offering the possibility of achieving better results in terms of 
promoting a desirable social order. As a result, agents can work toward the common 
goals of the society in which they are inserted. 
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