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Abstract

Affect Control Theory is a mathematical representation of the interactions between two persons,
in which it is posited that people behave in a way so as to minimize the amount of deflection between
their cultural emotional sentiments and the transient emotional sentiments that are created by each
situation. Affect control theory presents a maximum likelihood solution in which optimal behaviours
or identities can be predicted based on past interactions. Here, we formulate a probabilistic and
decision theoretic model of the same underlying principles, and show this to be a generalization of
the basic theory. The new model, called BayesAct, is more expressive than the original theory, as
it can maintain multiple hypotheses about behaviours and identities simultaneously as a probability
distribution, and can make value-directed action choices. This allows the model to generate affec-
tively believable interactions with people by learning about their identity, predicting their behaviours,
and taking actions that are simultaneously goal-directed and affect-sensitive. We demonstrate this
generalisation with a set of simulations. We then show how our model can be used as an emotional
“plug-in” for systems that interact with humans. We demonstrate human-interactive capability by
eliciting knowledge from 37 participants with a survey, and then using this knowledge to build a
simple demonstrative intelligent tutoring application. We present results from a pilot study with 20
participants using the application.

1 Introduction

Designers of intelligent systems have increasingly attended to theories of human emotion, in order to
build software interfaces that allow its users to experience naturalistic flows of communication with
the computer. This endeavour requires a comprehensive mathematical representation of the relations
between affective states and actions that captures, ideally, the subtle cultural rules underlying human
communication and emotional experience. In this paper, we show that Affect Control Theory (ACT), a
mathematically formalized theory of the interplays between cultural representations, interactants’ identi-
ties, and affective experience [1], is a suitable framework for developing emotionally intelligent agents. To
accomplish this, we propose a probabilistic and decision theoretic generalisation of ACT, called BayesAct,
which we argue is more flexible than the original statement of the theory for the purpose of modelling
human-computer interaction. BayesAct is formulated as a partially observable Markov decision process
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or POMDP. The key contributions of this theory are: (1) to represent emotions as probability distri-
butions over a continuous affective space; (2) to allow affective identities to be dynamic and uncertain;
(3) to endow agents with the ability to learn affective identities of their interactants; and (4) to in-
troduce explicit utility functions that parsimoniously trade-off emotional and propositional goals for a
human-interactive agent. This final contribution is what allows BayesAct to be used in human-computer
interaction: it provides the computerised agent with a mechanism for predicting how the affective state
of an interaction will progress (based on Affect Control Theory) and how this will affect the object of the
interaction (e.g. the software application being used). The agent can then select its strategy of action in
order to maximize the expected values of the outcomes based both on the application state and on its
emotional alignment with the human. The main contribution of this paper is therefore of a theoretical
nature, which we demonstrate in simulation. We have also implemented the theory in a simple tutoring
system, and we report the results of an empirical survey and pilot study with human participants.

The remainder of this section gives further detail and intuitions about the model and our contributions.
Section 2 explains Affect Control Theory and POMDPs. Section 3 then gives full details of the model.
Section 4 discusses simulation and human experiments, and Section 5 concludes. Appendices A, B and C
give some additional results and mathematical details that complement the main development. Parts of
this paper appeared in a shortened form in [2].

1.1 ACT for HCI

Emotions play a significant role in humans’ everyday activities including decision-making, behaviours,
attention, and perception [3–6]. This important role is fueling the interest in Affective Computing since
its first proposal by Rosalind Picard [7]. Affective Computing research is generally concerned with
four main problems: affect recognition (vision-based, acoustic-based, etc.) [8,9], generation of affectively
modulated signals such as speech and facial expressions [10, 11], the study of human emotions including
affective interactions and adaptation [12], and modeling affective human-computer interaction, including
embodied conversational agents [13–15]. In this paper, we are proposing to leverage the large body of
research in psychology and sociology on Affect Control Theory (ACT) [1] to propose a general-purpose
model for the fourth problem: how to integrate affect into computer systems that interact with humans.
Social psychological research under the ACT paradigm has generated precise mathematical models of
human-human affective interactions based on a single basic principle: minimising the deflection between
culturally shared fundamental sentiments about social concepts and transient impressions resulting from
the conceptual interpretation of specific situations. Fundamental sentiments and transient impressions
are treated mathematically as vectors in a three-dimensional affective space, constituted by the basic
dimensions of emotional experience, evaluation, potency, and activity (EPA) [25]. ACT uses the simple
deflection minimisation principle, along with predictive equations derived from large-scale experiments
across many people, cultures, socio-economic classes, races and genders, to make verifiably accurate
predictions about human behaviour. In this paper, we propose a novel and more general formulation
that marries Affect Control Theory with a general-purpose probabilistic and decision-theoretic model of
propositional (non-affective) interactions between a human and a computer. This marriage combines the
empirical predictive power of ACT for emotional states and resulting social actions with the robust and
generative power of probabilistic decision-theoretic reasoning. The resulting model is both a generalisation
of the original ACT model, and a principled method for integrating affective reasoning into human-
interactive computer applications.

This paper does not attempt to address the first two questions posed in the last paragraph addressing
the recognition and generation of affective signals. We assume that we can detect and generate emotional
signals in affective space, but we allow for the signals to be communicated across a noisy channel. There
has been a large body of work in this area and many of the proposed methods can be integrated as in-
put/output devices with our model. Our model gives the mechanism for mapping inputs to outputs based
on predictions from ACT combined with probabilistic and decision theoretic reasoning. The probabilistic
nature of our model makes it ideally suited to the integration of noisy sensor signals of affect, as it has

2



been used for many other domains with equally noisy signals (e.g. [16]).

We also do not directly address the issue of whether the results of ACT are applicable to the interactions
between humans and computers, as the theory is originally developed and measured based on human-
human interactions. Shank [17] and Troyer [18] describe experiments to measure EPA fundamental
sentiments related to technology and computer terms. Shank gives positive answers to three questions
about the use of affect control theory in the modelling of human interactions with technology. He shows
that people have shared cultural identity labels for technological actors, and that they share affective
sentiments about these labels. He also showed that people view these technological actors as behaving
socially, as was previously explored in [19]. The answers to these questions open the doors for the usage
of ACT in technology, as we do here.

We do not address the question of how to mathematically model the effects of emotional deflection
and a human’s identity on a particular application’s state. These effects will be application dependent,
and require more detailed application-specific study. Our model proposes a general formulation of the
affective effects as a generative probabilistic function that can serve as a substrate for applications. To
demonstrate, we experiment with some simple ideas about how deflection would have an effect on a
student’s learning process in an intelligent tutoring application. These ideas are currently being explored
in different contexts, including help for persons with ASD [7] and intelligent tutoring systems [20,21].

Finally, although our model is designed for general purpose interactions, in this paper we only study
collaborative and assistive agents. Our model can be used equally well to model competitive and manip-
ulative agents, but this requires a more comprehensive study of the policy generation problem, which is
part of our future work.

1.2 Related Work

Research in affective computing has largely focused on using one of two main trends of emotion theories:
appraisal theories and dimensional theories. Advocates of appraisal theories define emotions as entities
that describe people’s personal evaluation for a given stimulus in terms of goals and desires [22, 23].
On the other hand, dimensional theories define emotion as points in a continuous dimensional space
where these dimensions typically correspond to evaluation or valence, arousal or activity, and sometimes
dominance or potency [24–26]. While the connection of Affect Control Theory with dimensional theories
is obvious (since emotions are represented as vectors in a continuous dimensional space), here we examine
the connections with appraisal theories in more detail (see also [27,28]).

Affect Control Theory [1] has important conceptual similarities with appraisal theories. Appraisal the-
ories come in different variants, but generally posit that emotional states are generated from cognitive
appraisals of events in the environment in relation to the goals of the agent [29, 30]. As a result, an
agent’s emotions depend more on its subjective interpretations than on the physical features of an event.
Appraisal theorists describe a set of fixed rules or criteria for mapping specific patterns of cognitive eval-
uations onto specific emotional states. The logic of ACT is quite similar: Emotional states result from
(linguistic) interpretations of observed events. The EPA dimensions of affective space can be understood
as very basic appraisal rules related to the goal congruence of an event (E), the agent’s coping potential
(P), and the urgency implied by the situation (A). For discussion of ACT vs appraisal theories see [27].
However, ACT is also more general and more parsimonious than many appraisal theories, since it works
without explicitly defining complex sets of rules relating specific goals and states of the environment to
specific emotions. Instead, ACT treats the dynamics of emotional states and behaviours as continuous
trajectories in affective space. Deflection minimisation is the only prescribed mechanism, while the more
specific goals tied to types of agents and situations are assumed to emerge from the semantic knowledge
base of the model, as explained in more detail in Section 2.1 below. BayesAct further allows client goals
to be explicitly encoded and optimised.

POMDPs have been used as models for intelligent tutoring systems [31], including with emotional
states [21]. Bayesian networks and probabilistic models have also seen recent developments [32] based
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on appraisal theory [29]. Our work has demonstrated that, by operating completely in a dimensional
space, we can surmount computational issues, assure scalability (the state space size only grows with
the amount of state necessary to represent the application, not with the number of emotion labels), and
we can explicitly encode prior knowledge obtained empirically through a well-defined methodology [1].
Tractable representations of intelligent tutoring systems as POMDPs have recently been explored [31],
and allow the modelling of up to 100 features of the student and learning process. Our emotional “plug-
in” would seamlessly integrate into such POMDP models, as they also use Monte-Carlo based solution
methods [33].

Other researchers in affective computing have looked at using POMDPs and related models, and we now
examine in more detail the relationship with our work [21,32]. Dynamic Bayesian networks (DBNs) and
the OCC model of emotions [29] are used by Sabourin et al. [32] to model a specific application of a
tutoring system. BayesAct is similar, but does not commit to any particular emotional labels. Instead,
BayesAct operates completely in the continuous 81-dimensional space of sentiments and 3-dimensional
space of actions of the agent as defined by ACT. BayesAct also adds decision theoretic constructs to the
DBN that allow an intelligent agent to compute theoretically well-grounded policies of action. Conati
and Maclaren [21] also use a decision theoretic model, but again rely on sets of labelled emotions and
rules from appraisal theories. This is typically done in order to ease interpretability and computability,
and to allow for the encoding of detailed prior knowledge into an affective computing application. Finally,
BayesAct does not require a statically defined client (e.g. student) or agent (e.g. tutor) identity, but
allows the student and tutor to dynamically change their perceived identities during the interaction.
This allows for much greater flexibility on the part of the agent to adapt to specific user types “on the
fly” by dynamically learning their identity, and adapting strategies based on the decision theoretic and
probabilistic model.

2 Basic Models

2.1 Affect Control Theory

Affect Control Theory (ACT) is a comprehensive social psychological theory of human social interac-
tion [1], proposing that peoples’ social perceptions, actions, and emotional experiences are governed by
a psychological need to minimize deflections between culturally shared fundamental sentiments about
social situations and transient impressions resulting from the dynamic behaviours of interactants in those
situations.

Fundamental sentiments f are representations of social objects, such as interactants’ identities and be-
haviours or environmental settings, as vectors in a three-dimensional affective space, hypothesised to
be a universal organising principle of human socio-emotional experience [25]. The basis vectors of af-
fective space are called Evaluation/valence, Potency/control, and Activity/arousal (EPA). EPA profiles
of concepts can be measured with the semantic differential, a survey technique where respondents rate
affective meanings of concepts on numerical scales with opposing adjectives at each end (e.g., {good,
nice}↔{bad, awful} for E; {weak, little}↔{strong, big} for P; {calm, passive}↔{exciting, active} for
A). Affect control theorists have compiled databases of a few thousand words along with average EPA
ratings obtained from survey participants who are knowledgeable about their culture [34]. For example,
most English speakers agree that professors are about as nice as students (E), however more powerful
(P) and less active (A). The corresponding EPA profiles are [1.7, 1.8, 0.5] for professor and [1.8, 0.7, 1.2]
for student (values range by convention from −4.3 to +4.3 [34]). In general, within-cultural agreement
about EPA meanings of social concepts is high even across subgroups of society, and cultural-average
EPA ratings from as little as a few dozen survey participants have been shown to be extremely stable
over extended periods of time [34].

Social events can cause transient impressions τ of identities and behaviours that deviate from their
corresponding fundamental sentiments f . ACT models this formation of impressions from events with
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a minimalist grammar of the form actor-behaviour-object. Extended versions of ACT’s mathematical
models also allow for representing environmental settings (such as a university or a funeral) and identity
modifiers (such as a boring professor or a lazy student) [35–37], but in the interest of parsimony, we
will limit our present discussion to the basic actor-behaviour-object scheme. Consider for example a
professor (actor) who yells (behaviour) at a student (object). Most observers would agree that this
professor appears considerably less nice (E), a bit less potent (P), and certainly more aroused (A) than
the cultural average of a professor. Such transient shifts in affective meaning caused by specific events
can be described with models of the form τ = M f , where M is a matrix of statistically estimated
prediction coefficients from empirical impression-formation studies where survey respondents rated EPA
affective meanings of concepts embedded in a few hundred sample event descriptions such as the example
above [1]. Linguistic impression-formation equations exist for English, Japanese, and German [34]. In
ACT, the sum of squared Euclidean distances between fundamental sentiments and transient impressions
is called deflection:

D =
∑
i

wi(fi − τi)2, (1)

where wi are weights (usually set to 1.0).

Affective Deflection is hypothesised to correspond to an aversive state of mind that humans seek to avoid,
leading to the affect control principle [38]:

Definition 1. (Affect Control Principle) actors work to experience transient impressions that are con-
sistent with their fundamental sentiments

ACT is thus a variant of psychological consistency theories, which posit in general that humans strive
for balanced mental representations whose elements form a coherent Gestalt [39, 40]. In cybernetic
terminology, deflection is a control signal used for aligning everyday social interactions with implicit
cultural rules and expectations [1]. For example, advising a student corresponds much better to the
cultural expectation of a professor’s behaviour than yelling at a student. Correspondingly, the deflection
for the former event as computed with the ACT equations is much lower than the deflection for the latter
event. Many experimental and observational studies have shown that deflection is indeed inversely related
to the likelihood of humans to engage in the corresponding social actions. For example, the deflection-
minimization mechanism explains verbal behaviours of mock leaders in a computer-simulated business
game [41], non-verbal displays in dyadic interactions [42], and conversational turn-taking in small-group
interactions [43].

2.2 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) [44] is a general purpose model of stochastic
control that has been extensively studied in operations research [45,46], and in artificial intelligence [47,
48]. A POMDP consists of a finite set X of states; a finite set A of actions; a stochastic transition model
Pr : X ×A→ ∆(X), with Pr(x′|x, a) denoting the probability of moving from state x to x′ when action
a is taken, and ∆(X) is a distribution over X ; a finite observation set Ωx ; a stochastic observation model
with Pr(ωx|x) denoting the probability of making observation ωx while the system is in state x; and a
reward assigning R(x, a, x′) to state transition x to x′ induced by action a. A generic POMDP is shown
as a Bayesian decision network in Figure 1(a) (solid lines only).

The POMDP can be used to monitor beliefs about the state using standard Bayesian filtering [49]. A
policy can be computed that maps belief states (i.e., distributions over X ) into choices of actions, such
that the expected discounted sum of rewards is (approximately) maximised. Recent work on so-called
“point-based” methods had led to the development of solvers that can handle POMDPs with large state
and observation spaces [33,50–52].

In this paper, we will be dealing with factored POMDPs in which the state is represented by the cross-
product of a set of variables or features. Assignment of a value to each variable thus constitutes a state.

5



X

Ω

R

X X
Ω

X

A

Ωb

Ωb

Y

Ba

Y

Ωx Ωx

Ωb

X

Τ Τ

R

A

Ba

F F

X

Ωb

(a) (b)

Figure 1: Two time slices of (a) a general POMDP (solid lines) and a POMDP augmented with affective
states (dotted lines); (b) a factored POMDP for Bayesian Affect Control Theory;

Factored models allow for conditional independence to be explicitly stated in the model. POMDPs have
been used as models for many human-interactive domains, including for intelligent tutoring systems [21,
31], and for human assistance systems [53]. A good introduction to POMDPs and solution methods can
be found in [54].

3 Bayesian Formulation of ACT

We are modelling an interaction between an agent (the computer system) and a client (the human), and
will be formulating the model from the perspective of the agent (although this is symmetric). We will
use notational conventions where capital symbols (F,T) denote variables or features, small symbols (f, τ)
denote values of these variables, and boldface symbols (F,T, f , τ ) denote sets of variables or values. We
use primes to denote post-action variables, so x′ means the value of the variable X after a single time
step.

In the following we will develop a POMDP model for affect control theory (ACT), which is an extension
of the basic POMDP model, as shown with dashed lines in Figure 1(a). It adds a set of variables Y
that describe the emotional state (the sentiments) according to ACT, and a set of emotional actions for
the agent, Ba that affect the emotional state. A human-interactive system can be represented at a very
abstract level using a POMDP as shown in Figure 1(a, solid lines). In this case, X represents everything
the system needs to know about both the human’s behaviours and the system state, and can itself be
factored into multiple correlated attributes. The observations Ωx are anything the system observes in
the environment that gives it evidence about the state X. The system actions A are things the system
can do to change the state (e.g. modify the interface, move a robot) or to modify the human’s behaviours
(e.g. give a prompt, give an order). Finally, the reward function is defined over state-action pairs and
rewards those states and actions that are beneficial overall to the goals of the system-human interaction.
Missing from this basic model are the affective elements of the interaction, which can be a significant
influence on a person’s behaviour. For example, a tutor who imperatively challenges a student “Do this
exercise now!” will be viewed differently than one who meekly suggests “here’s an exercise you might
try...”. While the propositional content of the action is the same (the same exercise is given), the affective
delivery will influence different students in different ways. While some may respond vigorously to the
challenge, others may respond more effectively to the suggestion.
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3.1 Basic Formulation

Bayesian affect control theory (BayesAct for short) gives us a principled way to add the emotional content
to a human interactive system by making four key additions to the basic POMDP model, as shown by
the dashed lines in Figure 1(a).

1. An unobservable variable, Y, describes sentiments of the agent about identities and behaviours.
The dynamics of Y is given by empirical measurements in ACT (see below).

2. Observations Ωf give evidence about the part of the sentiments Y encoding behaviours of the
client.

3. The actions of the agent are now expanded to be B = {A,Ba}. The normal state transition
dynamics can still occur based only on A, but now the action space also must include an affective
“how” for the delivery “what” of an action. This action space is easily constructed, but may cause
significant computational issues for the evaluation of actions during planning (see Section 3.4).

4. The application-specific dynamics of X now depends on sentiments, Pr(X′|X,Y′, A), and will gen-
erally follow the original distribution Pr(X′|X, A), but now moderated by deflection. For example,
X may move towards a goal, but less quickly when deflection is high.There are different ways to
formulate this, and possibly many more to be discovered as this method is applied to other domains.
One way will be to simply add noise to the distribution, with the noise being proportional to the
amount of deflection between fundamentals and transients.

We assume that time is discrete, and agents take turns acting (so the “turn” is one element of X).
This assumption does not limit the generality of the approach, as anything beyond simple turn-taking
(e.g. backchannel responses, interruptions) could be included in X, and time steps are defined by the
transitions therein. We refer to the modified POMDP model as a Partially Observable Affect Control
Process (PO-ACP), shown as a graphical model in Figure 1(b). We will continue to refer to the theory
and model as BayesAct for short.

Let F = {Fij} denote the set of fundamental agent sentiments about itself where each feature Fij , i ∈
{a, b, c}, j ∈ {e, p, a} denotes the jth fundamental sentiment (evaluation, potency or activity) about the
ith interaction object: actor (agent), behaviour, or object (client). Let T = {Tij} be similarly defined
and denote the set of transient agent sentiments. Variables Fij and Tij are continuous valued and F,T
are each vectors in a continuous nine-dimensional space. Affect control theory encodes the identities as
being for “actor” (A, the person acting) and “object” (O, the person being acted upon). In BayesAct,
we encode identities as being for “agent” and “client” (regardless of who is currently acting). However,
this means that we do need to know who is currently acting, and the prediction equations will need to
be “inverted” to handle turn-taking during an interaction. This poses no significant issues, but must be
kept in mind if one is trying to understand the connection between the two formulations. In particular,
since we are assuming a discrete time model, then the “turn” (who is currently acting) will have to be
represented (at the very least) in X. Considering time to be event-based, however, we can still handle
interruptions, but simultaneous action by both agents will need further consideration. One method may
be to have a dynamically changing environment noise: an agent cannot receive a communication from
another agent if it is simultaneously using the same channel of communication, for example.

In the following, we will use symbolic indices in {a, b, c} and {e, p, a}, and define two simple index
dictionaries, di and da, to map between the symbols and numeric indices ({0,1,2}) in matrices and
vectors so that, di(a) = 0, di(b) = 1, di(c) = 2 and da(e) = 0, da(p) = 1, da(a) = 2. Thus, we can
write an element of F as Fbp which will be the kth element of the vector representation of F, where
k = 3di(b) + da(p). We will use a “dot” to represent that all values are present if there is any ambiguity.
For example, the behaviour component of F is written Fb· or Fb for short. A covariance in the space of F
might be written Σ (a 9× 9 matrix), and the element at position (n,m) of this matrix would be denoted
Σij,kl where n = 3di(i) + da(j) and m = 3di(l) + da(k). We can then refer to the middle 3 × 3 block of
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Σ (the covariance of Fb with itself) as Σb·b·. Although the extra indices seem burdensome, they will be
useful later on as we will see.

The POMDP action will be denoted here as B = {A,Ba} (behaviour of the agent), but this is treated
differently than other variables as the agent is assumed to have freedom to choose the value for this
variable. The action is factored into two parts: A is the propositional content of the action, and includes
things that the agent does to the application (change screens, present exercises, etc), while Ba is the
emotional content of the action. Thus, Ba gives the affective “how” for the delivery “what” of an action,
A. The affective action Ba = {Bae,Bap,Baa} will also be continuous valued and three dimensional: the
agent sets an EPA value for its action (not a propositional action label). The client behaviour is implicitly
represented in the fundamental sentiment variables Fb, and we make some observations of the behaviour,
Ωf . For example, if the computer application is using a microphone and a speech recognition engine to
“hear” what the client is saying, then Ωf found by looking up the output of the speech recognizer (a set
of keywords, for example) in a database of EPA values for keywords or phrases. This lookup procedure
is not defined in this model - it is a way of assigning EPA values to statements by using using existing
knowledge bases.

Finally, a set of variables X represents the state of the system (e.g. the state of the computer application
or interface). Variables in X will normally be discrete-valued, but we can allow for continuous variables
as well. We don’t assume that the system state or client behaviour are directly observable, and so also
use sets of variables Ωx.

Figure 1(b) shows a graphical model of the ACT model we are proposing. This type of model is a partially
observable Markov decision process, or POMDP (see Section 2.2 for basic definitions of the model), as
we can make the association of the state S = {F,T,X}, the observations O = {Ωx,Ωf}, and the action
A = {A,Ba}. We denote Y={F,T}, S={Y,X} and Ω={Ωf ,Ωx}.
The deflection in affect control theory is a nine-dimensional weighted Euclidean distance measure between
fundamental sentiments F and transient impressions T (Section 2.1). Here, we propose that this distance
measure is the logarithm of a probabilistic potential

ϕ(f ′, τ ′) ∝ e−(f ′−τ ′)TΣ−1(f ′−τ ′). (2)

The covariance Σ is a generalisation of the “weights” (Equation (1) and [1]), as it allows for some
sentiments to be more significant than others when making predictions (i.e. their deflections are more
carefully controlled by the participants), but also represents correlations between sentiments in general.
The empirically derived prediction equations of ACT can be written as τ ′ = MG (f ′, τ ,x) where G is a
non-linear operator that combines τ , f ′, and x, and M is the prediction matrix (see Section 2.1 and [1]).
Putting the deflection potential together with the dynamics, we have the probabilistic generalisation of
the affect control principle (Definition 1):

Pr(f ′|f , τ ,x,ba, ϕ) ∝ e−ψ(f ′,τ ,x)−ξ(f ′,f ,ba,x) (3)

where ψ(f ′, τ ,x) = (f ′ −MG (f ′, τ ,x))T Σ−1(f ′ −MG (f ′, τ ,x)) and ξ represents the temporal dynamics of f ′,
encoding both the stability of affective identities and the predictive dynamics of affective behaviours (as
shown in Figure 1(b))ξ is such that f ′b is equal to ba if the agent is acting, and otherwise is unconstrained,
and f ′a, f

′
c are likely to be close to fa, fc, respectively. Equation (3) can be re-written as a set of multivariate

Gaussian distributions indexed by x, with means and covariances that are non-linearly dependent on f ,ba

and τ . The full derivation is in Section 3.3.

The other factors in BayesAct are as follows:

• Pr(τ ′|τ , f ′,x) is the probability distribution over transient sentiments (computed using the matrix
M as in ACT). The simplest form is a deterministic function, and we write P (τ ′|τ , f ′,x) = δ(τ ′ −
MG (f ′, τ ,x)), where δ(z) = 1 if z = 0 and δ(z) = 1 otherwise. The operator G constructs an
intermediate vector t from τ according to a set of empirically derived non-linear combinators. This
construction is detailed in [1] (Equation 11.16), but here, we use behaviour sentiments from f ′,
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and settings from x, and M is the prediction matrix ( [1] Equation 11.15). Since G only uses the
behaviour component of f ′, we can also group terms together and write

Pr(τ ′|τ , f ′,x) = δ(τ ′ −H (τ ,x)f ′b − C (τ ,x)), (4)

where H and C are 9× 3 and 9× 1 matrices of coefficients from the dynamics M and G together.
That is, Hijk is the element at row 3di(i) + da(j), column da(k) of H , and the sum of all terms in
row 3di(i) +da(j) of M ′t that contain Bk is then HijkBk. Similarly, the element at row di(i) of C ,
Ci, is the sum of all terms in row di(i) of M ′t that contain no B· at all. Simply put, the matrices H
and C are a refactoring of the operators MG , such that a linear function of f ′b is obtained. Recall
that, due to our model being over “agent” and “client”, instead of over “actor” and “object”, the
matrices H and C will change depending on whose turn it is, effectively swapping “agent” and
“object” in both M and G for each change of turn. In general, these dynamics may also depend
on other aspects of the state (e.g. the state could include the “setting” from ACT [37]), and hence,
we include a dependence on x.

• R(f , τ ,x) is a reward function giving the immediate reward given to the agent. We assume an
additive function

R(f , τ ,x) = Rx(x) +Rs(f , τ ) (5)

where Rx encodes the application goals (e.g. to get a student to pass a test), and

Rs ∝ −(f − τ )2

depends on the deflection. The relative weighting and precise functional form of these two reward
functions require further investigation, but in the examples we show can be simply defined. The
affect control principle only considers Rs, and here we generalise to include other goals.

• Pr(x′|x, f ′, τ ′, a) denotes how the application progresses given the previous state, the fundamental
and transient sentiments, and the (propositional) action of the agent. The dependence on the
sentiments is important: it indicates that the system state will progress differently depending on
the affective state of the user and agent. In Section 4.2 we explore this idea further in the context
of a specific application by hypothesising that the system state will more readily progress towards a
goal if the deflection (difference between fundamental and transient sentiments) is low. The client
behaviours (explicitly represented as b′c) may also be included here as part of x′, if they have some
effect on the (propositional, non-emotional) state. In general this will be stochastic, but in many
cases is will be deterministic, such as when the application changes because of client mouse clicks
or specific agent actions. For the case of deterministic state dynamics (given client behaviour) but
stochastic client behaviours, we will write

Pr(x′, b′c|x, f ′, τ ′, a) = Pr(b′c|x, f ′, τ ′, a)Pr(x′|b′c,x, f ′, τ ′, a) (6)

= Pr(b′c|x, f ′, τ ′, a)δ(x′ −X (x, f ′, τ ′, a, b′c)). (7)

where X (x, f ′, τ ′, a, b′c) is a deterministic function giving how the application state proceeds over
time given agent and client behaviours, and the current sentiments.

• Pr(ωf |f), P r(ωx|x) observation functions for the client behaviour sentiment and system state,
respectively. These functions are stochastic in general, but may be deterministic for the system
state (so that X is fully observable). It will not be deterministic for the client behaviour sentiment
as we have no way of directly measuring this (it can only be inferred from data).

3.2 Transition Dynamics

Overall, we are interested in computing the transition probability over time: the probability distribution
over the sentiments and system state given the history of actions and observations. Denoting S =
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{F,T,X}, and Ω = {Ωf ,Ωx}, and Ωt,bat,St are the observations, agent action, and state at time t,
we want:

b(st) ≡ Pr(st|ω0, . . . ,ωt,ba0, . . . ,bat)

which can be written as

b(st) =

∫
st−1

Pr(st, st−1|ω0, . . . ,ωt,ba0, . . . ,bat)

∝
∫
st−1

Pr(ωt|st)Pr(st|st−1,ω0, . . . ,ωt−1,ba0, . . . ,bat)Pr(st−1|ω0, . . . ,ωt−1,ba0, . . . ,bat)

= Pr(ωt|st)
∫
st−1

Pr(st|st−1,bat)b(st−1)

= Pr(ωt|st)Eb(st−1) [Pr(st|st−1,bat)] (8)

where Pr(st|st−1,bt) factored according to Figure 1(b):

Pr(st|...) = Pr(x′|x, f ′, τ ′, a)Pr(τ ′|τ , f ′,x)Pr(f ′|f , τ ,x,ba) (9)

This gives us a recursive formula for computing the distribution over the state at time t as an expectation
of the transition dynamics taken with respect to the distribution state at time t− 1. Now, we have that
and Pr(ω|s) = Pr(ωx|x′)Pr(ωf |f ′) and rewriting st ≡ s′ and st−1 ≡ s, we have:

b(s′) = Pr(ωx|x′)Pr(ωf |f ′)Eb(s) [Pr(f ′, τ ′,x′|f , τ ,x,ba, a)]

= Pr(ωx|x′)Pr(ωf |f ′)Eb(s) [Pr(x′|x, f ′, τ ′, a)Pr(τ ′|τ , f ′,x)Pr(f ′|f , τ ,x,ba)] (10)

The first four terms correspond to parameters of the model as explained in the last section, while we
need to develop a method for computing the last term, which we do in the next section.

The belief state can be used to compute expected values of quantities of interest defined on the state
space, such as the expected deflection

Eb(s)[D(s)] =

∫
s

b(s)D(s), (11)

where D(s) is the deflection of s. This gives us a way to connect more closely with emotional “labels”
from appraisal theories. For example, if one wanted to compute the expected value of an emotion such
as “Joy” in a situation with certain features (expectedness, events, persons, times), then the emotional
content of that situation would be explicitly represented in our model as a distribution over the E-P-A
space, b(s), and the expected value of “Joy” would be Eb(s)[Joy(s)] =

∫
s
b(s)Joy(s), where Joy(s) is the

amount of joy produced by the sentiment s. This expectation would be a single number on the same
scale as Joy(s) that gives the amount of “Joy” being felt.

3.3 Estimating Behaviour Sentiment Probabilities

Here we describe how to compute Pr(f ′|f , τ ,x,ba). This is the agent’s prediction of what the client will
do next, and is based partly on the principle that we expect the client to do what is optimal to reduce
deflection in the future, given the identities of agent and client.

We denote the probability distribution of interest as a set of parameters Θf . Each parameter in this
set, θf , will be a probability of observing a value of f ′ given values for f , τ ,ba and x. We write
θf (f ′; f , τ ,x,ba) = Pr(f ′|f , τ ,x,ba,θf ), so that the distribution over θf given the knowledge that τ ′
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and f ′ are close according to ϕ(f , τ ) is1:

Pr(θf |ϕ) ∝
∫

f ′,τ ′,ba
f ,τ ,x

Pr(θf , f
′, τ ′,ba, f , τ , ϕ) (12)

=

∫
f ′,τ ′,ba
f ,τ ,x

ϕ(f ′, τ ′)Pr(τ ′|x, f ′, τ )Pr(f ′|f , τ ,x,ba,θf )

Pr(θf )Pr(f)Pr(τ )Pr(x)Pr(ba) (13)

=

∫
f ′,τ ′,ba
f ,τ ,x

e−(f ′−τ ′)TΣ−1(f ′−τ ′)Pr(τ ′|x, f ′, τ )θf (f ′; f , τ ,x,ba)Pr(θf ) (14)

where by
∫
z

we mean
∫
z∈Z (Z is the domain of Z) and we have left off the infinitesimals (e.g. df ′, dτ ′).

We have assumed even priors over f ,τ , x and ba. The expression (14) will give us a posterior update to
the parameters of the distribution over θf . During interaction, we will observe Ωf = ωf , from which a
distribution over F can be inferred

Equation (14) gives the general form for this distribution, but this can be simplified by using the deter-
minism of some of the distributions involved, as described at the start of this section. The deterministic
function for the distribution over τ ′ will select specific values for these variables, and we find that:

Pr(θf |ϕ) ∝
∫

f ′,ba
f ,τ ,x

e−ψ(f ′,τ ,x)θf (f ′; f , τ ,x,ba)Pr(θf ) (15)

where
ψ(f ′, τ ,x) = (f ′ −MG (f ′, τ ,x))TΣ−1(f ′ −MG (f ′, τ ,x)) (16)

is the deflection between fundamental and transient sentiments.

Equation (15) gives us an expression for a distribution over θf , which we can then use to estimate a
distribution over F′ = f ′ given the state {f , τ ,x,ba} and the known relation between fundamentals and
transients, ϕ (ignoring the observations Ωf and Ωx for now):

Pr(f ′|f , τ ,x,ba, ϕ) ∝
∫
θf ,τ ′

Pr(θf , f
′, f , τ ′, τ ,x,ba, ϕ) (17)

=

∫
θf

e−ψ(f ′,τ ,x)θf (f ′; f , τ ,x,ba)Pr(θf |x) (18)

= e−ψ(f ′,τ ,x)

∫
θf

θf (f ′; f , τ ,x,ba)Pr(θf |x) (19)

= e−ψ(f ′,τ ,x)
[
EPr(θf |x)(θf )

]
(20)

The first term is a distribution over f ′ that represents our assumption of minimal deflection, while the
second is the expected value of the parameter θf given the prior. This expectation will give us the most
likely value of θf given only the system state x. We know two things about the transition dynamics (θf )
that we can encode in the prior. First, we know that the behaviour will be set equal to the agent’s action
if it is the agent’s turn (hence the dependence on x). Second, we know that identities are not expected
to change very quickly. Therefore, we have that

EPr(θf |x)(θf ) ∝ e−(f ′−〈f ,ba〉)TΣ−1
f (x)(f ′−〈f ,ba〉) (21)

1We are postulating an undirected link in the graph between τ and f . An easy way to handle this undirected link
properly is to replace it with an equivalent set of directed links by adding a new Boolean variable, D, that is conditioned
by both T and F, and such that Pr(D = True|τ , f) ∝ ϕ(τ , f). We then set D = True if we have the knowledge that T
and F are close together according to ϕ(F,T), and the quantity of interest is Pr(θf |D = True). In the text, we use the
shorthand Pr(θf |ϕ) to avoid having to introduce D.
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where 〈f ,ba〉 is f for the identities and ba for the behaviours

〈f ,ba〉 ≡

 fa
ba

fc

 (22)

and Σf (x) is the covariance matrix for the inertia of the fundamentals, and including the setting of
behaviour fundamentals by the agent action, and is a set of parameters governing the strength of our
prior beliefs that the identities of client and agent will remain constant over time2. Thus, Σf is a 9× 9
block matrix:

Σf (x) =

 I3β
2
a 0 0

0 I3β
2
b (x) 0

0 0 I3β
2
c

 (23)

where β2
a and β2

c are the variances of agent and client identity fundamentals (i.e. how much we expect
agent and client to change their identities over time), and β2

b (x) is infinite for a client turn and is zero
for an agent turn. Writing ξ(f ′, f ,ba,x) ≡ (f ′ − 〈f ,ba〉)TΣ−1

f (x)(f ′ − 〈f ,ba〉), we therefore have that:

Pr(f ′|f , τ ,x,ba, ϕ) ∝ e−ψ(f ′,τ ,x)−ξ(f ′,f ,ba,x) (24)

We can now estimate what the most likely value of F′ by computing

F′∗ = arg max
f ′

Pr(f ′|f , τ ,x,ba, ϕ).

Intuitively, this expression will be maximized for exactly the behaviour that minimizes the deflection as
given by ψ, tempered by the inertia of changing identities given by ξ. This is the generalisation of the
affect control principle (Definition 1, see also Appendix B). We can rewrite this by first rewriting the
matrix H as

H =

 Ha

Hb

Hc


where Ha ≡Ha·· (a 3× 3 matrix giving the rows of H in which Hijk have i = a) and similarly for Hb

and Hc. We also define I3 as the 3× 3 identity matrix and 03 as the 3× 3 matrix of all zeros. We can
then write a matrix

K =

 I3 −Ha 03

03 I3 −Hb 03

03 −Hc I3


Using K , we can now write the general form for ψ starting from Equation (16) as:

ψ(f ′, τ ,x) = (f ′ −H (τ ,x)f ′b − C (τ ,x))TΣ−1(f ′ −H (τ ,x)f ′b − C (τ ,x)) (25)

= (K f ′ − C )TΣ−1(K f ′ − C ) (26)

= (f ′ −K −1C )TK TΣ−1K (f ′ −K −1C ) (27)

and thus, if we ignore the inertia from previous fundamentals, ξ, we recognize Equation (24) as the
expectation of a Gaussian or normal distribution with a mean of K −1C and a covariance of Στ ≡
K −1Σ(K T )−1. Taking ξ into account means that we have a product of Gaussians, itself also a Gaussian
the mean and covariance of which can be simply obtained by completing the squares to find a covariance,
Σn equal to the sum in quadrature of the covariances, and a mean, µn, that is proportional to a weighted
sum of K −1C and 〈f ,ba〉, with weights given by the normalised covariances of ΣnΣ−1

τ and ΣnΣ−1
f ,

respectively.

2It may also be the case that ba can change the agent identity directly, so that ba is six-dimensional and 〈f ,ba〉 =

[ba, fc]T .
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Putting it all together, we have that

Pr(f ′|f , τ ,x,ba, ϕ) ∝ e−(f ′−µn)TΣ−1
n (f ′−µn) (28)

where

µn = ΣnK
T (τ ,x)Σ−1C (τ ,x) + ΣnΣ−1

f (x)〈f ,ba〉 (29)

Σn = (K T (τ ,x)Σ−1K (τ ,x) + Σ−1
f (x))−1. (30)

The distribution over f ′ in Equation (28) is a Gaussian distribution, but has a mean and covariance that
are dependent on f , τ ,x and ba through the non-linear function K . Thus, is is not simple to use this
analytically as we will explore further below.

The “optimal” behaviour from [1] is, in fact, only an approximation as the identities are treated as
constants when optimising the behaviour in [1] (and similarly for identities: behaviours are held constant).
However, ACT hypothesises that the overall deflection will be minimised. Therefore, our equations are
the exact version of the approximations in [1]. See Appendix C for details on the connections between
our full computation and the approximate one.

3.4 Computing Policies

The goal here is to compute a policy π(b(S)) : ∆(S) → A that maps distributions over S into actions,
where b(S) is the current belief state as given by Equation (10). This policy is a function from functions
(distributions) over a continuous space into the mixed continuous-discrete action space. There are two
components to this mapping. First, there is the propositional action as defined by the original POMDP,
and second there is the affective action defined by affect control theory. Here we consider only the affective
action with the understanding that this can be easily expanded to include any actions that effect the
state directly at a later stage.

An interesting property of POMDP policies is that they may use “information gathering” actions. In
the context of affect control theory, if the agent is uncertain about the identity of the client, then it can
take actions that temporarily increase deflection for example in order to discover something about the
client identity. The information gained by such an exploratory action may be very worthwhile for the
agent, as it may help the agent better understand the identity of the client, and therefore better decrease
deflection in the long term.

Policies for POMDPs in general can be computed using a number of methods, but recent progress in using
Monte-Carlo (sampling) based methods has shown that very large POMDPs can be solved tractably, and
that this works equally well for continuous state and observation spaces [51,52]. POMCP [52] is a Monte-
Carlo based method for computing policies in POMDPs with discrete action spaces. POMCP can be
generalised to a mixed continuous-discrete action space for BayesAct by leveraging the fact the we can
predict what an agent would “normally” do in any state according to the underlying affect control theory:
it is the action that minimises the deflection. Given the belief state b(s), we have a probability distribution
over the action space giving the probability of each action (see Equation (31)). This normative prediction
constrains the space of actions over which the agent must plan, and drastically reduces the branching
factor of the search space. A sample drawn from the action distribution is used in the POMCP method,
and a “rollout” proceeds by drawing a subsequent sample from the distribution over client actions, and
then repeating the sampling over agent actions. This is continued to a maximum depth, and the reward
gathered is computed as the value of the path taken. The propositional actions that update x are handled
exhaustively as usual in POMCP.

Denote the “normal” or expected action distribution as π†(s):

π†(s′) =

∫
f ′a,f
′
c

∫
s

Pr(f ′|f , τ ,x, ϕ)b(s) =

∫
f ′a,f
′
c

∫
s

e−(f ′−µ†
n)T (Σ†n)−1(f ′−µ†

n)b(s) (31)
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where

µ†
n = Σ†nK

T (τ ,x)Σ−1C (τ ,x) + Σ†n(Σ†f (x))−1f , (32)

Σ†n = (K T (τ ,x)Σ−1K (τ ,x) + (Σ†f (x))−1)−1, (33)

and Σ†f is the same as Σf given by Equation (23) with β2
b (x) set to infinity (instead of zero) so the

behaviour sentiments are unconstrained. Equation (31) computes the expected distribution over f ′ given
b(s) and then marginalises (sums) out the identity components3 to get the distribution over fb. A sample
drawn from this distribution could then be used as an action in the POMCP method. A POMCP “rollout”
would then proceed by drawing a subsequent sample from the distribution over client actions, and then
repeating the sampling from Equation (31) over agent actions. This is continued to some maximum
depth, at which point the reward gathered is computed as the value of the path taken. The propositional
actions that update the state x are handled as usual in POMCP by looping over them.

The integration in Equation (31) may be done analytically if b(s) is Gaussian, but for the general case
this may be challenging and not have a closed-form solution. In such cases, we can make a further
approximation that b(s) = δ(s∗ − s) where s∗ = {f∗, τ ∗,x∗} = Eb(s)[s] =

∫
s
sb(s) is the expected state

(or one could use s∗ = arg maxs b(s) as the most likely state). We will denote the resulting action
distribution as π†∗(s′).

In this paper, we don’t use the full POMCP solution, instead only taking a “greedy” action that looks
one step into the future by drawing samples from the “normal” action distribution in Equation (31) using
these to compute the expected next reward, and selecting the (sampled) action ba

†∗ that maximizes this:

ba
†∗ = arg max

ba

∫
s′

[
Pr(x′|x∗, f ′, τ ′,ba)Pr(τ ′|τ ∗, f ′,x∗)Pr(f ′|f∗, τ ∗,x∗,ba)R(f ′, τ ′,x′)ds′, ba ∼ π†∗(s′)

]
(34)

In practice we make two further simplifications: we avoid the integration over fa and fc in Equation (31)
by drawing samples from the distribution over f ′ and selecting the f ′b components, and we compute the
integration in Equation (34) by sampling from the integrand and averaging.

3.5 Sampling

We return now to Equation (8) and consider how we can compute the belief distribution at each point
in time. The nonlinearities in the transition dynamics that arise from the dynamics of fundamental
sentiments (Equation (28)) prevent the use of a simple Kalman filter. Even the extended Kalman filter
(EKF) may run into difficulties due to these nonlinearities. Instead, we will find it more convenient and
general to represent b(s) using a set of N samples [55]. This will allow us to represent more complex
belief distributions, including, but not limited to multi-modal distributions over identities. This can be
very useful in cases where the agent believes the client to be one of a small number of identities with
equal probability. In such a case, the agent can maintain multiple hypotheses, and slowly shift its belief
towards the one that agrees most with the evidence accrued during an interaction. We will write the
belief state as [55]:

b(s) ∝
N∑
i=1

wiδ(s− si), (35)

where si = {fi, τi, xi} and wi is the weight of the ith sample and

δ(s− si) =

{
∞ if s = si
0 otherwise

(36)

Then, we implement Equation (8) using a sequential Monte Carlo method sampling technique, also known
as a particle filter or bootstrap filter [55, 56]. We start at time t = 0 with a set of samples and weights

3If the agent is able to “set” its own identity, then the integration would be only over f ′c, the client identity.
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{si, wi}i=1...N , which together define a belief state b(s0) according to Equation (35). The precise method
of getting the first set of samples is application dependent, but will normally be to draw the samples
from a Gaussian distribution over the identities of the agent and client, and set all weights to 1.0. The
agent then proceeds as follows:

1. Consult the policy to retrieve a new action ba ← π(b(st)). If using the approximation in Equa-

tion (34), then we first compute the expected value of the state s∗t =
∑N
i=1 wisi.

2. Take action ba and receive observation ω.

3. Sample (with replacement) unweighted samples from b(s) from the distribution defined by the
current weights.

4. For each unweighted sample, si, draw a new sample, s′i from the posterior distribution Pr(·|si,ba):

(a) draw a sample f ′ from Equation (28) (this is a draw from a multivariate normal, and will likely
be a bottleneck for the sampling method),

(b) draw a sample τ ′ from Equation (4) (this is deterministic so is an easy sample to draw),

(c) draw a sample x′ from Equation (7) (this is deterministic if we don’t need to model bc explic-
itly).

5. Compute new weights for each sample using the observation functions wi = Pr(ω|s′i)

6. If all weights are 0.0, then resample from the initial distribution.

7. The new state is b(s′), goto step 1 with s← s′.

An example of the sampling step 4 is shown above to be from a proposal that is exactly Pr(f ′|f , τ ,x,ba, ϕ),
but this could be from some other distribution close to this.

We can compute expected values of quantities of interest, such as the deflection, by summing over the
weighted set of samples (the Monte-Carlo version of Equation (11)):

d(f , τ ) =

N∑
i=1

wi(fi − τi)2 (37)

One might be tempted to draw samples from f ′ (Equation (21)) and τ ′ (Equation (4)) independently,
and then re-weight based on both the observations (Equation (9)) and the deflection (Equation (2)).
Although drawing samples in this case will be easier, as Equation (28) is avoided, we have no easy way to
draw samples over f ′b, and must resort to drawing these according to some broad prior distribution over
the space of fundamental behaviour sentiments. As the majority of such samples will have high deflection
(low potential according to Equation (2)), many more samples will be needed to locate the true modes of
the posterior. Therefore, one must resort to drawing from Equation (28) directly, and cannot factor this
in any reasonable way since the different components of f ′ are connected by the undirected links to τ ′.

The dimensionality of the state space is large enough to warrant some concern about how many samples
are needed. However, we have found that we can get very accurate simulations with a reasonable number
of particles. This is likely so because of the large amount of determinism in the transition dynamics.
It is less clear how this will scale once we are using this with humans, whose behaviours may be less
predictable (more dependent on non-modelled factors).

Nevertheless, we have found that, for situations in which the client identity is not known, but is being
inferred by the agent, it is necessary to add some “roughening” to the distribution over these unknown
identities [56]. This is because the initial set of samples only sparsely covers the identity space (for an
unknown identity), and so is very unlikely to come close to the true identity. Coupled with the underlying
assumption that the identities are fixed or very slowly changing, this results in the particle filter getting

15



“stuck” (and collapsed) at whatever initial sample was closest to the true identity (which may still be
far off in the EPA space, especially when using fewer particles). Adding some zero-mean white noise (in
[−σr, σr]) helps solve this degeneracy. We add this noise to any unknown identity (agent or client) after
the unweighted samples are drawn in step 3 above. As suggested by [56], we use σr = K ×N−1/d, where
K is a constant, N is the number of samples and d is the dimension of the search space (in this case 3
for the unknown identity. We use K = 1 in our experiments, and note that we are not using white noise
(not Gaussian noise), but that this does not make a significant difference.

This so-called “roughening” procedure is well known in the sequential Monte-Carlo literature, and in
particular has been used for Bayesian parameter estimation [55] (Chapter 10). Our situation is quite
similar, as the client identities can be seen as model parameters that are fixed, but unknown. Finally, it
may also be possible to change the amount of roughening noise that is added, slowly reducing it according
to some schedule as the client identity is learned.

It is also possible to mix exact inference over the application state, X, with sampling over the continuous
affective space, leading to a Rao-Blackwellised particle filter [57].

3.6 Python Implementation

We have implemented BayesAct in Python as a class Agent that contains all the necessary methods.
Applications can use BayesAct by subclassing Agent and providing three key application-dependent
methods:

• sampleXvar is used to draw a sample from X

• reward produces the reward in the current state of X

• initXvar is used to initialise X at the start of a simulation or run

Sub-classes can also implement methods for input and output mappings. For example, an input mapping
function could take sentences in English and map them to EPA values based on some affective dictionary.
Applications can also learn these mappings by assuming the human user will be behaving according to
the affect control principle: whatever the user says can be mapped to the prediction of the theory (or
close to it).

4 Experiments and Results

Our goal in this section is to demonstrate, in simulation, that BayesAct can discover the affective identities
of persons it interacts with, and that BayesAct can augment practical applications with affective dynamics.
To establish these claims, we do the following.

First, we verify both analytically and empirically that BayesAct can reproduce exactly the affective dy-
namics predicted by the Interact software [1]. The analytical derivation is done by reducing Equation (28)
to the equations in [1] as shown in Appendix C. The empirical demonstration is done by running BayesAct
alongside Interact and showing that the identical sentiments and actions are generated. We have found
a very close match across a range of different agent and client identities. These analytical and empirical
demonstrations show that BayesAct can be used as a model of human affective dynamics to the extent
that it has been shown empirically that Interact is a close model of human affective dynamics. Once we
demonstrate this, then we can use the BayesAct software in the same way as the Interact software to make
predictions about how an agent with a with a fixed identity and a fixed and known identity for the person
it is interacting with will behave. Second, we show how, if we loosen the constraints on the client identity
being fixed, BayesAct can “discover” or learn this identity during an interaction with an Interact client.
Third, we show how, if both agent and client do not know the identity of their interactant, they can both
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learn this identity simultaneously. Fourth, we show that a BayesActagent can adapt to a changing client
identity. What this means is that an affective agent has the ability to learn the affective identity of a
client that it interacts with. We demonstrate this under varying levels of environment noise. Finally, we
postulate that, since the agent can learn the affective identity of its client, it can better serve the client
in an appropriate and effective manner. We give a preliminary demonstration of this with results from a
basic experiments with humans in Section 4.2.

4.1 Simulations

In this section, we investigate two types of simulation. The first concerns agents with nearly fixed (low
variance) personal identities that try to learn the identity of another agent. The second shows what
happens if one of the agents is changing identity dynamically. To enable comparisons with Interact, we
use action selection according to our generalised affect control principle only, using an average of 100
samples from Equation (31). Our simulations therefore do not directly address how policy computation
will affect an application. However, we can show that BayesAct can replicate Interact as far as deflection
minimisation goes, and can find low-deflection solutions for many examples, without requiring identities
to be known and fixed. Videos showing dynamics of the simulations can be seen at the following webpage:
https://cs.uwaterloo.ca/∼jhoey/research/bayesact/.

4.1.1 Static identities

We have three conditions. In the first two, the agent does not know the identity of the client, and the client
either knows or doesn’t know the identity of the agent (denoted “agent id known” and “agent id hidden”,
resp.). In the third case, agent and client know each other’s identities. In all three cases, we run 20 trials
for each condition, and in each trial a new identity is chosen for each of agent and client. These two
identities are independently sampled from the distribution of identities in the Interact database and are
the personal identities for each agent and client. Then, agent and client BayesAct models are initialised
with Fa set to this personal identity, Fc (identity of the other) set to either the true identity (if known) or
else to the mean of the identities in the database, [0.4, 0.4, 0.5]. Fb set to zeros, but this is not important
as it plays no role in the first update. The simulation proceeds according to the procedure in Section 3.5
for 50 steps. Agents take turns acting, and actions are conveyed to the other agent with the addition
of some zero-mean normally distributed “environment” noise, with standard deviation σe. Agents use
Gaussian observation models with uniform covariances with diagonal variances γ = max(0.5, σe). We
perform 10 simulations per trial with βc = 0.001 for both agent and client. If the client knows the agent
identity, it uses no roughening noise (σr = 0.0), otherwise all agents use σr = N−1/3 where N is the
number of samples. We use id-deflection to denote the sum of squared differences between one agent’s
estimate of the other agent’s identity, and that other agent’s estimate of its’ own identity. Table 3 in
Appendix A shows the full results. Here we summarize some of the key findings.

Figure 2 shows a plot of the mean (over 20 trials) of the average (over 10 experiments) final (at the last
step) id-deflection and total deflection as a function of the environment noise, σe, and sample numbers,
N , for the agent id hidden case. Also shown are the average of the maximum total deflections for all
experiments in a trial. The plots in the left and right columns are for agent and client, respectively,
but these are symmetric (are representing the same thing). We see that only about 50 samples are
needed to get a solution that is robust to environment noise up to σe = 2.0. This corresponds to enough
noise to make a behaviour of “apprehend” be mis-communicated as “confide in”4. Further examples of
behaviours for different levels of deflection are shown in Table 2 (Appendix A). Surprisingly, deflection is
not strongly affected by environment noise. One way to explain this is that, since the agent has a correct
model of the environment noise (γ = σe), it is able to effectively average the noisy measurements and still
come up with a reasonably low deflection solution. The deterministic program Interact would have more
trouble in these situations, as it must “believe” exactly what it gets (it has no model of environment

4However, we are comparing the expected values of identities which may be different than any mode.
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Figure 2: Deflections of identities from simulations with different numbers of samples (N), and envi-
ronment noise, σe. Roughening noise: σr = N−1/3, model environment noise: γ = max(0.5, σe). Left
column: agent; right column: client. Top row: id-deflection; middle Row: mean deflection; bottom row:
max deflection.
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noise). Deflection and max deflection also don’t seem to decrease monotonically with increasing sample
size. However, there are large variances on the deflection results, which we do not show in these figures
for clarity reasons. Table 3 shows the full results with standard deviations.
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Figure 3: (a) samples (squares) and true identities (triangles) after 7 iterations for one trial. (b-d) Closer
look at three 200 sample experiments showing id-deflection (solid lines), total deflections (dashed lines)
and deflection from Interact in dotted black (red=agent, blue=client). (b) agent: Fa = [2.7, 1.5, 0.9],
client: Fa = [−2.1,−1.3,−0.2], σe = 0; (c) as (a) but with σe = 1.0; (d) agent: Fa = [1.5, 1.5,−0.2],
client: Fc = [1.5, 0.3, 0.8], σe = 1.0.

Figure 3(a) shows a sample set after 7 iterations of one experiment, clearly showing the multimodal
distributions centered around the true identities (triangles) of each interactant5. These sample sets
normally converge to near the true identities after about 15 iterations or less. Figures 3(b)-(d) look more
closely at three of the trials done with N = 200 samples and hidden ids for both client and agent. The red
and blue lines show the agent- and client- id-deflection (solid) and agent and client deflections (dashed),
respectively, while the black line shows the deflections using Interact (which has the correct and fixed
identities for both agents at all times). BayesAct allows identities to change, and starts with almost no
information about the identity of the other interactant (for both agent and client). We can see that our
model gets at least as low a deflection as Interact. In Figure 3(b), the agent had Fa = [2.7, 1.5, 0.9], and
the client had Fa = [−2.1, −1.3, −0.2], and σe = 0 (noise-free communication). These two identities do not
align very well6, and result in high deflection when identities are known and fixed in Interact (black line).
BayesAct rapidly estimates the correct identities, and tracks the deflection of Interact. Figure 3(c) is the
same, but with σe = 1.0. We see, as in Table 3 that BayesAct is robust to this level of noise. Figure 3(d)
shows a simulation between a “tutor” (Fa = [1.5, 1.5, −0.2]) and a “student” (Fc = [1.5, 0.3, 0.8]) with

5see also videos at http://www.cs.uwaterloo.ca/∼jhoey/research/bayesact/.
6These identities are closest to “lady” and “shoplifter” for agent and client respectively, but recall that identity labels

come from mapping the computed EPA vectors to concepts in ACT repositories [34] and are not used by BayesAct.
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σe = 1.0. Here we see that Interact predicts larger deflections can occur. BayesAct also gets a larger
deflection, but manages to resolve it early on in the simulation. Identities are properly learned in this
case as well.

Figure 4 shows further examples with varying noise levels. Figure 4(a,b) have the same identities as as
Figure 3(b,c), but with environmental noise σe = 0.5 and σe = 5.0, respectively. We see that, consistent
with Table 3, at σe = 5.0 it becomes much harder for BayesAct to estimate identities, however the overall
deflection is not necessarily increased. There is a lot of variance in the results for deflection, however (not
shown for clarity reasons). Figure 4(c,d) has the same identities as Figure 3(d), but with σe = 5.0. We see
the same effect as in Figure 4(b): BayesAct is unable to find the true identity. Finally Figure 4(e,f) shows
results for identities “hero” for agent (EPA: [2.6, 2.3, 2.1]) and “insider” for client (EPA: [−0.13, 0.97, 0.2]).
Here we see a rapid convergence to the correct identities for noise-free and noisy communication (σe = 0.0
and σe = 0.5, resp.).

4.1.2 Dynamic (Changing) Identities

We now experiment with how BayesAct can respond to agents that change identities dynamically over
the course of an interaction. We use the following setup: the client has two identities (chosen randomly
for each trial) that it shifts between every 20 steps. It shifts from one to the other in a straight line
in E-P-A space, at a speed of sid. That is, it moves a distance of sid along the vector from its current
identity to the current target identity. It stops once it reaches the target (so the last step may be shorter
than sid. It waits at the target location for T steps and then starts back to the original identity. It
continues doing this for 200 steps. Our goal here is to simulate an agent that is constantly switching
between two identities, but is doing so at different speeds. Table 4 and Table 5 in Appendix A show the
full results for these simulations.

We first show that BayesAct can respond to a single shift in identity after the first 20 steps (so after that,
T =∞). Figure 5(a - solid blue line) shows the results after 100 steps for σe = 0.5. We see that BayesAct
is able to successfully recover: the id-deflection after 100 steps does not keep increasing with increasing
sid up to sid = 2.0. Figure 5(a - dashed red line) shows the same for the continual identity shifts, after
200 steps using T = 20 throughout. Again, BayesAct is able to maintain a fairly good estimate of the
client identity at the end, but the trend appears to be increasing indicating that additional speed may
disrupt things further.

Figure 5(b) investigates this further, and shows the mean number of time steps per sequence of 200 steps
in which the id-deflection of the agent’s estimate of the client’s identity is greater than a threshold, dm,
for σe = 0.5. The results show that BayesAct is able to maintain a low id-deflection throughout the
sequence when confronted with speeds up to about 0.1. At this setting (sid = σe = 0.1), only 4 frames
(out of 200) have an id-deflection greater than 1.0.

Figure 6 shows a specific example where the client shifts between two identities, for sid = 0.25 and
T = 40. The agent’s estimates of Fe and Fp are seen to follow the client’s changes, alhough the agent
lags behind by about 50 time steps.

4.2 Tutoring Application

To demonstrate the capability of BayesAct to control emotionally plausible behaviours of a computer
program interacting with a human, we built a simple tutoring application in which the identities for
agent and client are initially set to “tutor” (Fa = [1.5, 1.5, −0.2]) and “student” (Fc = [1.5, 0.3, 0.8]),
respectively, with low dynamics variances of βa = βc = 0.01 and σr = 0.0 (see Section 3.3). Screenshots
are shown in Figure 7. The application asks sample questions from the Graduate Record Exam (GRE)
educational testing system, and the client clicks on a multiple-choice answer. The agent provides feedback
as to whether the client’s answer is correct. The client then has the opportunity to ”speak” by clicking
on a labelled button (e.g., ”that was too hard for me!”). The statement maps to a behaviour from
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Figure 4: Simulations with different environment noise levels with 200 samples, showing id-deflection
(solid lines), total deflections (dashed lines) and deflection from Interact in dotted black (red=agent,
blue=client). (a) “lady” and “shoplifter”, γ = σe = 0.5, (b)“lady” and “shoplifter”, γ = σe = 5.0, (c)
“tutor” and “student”, σe = 0.5, γ = 0.5, (d) “tutor” and “student”, σe = 5.0, γ = 5.0, (e) “hero” and
“insider”, σe = 0.0, γ = 0.1, (f) “hero” and “insider”, σe = 0.5, γ = 0.5
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Figure 7: Tutoring interface screenshots

the ACT database (e.g., ”whine”). These mappings were determined in an empirical survey described
below. The behaviour label in turn maps to the value for Fb found in the ACT database (in this case
[−1.4, −0.8, −0.5]). BayesAct then computes an appropriate agent action, i.e. a vector in EPA space, which
maps to a behaviour label (e.g., ”apologize”), which again maps to a statement (e.g., ”Sorry, I may have
been too demanding on you.”).

The tutor has three discrete elements of state X = {Xd, Xs, Xt} where Xd is the difficulty level, Xs is
the skill level of the student and Xt is the turn. Xd and Xs have 3 integer “levels” where lower values
indicate easier difficulty/skill. The tutor’s model of the student’s progress is P (X ′s = xs|xs, f , τ ′) = 0.9
with the remaining probability mass distributed evenly over skill levels that differ by 1 from xs. The
dynamics for all values where X ′s ≤ xs are then multiplied by (f ′ − τ ′)2/2 and renormalised. Thus, as
deflection grows, the student is less likely to increase in skill level and more likely to decrease. Thus, skill
level changes inversely proportionally to deflection. The tutor gets observations of whether the student
succeeded/failed (Ωx = 1/0), and has an observation function P (Ωx|Xd, Xs) that favours success if Xd

(the difficulty level) matches Xs (the skill level).The reward is the sum of the negative deflection as in
Equation (5) and Rx(x) = −(x−2)2. It uses the approximate policy given (Section 3.4) by Equation (34).
for its affective response, and a simple heuristic policy for its propositional response where it gives an
exercise at the same difficulty level as the mean (rounded) skill level of the student 90% of the time, and
an exercise one difficulty level higher 10% of the time. Further optimisations of this policy as described
in Section 3.4 would take into account how the student would learn in the longer term.

This simple model suffices for our pilot study, but would need to be expanded and made to better
reflect actual student development in future versions. In particular, one could expand the state space
X to include more features related to the application and student skills than only the simple 3-valued
difficulty and skill levels we have used here. This would require making a more complex model of the
transitions in X (e.g. identifying goals and problem space dimensions [21,31]), a more complex model of
the observations of X (e.g. from sensors), and a more complex model of the dependence of the sentiments
on the state. This last part is the only part that would require more analysis, as the fundamental
sentiments of system states would need to be elicited from groups of users, for which clear methodologies
exist, as in [17]. It may also be possible to encode more general sentiment mappings based on key words
or recognised behaviours [58]. Finally, one could imagining learning the transition functions over X as
the tutor gathered data while interacting with the student.

We thus require a specification of the POMDP, and two mappings, one from the combination of client
statement button labels and difficulty levels to ACT behaviours (of client), and the other from ACT
behaviours (of agent) to difficulty level changes and statements to the student. We conducted an empirical
online survey to establish these mappings.
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survey question BACT rand. T p
Communication was similar to a human. 2.10 1.70 0.87 n.s.
The tutor acted as if it understood my feelings 2.80 2.00 1.92 < .05
I felt emotionally connected with MT. 2.50 2.00 1.00 n.s.
I enjoyed interacting with MT. 3.30 3.10 0.44 n.s.
MT acted like it knew what kind of person I am. 2.90 2.11 1.55 < .10
MT gave awkward/inappropriate responses (RC) 3.44 4.50 -2.70 < .01
I found MT to be flexible to interact with. 3.00 1.90 2.18 < .05
Using MT would improve my skills. 3.40 2.00 2.49 < .05
The dialogue was simple and natural. 3.50 2.00 3.14 < .01
Overall, I am satisfied with this system. 2.70 1.70 2.34 < .05

Table 1: User study results. T has df=18 and p is one-tailed. Scales ranged from 1 (=not true) to 5
(=true). (bact=BayesAct,MT=MathTutor, RC=reverse-coded)

Participants in the survey were N = 37 (22 female) students (avg. age: 30.6 years). We presented them
with four blocks of statements and behaviour labels, two blocks referring to agent and client behaviours
conditional on a correct/incorrect answer of the client. We also asked participants to rate the affective
meaning of each statement directly using the semantic differential [34]. In total, the survey contained
31 possible agent statements and 26 possible client statements plus an equal number of possibly corre-
sponding behaviour labels. Participants were supposed to match each statement to one of the available
behaviour labels. For 14 agent statements and for 13 client statements, a clear majority of participants
agreed on one specific mapping. For 13 agent statements and 5 client statements, mappings were split
between two dominant options. In these cases, we compared the direct EPA ratings of the statements
with EPA ratings of the two behaviour labels in question to settle the ambiguity. We discarded 4 agent
statements and 8 client statements, because participants’ response patterns indicated a lack of consensus
and/or unsolvable ambiguities in the mappings. As a result, we thus had a list of 27 agent statements
and 18 client statements with corresponding mappings to behaviour labels from the ACT database. We
implemented these behaviours as the possible actions in the BayesAct tutoring system.

We conducted a pilot experiment with 20 participants (7 female) who were mostly undergraduate students
of engineering or related disciplines (avg. age: 25.8). We compared the experiences of 10 users interacting
with the BayesAct tutor with those of 10 users interacting with a control tutor whose actions were selected
randomly from the same set as the BayesAct tutor7. Participants completed a short survey after using
the system for an average of 20 minutes. Results are displayed in Table 1. Users seemed to experience
the flow of communication with the BayesAct tutor as more simple, flexible, and natural than with the
random control tutor. The mean deflection for BayesAct was 2.9± 2.1 while for random it was 4.5± 2.2.
We have to treat these results from a small sample with caution, but this pilot study identified many
areas for improvement, and the results in Table 1 are encouraging.

Most of the user comments focused on the nature of the GRE tasks (e.g., explain the steps toward a
solution, not only just state the solution), not on the emotional aspects of the communication. However,
on directly related questions, participants indicated that while they did not feel an emotional connection
with the tutor nor thought the communication was similar to communication with a human, they per-
ceived the flow of communication as simple, flexible, and natural. Specific areas for improvement based
on the experience with the pilot study include more variation in the tutor’s statements (e.g., have differ-
ent expressions for the same functional behaviours, not just one) and better integration of the emotional
responses with explanations of solutions to the GRE tasks.

7BayesAct used 500 samples, βa =βc =0.01, and took 4 seconds per interaction on an AMD phenom IIx4 955 3.20
GHz with 8GB RAM running Windows 7, while displaying the words “Thinking...”. The random tutor simply ignored the
computed response (but still did the computation so the time delay was the same) and then chose at random.
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5 Conclusions

This paper has presented a probabilistic and decision theoretic formulation of affect control theory called
BayesAct, and has shown its use for human interactive systems. The paper’s main contributions are the
theoretical model development, and a demonstration that a computational agent can use BayesAct to
integrate reasoning about emotions with application decisions in a parsimonious and well-grounded way.

Overall, our model uses the underlying principle of deflection minimisation from Affect Control Theory to
provide a general-purpose affective monitoring, analysis and intervention theory. The key contributions
of this paper are

1. A formulation of Affect Control Theory as a probabilistic and decision theoretic model that gener-
alises the original presentation in the social psychological literature in the following ways:

(a) It makes exact predictions of emotions using the equations of Affect Control Theory, general-
ising the partial updates of ACT

(b) It removes the assumption that identities are fixed through time and allows an agent to model
a changing identity

(c) It removes the assumption that sentiments (of identities and behaviours) are known exactly
by modelling them as probability distributions

2. A set of simulations that demonstrate some of the capabilities of this generalised model of ACT.

3. A formulation of a general-purpose model for human-computer interaction that augments the model
proposed by affect control theory in the following ways:

(a) It adds a propositional state vector that models other events occurring as a result of the
interaction, and models this state vector’s progression as being dependent on the affective
deflection of the interaction

(b) It adds a reward function that an agent can optimise directly, allowing an agent to combine
deflection minimisation with goal pursual in a parsimonious and theoretically well-grounded
way.

(c) It proposes a theory of control that uses the reward function and the dependence of the
state vector on the affective component of the interaction to compute a policy of action that
maximizes expected return for the agent in the long term.

4. A description of a simple intelligent tutoring system (ITS) that uses the proposed model to better
align itself with the student.

5. A survey of 37 respondents who rated ITS actions in affective (EPA) space

6. Results of a pilot study with 20 participants who used the tutoring system for 20 minutes each.
Our study demonstrates some of the basic elements of our model, and uncovers some of the key
design considerations for future work in this area.

In future, the measurement of EPA behaviours and the translation of EPA actions requires further
study. We plan to develop the planning aspects, and to parallelize the code (for which the sampling
method is ideally suited). We plan to investigate usages of the model for collaborative agents in more
complex domains, for competitive, manipulative or therapeutic agents, conversational agents, and for
social simulations. We also plan to investigate methods for automatically learning the parameters of the
prediction equations, and the identity labels. This would allow longer-term learning and adaptation for
agents.
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A Tabulated Simulation Results

Table 2 shows examples of behaviours for different levels of deflection. Each row shows the two behaviour
labels and their actual id-deflection. The first column shows the maximum id-deflection searched for.

Table 3 shows the mean (over 20 trials) of the average (over 10 experiments) final (at the last step)
id-deflection for agent and client for varying numbers of samples and environment noises. Table 3 also
shows the total deflection (Equation (1)) and the maximum deflection across all experiments and time
steps, for each agent.

Table 4 shows the results for the experiments with client shifting its identity after 10 steps and then
staying at the new identity until 100 steps. We see that BayesAct is able to successfully recover: the
id-deflection and deflection are both the same at the end of the 100 steps, regardless of sid.

Table 5 shows the mean number of time steps per sequence of 200 steps in which the id-deflection of
the agent’s estimate of the client’s identity is greater than a threshold, dm. The results are shown for a
variety of environment noises, σe, and iddentity shifting speeds, sid. The results show that BayesAct is
able to maintain a low id-deflection throughout the sequence when confronted with speeds up to about
0.5 and environment noises less than σe = 0.5. At this setting (sid = σe = 0.5), only 12 frames (out of
200) have an id-deflection greater than 1.0.
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σr id1 id2 |id1 − id2|
≤ 0.02 - - -
0.05 quarrel with quibble with 0.046
0.05 hoot at strip 0.033
0.05 criticize hush 0.028
0.1 make business proposal to back 0.099
0.1 whip bite 0.099
0.1 cajole seduce 0.095
0.1 work overwhelm 0.095
0.1 bash distract 0.093
0.2 command tackle 0.20
0.2 make eyes at confess to 0.20
0.2 look at draw near to 0.20
0.2 sue spank 0.20
0.2 ask out approach 0.20
0.5 eat with suggest something to 0.50
0.5 shout at knock out 0.50
0.5 medicate caress 0.50
0.5 bully hassle 0.50
0.5 restrain contradict 0.50
1.0 borrow money from peek at 1.0
1.0 join up with show something to 1.0
1.0 criticize rib 1.0
1.0 sue fine 1.0
1.0 nuzzle convict 1.0
2.0 massage thank 2.0
2.0 dress console 2.0
2.0 mind accommodate 2.0
2.0 apprehend confide in 2.0
2.0 harass knock out 2.0
5.0 denounce care for 5.0
5.0 collaborate with kill 5.0
5.0 hug scoff at 5.0
5.0 listen to abandon 5.0
5.0 educate pester 5.0
≥ 10.0 steal from make love to 7.7
≥ 10.0 steal from sexually arouse 7.6
≥ 10.0 steal from help 7.5
≥ 10.0 steal from save 7.4
≥ 10.0 steal from give medical treatment to 7.4

Table 2: Most different behaviour pairs with a Euclidean distance less than σr, the environment noise.
A − indicates that there are no behaviours that are closer than the value of σr indicated.
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both known client id known client id hidden
deflection max. deflection id-deflection deflection max deflection id-deflection deflection max deflection

σe N agent client agent client agent agent client agent client agent client agent client agent client

0.0 5 3.2 ± 2.9 3.2 ± 2.9 13.94 14.00 0.89 ± 0.42 4.2 ± 2.1 4 ± 2.5 20.61 10.95 0.88 ± 0.46 1.1 ± 0.44 3.8 ± 2.5 4.2 ± 2.3 25.61 22.69
0.0 10 3.1 ± 3.1 3 ± 3.1 11.48 11.52 0.26 ± 0.14 4.3 ± 3 4 ± 3.1 25.68 15.46 0.43 ± 0.39 0.56 ± 0.71 3.6 ± 2.6 3.8 ± 2.3 29.21 23.49
0.0 50 3.3 ± 2.5 3.3 ± 2.5 13.90 13.93 0.2 ± 0.68 3.6 ± 3.2 3.5 ± 3.2 25.96 13.99 0.22 ± 0.42 0.34 ± 0.76 3.7 ± 2.2 3.9 ± 2.2 16.00 22.29
0.0 100 5.1 ± 6.6 5.1 ± 6.6 33.23 33.22 0.11 ± 0.26 4.2 ± 3.5 4 ± 3.5 23.47 15.18 0.12 ± 0.16 0.093 ± 0.13 2.9 ± 1.7 3 ± 1.9 13.35 12.41
0.0 250 4.5 ± 4.3 4.5 ± 4.3 21.28 21.29 0.12 ± 0.49 4.2 ± 3.7 4 ± 3.7 19.42 16.34 0.14 ± 0.3 0.04 ± 0.064 3.7 ± 3.3 3.7 ± 3.3 23.65 19.46
0.0 500 3.6 ± 2.6 3.6 ± 2.6 12.04 12.08 0.065 ± 0.19 3.7 ± 2.8 3.6 ± 2.9 14.57 14.53 0.093 ± 0.23 0.057 ± 0.14 3.6 ± 3.2 3.8 ± 3.3 15.73 23.72
0.0 1000 4.3 ± 3.1 4.3 ± 3.1 12.39 12.39 0.046 ± 0.12 4.5 ± 2.7 4.4 ± 2.7 12.06 10.46 0.038 ± 0.12 0.025 ± 0.053 3.7 ± 3.4 3.6 ± 3.3 17.30 21.07

0.01 5 4.2 ± 3.1 4.2 ± 3.1 12.33 12.43 0.74 ± 0.16 3.2 ± 1.9 2.6 ± 1.7 30.35 6.62 1.1 ± 0.7 1.1 ± 0.35 3.9 ± 2.3 4.5 ± 2.8 28.45 31.59
0.01 10 4 ± 3.7 4 ± 3.7 15.73 15.78 0.33 ± 0.2 4 ± 2.7 3.6 ± 2.7 19.69 11.22 0.55 ± 1 0.59 ± 0.64 5.6 ± 4.1 6.1 ± 4 32.63 41.23
0.01 50 5 ± 4.8 5 ± 4.8 25.08 25.05 0.12 ± 0.26 3.8 ± 2 3.5 ± 2 23.23 8.32 0.2 ± 0.36 0.19 ± 0.53 3.4 ± 1.8 3.6 ± 1.8 14.93 21.74
0.01 100 4 ± 3.6 4 ± 3.6 14.69 14.62 0.11 ± 0.19 4.4 ± 3.2 4.2 ± 3.3 26.03 14.73 0.086 ± 0.14 0.16 ± 0.32 3 ± 1.4 3 ± 1.4 12.22 16.81
0.01 250 3.4 ± 2.5 3.3 ± 2.5 13.60 13.64 0.14 ± 0.31 4.3 ± 3.1 4.1 ± 3.3 16.38 12.12 0.051 ± 0.096 0.034 ± 0.057 2.9 ± 1.7 3.1 ± 1.8 11.98 10.92
0.01 500 4.2 ± 3.5 4.2 ± 3.5 16.45 16.38 0.066 ± 0.19 3.8 ± 1.8 3.6 ± 1.9 19.98 10.32 0.21 ± 0.65 0.071 ± 0.15 4.7 ± 2.6 5.1 ± 3.3 15.46 23.16
0.01 1000 4.3 ± 3 4.3 ± 3 11.43 11.46 0.025 ± 0.067 3.5 ± 2.9 3.4 ± 3 12.49 10.57 0.083 ± 0.28 0.044 ± 0.11 3.6 ± 2.3 3.8 ± 2.3 9.91 11.61

0.05 5 4.2 ± 3.1 4.2 ± 3.1 12.33 12.39 0.89 ± 0.46 3.1 ± 1.7 2.6 ± 1.7 30.32 6.59 1.3 ± 1.1 1.3 ± 0.73 4.2 ± 2.6 4.6 ± 2.7 28.52 31.41
0.05 10 4 ± 3.7 4 ± 3.7 15.73 15.80 0.33 ± 0.19 4 ± 2.7 3.6 ± 2.7 16.73 11.19 0.53 ± 0.83 0.48 ± 0.43 5.8 ± 4.2 5.9 ± 3.7 32.58 41.23
0.05 50 5 ± 4.8 5 ± 4.8 25.08 25.06 0.098 ± 0.16 3.7 ± 2 3.5 ± 2 17.56 8.33 0.17 ± 0.36 0.22 ± 0.63 3.5 ± 1.8 3.7 ± 1.8 19.98 22.34
0.05 100 4 ± 3.6 4 ± 3.6 14.70 14.64 0.11 ± 0.2 4.4 ± 3.3 4.2 ± 3.3 26.05 14.72 0.12 ± 0.2 0.18 ± 0.38 2.9 ± 1.4 3.1 ± 1.5 14.30 17.15
0.05 250 3.4 ± 2.5 3.3 ± 2.5 13.60 13.65 0.17 ± 0.37 4.3 ± 3 4.1 ± 3.3 17.55 12.13 0.051 ± 0.086 0.043 ± 0.089 2.9 ± 1.7 3.1 ± 1.8 10.12 11.05
0.05 500 4.2 ± 3.5 4.2 ± 3.5 16.42 16.38 0.074 ± 0.2 3.8 ± 1.9 3.6 ± 1.9 19.35 10.32 0.18 ± 0.54 0.069 ± 0.15 4.7 ± 2.5 5.1 ± 3.3 14.80 23.19
0.05 1000 4.3 ± 3 4.3 ± 3 11.43 11.47 0.042 ± 0.12 3.5 ± 2.9 3.4 ± 3 12.72 10.57 0.079 ± 0.26 0.051 ± 0.14 3.6 ± 2.3 3.8 ± 2.3 10.20 11.80

0.1 5 4.2 ± 3.1 4.2 ± 3.1 12.30 12.40 0.76 ± 0.24 3.1 ± 1.6 2.6 ± 1.7 28.81 6.59 1.2 ± 0.88 1.3 ± 0.62 4 ± 2.4 4.7 ± 2.7 31.10 35.94
0.1 10 4 ± 3.7 4 ± 3.7 15.73 15.92 0.38 ± 0.34 4.1 ± 2.7 3.6 ± 2.7 18.46 11.20 0.48 ± 0.75 0.57 ± 0.56 5.5 ± 3.9 6.2 ± 4.1 32.52 41.23
0.1 50 5 ± 4.8 5 ± 4.8 25.09 25.08 0.068 ± 0.083 3.8 ± 2 3.5 ± 2 18.07 8.34 0.2 ± 0.37 0.15 ± 0.26 3.5 ± 1.9 3.6 ± 1.9 19.76 22.47
0.1 100 4 ± 3.6 4 ± 3.6 14.69 14.65 0.11 ± 0.15 4.4 ± 3.4 4.2 ± 3.3 26.06 14.72 0.11 ± 0.17 0.17 ± 0.33 2.9 ± 1.4 3.1 ± 1.6 15.68 16.99
0.1 250 3.4 ± 2.5 3.3 ± 2.5 13.59 13.64 0.22 ± 0.49 4.4 ± 3.1 4.1 ± 3.3 18.14 12.13 0.053 ± 0.076 0.043 ± 0.077 2.9 ± 1.7 3.1 ± 1.8 11.87 12.05
0.1 500 4.2 ± 3.5 4.2 ± 3.5 16.40 16.41 0.064 ± 0.16 3.7 ± 1.8 3.6 ± 1.9 19.74 10.35 0.2 ± 0.64 0.079 ± 0.17 4.8 ± 2.6 5.1 ± 3.3 14.96 23.23
0.1 1000 4.3 ± 3 4.3 ± 3 11.44 11.47 0.044 ± 0.14 3.5 ± 2.9 3.4 ± 3 12.71 10.59 0.08 ± 0.25 0.035 ± 0.071 3.6 ± 2.3 3.8 ± 2.3 14.58 12.06

0.5 5 4.2 ± 3.1 4.2 ± 3.1 12.33 12.44 1.2 ± 0.46 3.3 ± 1.8 2.6 ± 1.7 21.88 6.62 1.5 ± 0.54 1.7 ± 0.5 3.5 ± 1.9 4.1 ± 1.8 23.42 26.62
0.5 10 4 ± 3.7 4 ± 3.7 15.88 15.95 0.78 ± 0.26 4.3 ± 2.9 3.6 ± 2.7 19.11 11.26 1 ± 0.7 0.96 ± 0.59 5.1 ± 3.6 5.2 ± 3.6 31.49 28.43
0.5 50 5 ± 4.8 5 ± 4.8 25.10 25.20 0.27 ± 0.092 3.7 ± 2 3.5 ± 2 23.06 8.36 0.42 ± 0.37 0.36 ± 0.38 3.5 ± 1.8 3.7 ± 1.8 22.53 16.93
0.5 100 4 ± 3.6 4 ± 3.6 14.75 14.84 0.26 ± 0.18 4.4 ± 3.4 4.2 ± 3.3 25.07 14.76 0.28 ± 0.15 0.35 ± 0.35 3 ± 1.4 3.1 ± 1.6 16.18 20.26
0.5 250 3.4 ± 2.5 3.3 ± 2.5 13.71 13.65 0.26 ± 0.25 4.3 ± 3.1 4.1 ± 3.3 18.51 12.23 0.23 ± 0.24 0.2 ± 0.17 3 ± 1.7 3.2 ± 1.9 11.88 17.96
0.5 500 4.2 ± 3.5 4.2 ± 3.5 16.47 16.52 0.15 ± 0.13 3.7 ± 1.8 3.6 ± 1.9 19.16 10.43 0.29 ± 0.51 0.21 ± 0.21 4.8 ± 2.4 5.1 ± 3.3 19.23 22.26
0.5 1000 4.3 ± 3 4.3 ± 3 11.52 11.52 0.11 ± 0.083 3.5 ± 2.9 3.4 ± 3 21.50 10.61 0.14 ± 0.15 0.13 ± 0.063 3.7 ± 2.3 3.8 ± 2.4 15.24 14.32

1.0 5 4.2 ± 3.1 4.2 ± 3.1 12.32 12.41 3.8 ± 1.8 4.6 ± 1.7 3 ± 2 32.28 9.61 4.2 ± 2.3 3.8 ± 1.3 5.3 ± 2.2 6.6 ± 2.7 37.97 36.38
1.0 10 4 ± 3.7 4 ± 3.7 15.88 15.87 2 ± 1.2 4.8 ± 3 3.6 ± 2.7 21.89 11.28 2.4 ± 1.1 2.2 ± 0.98 6 ± 3.7 6.3 ± 2.9 31.65 44.60
1.0 50 5 ± 4.8 5 ± 4.8 25.06 25.11 0.82 ± 0.48 3.9 ± 2 3.5 ± 2 18.08 8.36 1 ± 0.57 0.88 ± 0.57 3.9 ± 1.7 4.2 ± 1.8 25.62 28.23
1.0 100 4 ± 3.6 4 ± 3.6 14.70 14.71 0.83 ± 0.6 4.5 ± 3.4 4.2 ± 3.3 27.90 14.75 0.76 ± 0.39 0.92 ± 0.72 3.2 ± 1.3 3.4 ± 1.8 18.80 19.19
1.0 250 3.4 ± 2.5 3.3 ± 2.5 13.66 13.63 0.61 ± 0.59 4.4 ± 3 4.1 ± 3.3 19.39 12.15 0.63 ± 0.49 0.5 ± 0.21 3 ± 1.4 3.5 ± 2.1 12.91 24.54
1.0 500 4.2 ± 3.5 4.2 ± 3.5 16.45 16.43 0.49 ± 0.33 3.9 ± 1.7 3.6 ± 1.9 20.58 10.38 0.57 ± 0.48 0.57 ± 0.31 5.1 ± 2.7 5.4 ± 3.2 20.62 26.60
1.0 1000 4.3 ± 3 4.3 ± 3 11.48 11.49 0.42 ± 0.52 3.5 ± 2.7 3.4 ± 3 21.57 10.60 0.4 ± 0.21 0.44 ± 0.22 3.7 ± 2.2 4.1 ± 2.5 18.67 16.60

2.0 5 4.2 ± 3.1 4.2 ± 3.1 12.32 12.41 7.6 ± 3.2 6.5 ± 3 3 ± 2 57.94 9.56 9.5 ± 3.8 8.8 ± 2.5 7.1 ± 2.2 8 ± 3 36.84 42.81
2.0 10 4 ± 3.7 4 ± 3.7 15.78 15.89 5.4 ± 3.1 5.6 ± 3.3 3.6 ± 2.7 53.66 11.27 5.9 ± 2.7 5.7 ± 1.9 6.7 ± 3.8 7.7 ± 2.9 39.83 48.78
2.0 50 5 ± 4.8 5 ± 4.8 25.05 25.11 2.3 ± 1.4 4.1 ± 1.9 3.5 ± 2 25.90 8.34 2.4 ± 0.93 2.1 ± 0.91 4.6 ± 1.9 5.1 ± 2.3 32.77 30.85
2.0 100 4 ± 3.6 4 ± 3.6 14.66 14.62 2.2 ± 1.1 5.2 ± 3.4 4.2 ± 3.3 33.76 14.74 2 ± 0.64 2.1 ± 0.92 3.8 ± 1.4 4 ± 1.6 20.82 20.96
2.0 250 3.4 ± 2.5 3.3 ± 2.5 13.63 13.66 1.6 ± 0.97 4.7 ± 2.7 4.1 ± 3.3 23.76 12.14 1.6 ± 0.56 1.4 ± 0.38 3.4 ± 1.4 4.4 ± 2.5 25.07 34.36
2.0 500 4.2 ± 3.5 4.2 ± 3.5 16.42 16.41 1.4 ± 0.62 4.1 ± 1.6 3.6 ± 1.9 21.56 10.34 1.4 ± 0.93 1.7 ± 0.7 5.6 ± 2.5 5.9 ± 3.2 25.22 24.22
2.0 1000 4.3 ± 3 4.3 ± 3 11.44 11.48 1.1 ± 0.59 3.8 ± 2.4 3.4 ± 3 23.69 10.59 1.1 ± 0.37 1.3 ± 0.43 4.2 ± 2.4 4.7 ± 2.6 23.69 21.91

5.0 5 4.2 ± 3.1 4.2 ± 3.1 12.29 12.40 19 ± 5.2 9.3 ± 3 3 ± 2 68.72 9.52 19 ± 6.1 20 ± 4.8 8.9 ± 2.5 11 ± 3.5 51.93 77.55
5.0 10 4 ± 3.7 4 ± 3.7 15.72 15.80 14 ± 5 7.2 ± 3.1 3.6 ± 2.7 39.97 11.23 15 ± 4.5 13 ± 3.8 8.4 ± 3.7 9.7 ± 3.2 65.43 58.71
5.0 50 5 ± 4.8 5 ± 4.8 25.11 25.08 6.5 ± 2.6 5.4 ± 1.8 3.5 ± 2 28.77 8.34 6.9 ± 2.2 6.7 ± 2.5 6.3 ± 1.7 6.1 ± 1.3 41.35 32.89
5.0 100 4 ± 3.6 4 ± 3.6 14.66 14.60 5.1 ± 1.6 6 ± 2.3 4.2 ± 3.3 28.69 14.74 5.1 ± 2 5 ± 1.7 5 ± 1.5 5.5 ± 1.6 27.75 26.21
5.0 250 3.4 ± 2.5 3.3 ± 2.5 13.63 13.65 4 ± 1.2 5.9 ± 2.7 4.1 ± 3.3 29.17 12.13 4.4 ± 1.5 4 ± 0.88 4.7 ± 1.5 6.2 ± 2.6 23.32 24.38
5.0 500 4.2 ± 3.5 4.2 ± 3.5 16.43 16.39 3.8 ± 1.2 5.4 ± 1.6 3.6 ± 1.9 19.11 10.33 3.5 ± 1.4 3.5 ± 1.2 6.6 ± 2.3 7 ± 2.4 31.47 24.31
5.0 1000 4.3 ± 3 4.3 ± 3 11.44 11.47 3 ± 0.95 4.9 ± 2.1 3.4 ± 3 22.51 10.58 3.2 ± 1 3.2 ± 1.1 5.3 ± 2.2 6.3 ± 2.5 20.61 24.65

10.0 5 4.2 ± 3.1 4.2 ± 3.1 12.32 12.39 26 ± 5.8 11 ± 4.5 3 ± 2 67.70 9.54 27 ± 7.4 28 ± 9.3 11 ± 2.9 13 ± 4.3 58.03 64.23
10.0 10 4 ± 3.7 4 ± 3.7 15.72 15.78 19 ± 7 8.2 ± 3.6 3.6 ± 2.7 41.59 11.23 22 ± 5.4 19 ± 6.4 10 ± 4.5 11 ± 3.7 75.09 47.14
10.0 50 5 ± 4.8 5 ± 4.8 25.12 25.07 12 ± 5.2 7.7 ± 3.4 3.5 ± 2 62.12 8.34 11 ± 3.4 10 ± 3.1 7.2 ± 1.6 7.4 ± 1.9 36.90 34.22
10.0 100 4 ± 3.6 4 ± 3.6 14.66 14.60 8.1 ± 2.8 7 ± 2.3 4.2 ± 3.3 38.44 14.73 8.4 ± 2.4 7.9 ± 2.5 6.5 ± 1.8 7 ± 1.9 26.87 30.49
10.0 250 3.4 ± 2.5 3.3 ± 2.5 13.62 13.64 6.3 ± 2.2 7 ± 2.5 4.1 ± 3.3 30.96 12.13 5.8 ± 2.3 5.5 ± 1.4 5.5 ± 1.7 7 ± 2.1 18.64 21.72
10.0 500 4.2 ± 3.5 4.2 ± 3.5 16.44 16.39 5.7 ± 2.1 6.3 ± 1.4 3.6 ± 1.9 19.84 10.33 5.3 ± 2.3 5.4 ± 2.3 7.5 ± 2.4 7.3 ± 1.4 29.68 23.55
10.0 1000 4.3 ± 3 4.3 ± 3 11.44 11.47 4.5 ± 2.1 6.1 ± 1.8 3.4 ± 3 20.38 10.57 4.4 ± 2 4.4 ± 1.5 5.9 ± 1.9 7.5 ± 2.2 18.74 25.56

Table 3: Deflections of identities from simulations with different numbers of samples (N), and environment noise, σe. Roughening noise:
σr = N−1/3, model environment noise: γ = max(0.5, σe). id-deflections in cases where the identity is known are not shown as they are all very
small (less than 10−3).
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id-deflection deflection num deflected frames
σe sid agent client agent client

(×103) dm = 1.0 dm = 2.0 dm = 3.0 dm = 5.0
0.1 0.01 0.065± 0.15 0.28± 0.14 3.1± 2.3 3± 2.4 4.12± 9.09 0.53± 0.96 0.04± 0.20 0.00± 0.00
0.1 0.1 0.16± 0.13 0.27± 0.13 3.6± 2.4 3.9± 2.7 5.14± 12.03 0.94± 5.71 0.04± 0.20 0.00± 0.00
0.1 0.5 0.51± 0.54 0.28± 0.14 3.2± 2.3 3.4± 2.4 18.11± 18.37 1.94± 4.52 0.19± 1.53 0.00± 0.00
0.1 1.0 0.51± 0.97 0.28± 0.1 3.2± 2.3 3.5± 2.5 16.80± 18.47 3.69± 7.14 0.35± 1.32 0.00± 0.00
0.1 2.0 0.14± 0.33 0.29± 0.12 3.4± 2.4 3.5± 2.5 10.36± 12.56 2.50± 4.72 0.60± 2.16 0.04± 0.49
0.5 0.01 0.17± 0.06 0.31± 0.14 3.1± 2.3 3± 2.4 6.20± 6.59 0.84± 1.52 0.06± 0.29 0.00± 0.00
0.5 0.1 0.31± 0.16 0.3± 0.13 3.6± 2.4 3.9± 2.7 9.89± 13.75 1.28± 5.69 0.10± 0.57 0.00± 0.00
0.5 0.5 0.69± 0.48 0.31± 0.11 3.2± 2.2 3.5± 2.5 23.99± 20.29 2.83± 5.40 0.18± 1.03 0.00± 0.00
0.5 1.0 0.71± 1.1 0.3± 0.14 3.2± 2.2 3.5± 2.5 21.87± 19.54 4.96± 9.27 0.74± 2.68 0.00± 0.00
0.5 2.0 0.3± 0.32 0.29± 0.15 3.3± 2.3 3.5± 2.5 15.20± 15.48 3.21± 6.31 0.72± 2.52 0.03± 0.35
1.0 0.01 0.41± 0.24 0.28± 0.13 3± 2 3± 2.4 20.70± 19.44 3.23± 7.13 0.27± 1.14 0.00± 0.00
1.0 0.1 0.94± 0.99 0.31± 0.16 3.3± 2.1 3.9± 2.7 35.76± 23.98 4.32± 10.78 0.69± 4.56 0.00± 0.00
1.0 0.5 1.1± 0.74 0.28± 0.12 3.1± 2.1 3.5± 2.5 41.83± 23.05 8.47± 11.46 0.91± 2.92 0.00± 0.00
1.0 1.0 1.1± 1.2 0.27± 0.11 3.2± 2.2 3.5± 2.5 38.22± 24.14 9.12± 13.40 1.82± 5.33 0.01± 0.14
1.0 2.0 0.63± 0.51 0.29± 0.13 3.3± 2.3 3.5± 2.5 31.57± 20.70 6.37± 10.64 1.23± 4.22 0.01± 0.07

Table 4: Deflections of identities from simulations with different environment noise, σe, and shapeshifted id speed, sid. N = 250, agent-id-hidden.
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id-deflection deflection num deflected frames
σe sid agent client agent client

(×103) dm = 1.0 dm = 2.0 dm = 3.0 dm = 5.0
0.1 0.01 0.048± 0.051 0.88± 0.45 2.9± 1.7 2.9± 1.8 3.60± 5.42 0.64± 0.89 0.09± 0.28 0.00± 0.00
0.1 0.1 0.16± 0.094 0.82± 0.34 2.9± 1.6 2.9± 1.6 4.31± 6.82 0.63± 0.86 0.09± 0.28 0.00± 0.00
0.1 0.5 0.74± 0.8 0.83± 0.39 3.1± 1.4 3.3± 1.7 44.06± 44.05 5.61± 14.75 0.56± 2.70 0.00± 0.00
0.1 1.0 0.75± 1 0.85± 0.4 3.1± 1.5 3.4± 1.6 40.98± 46.90 9.68± 23.76 2.40± 9.69 0.03± 0.21
0.1 2.0 0.37± 0.94 0.76± 0.51 2.8± 1.9 2.9± 2.1 22.91± 36.32 5.87± 15.39 1.66± 5.69 0.06± 0.40
0.5 0.01 0.19± 0.07 0.94± 0.37 2.9± 1.7 2.9± 1.8 7.80± 8.56 1.31± 2.94 0.26± 1.26 0.00± 0.00
0.5 0.1 0.32± 0.14 0.86± 0.35 3± 1.6 2.9± 1.6 12.84± 12.71 1.39± 3.55 0.26± 1.27 0.00± 0.00
0.5 0.5 0.88± 0.89 0.84± 0.4 3± 1.5 3.3± 1.7 54.06± 44.18 8.07± 17.32 1.11± 4.29 0.01± 0.07
0.5 1.0 0.94± 1 1± 0.46 3± 1.6 3.4± 1.7 49.47± 48.18 11.62± 24.86 3.00± 11.31 0.08± 0.48
0.5 2.0 1.2± 1.8 1.1± 0.8 3.5± 2.4 4.1± 3.1 48.40± 59.16 18.09± 32.08 5.38± 12.87 0.32± 1.54
1.0 0.01 0.43± 0.17 0.92± 0.42 2.9± 1.7 2.9± 1.8 26.59± 23.41 2.75± 4.66 0.31± 0.98 0.00± 0.00
1.0 0.1 0.66± 0.23 0.91± 0.4 3± 1.6 2.9± 1.6 57.30± 31.38 3.92± 8.54 0.57± 3.65 0.00± 0.00
1.0 0.5 1.3± 0.99 0.92± 0.47 3± 1.4 3.3± 1.7 89.39± 46.56 16.93± 26.96 2.65± 9.29 0.10± 1.16
1.0 1.0 1.3± 1.1 0.88± 0.44 3.1± 1.5 3.5± 1.7 79.89± 50.71 17.57± 29.44 3.67± 11.98 0.08± 1.00
1.0 2.0 1± 0.99 0.86± 0.42 3.2± 1.5 3.7± 2 59.55± 45.36 13.04± 21.26 2.94± 7.96 0.10± 0.71

Table 5: Deflections of identities from simulations with different environment noise, σe, and shapeshifted id speed, sid. N = 100, agent-id-hidden,
dm ≡ threshold for frame deflection.
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B Derivation of Most Likely Behaviour

We know from Equation (8) and (10) that the belief distribution over the state at time t (denoted s′) is
given by

b(s′) = Pr(ω′|s′)Eb(s) [Pr(x′|x, f ′, τ ′,ba)Pr(τ ′|τ , f ′,x)Pr(f ′|f , τ ,x,ba)] (38)

and further, from 20 that

Pr(f ′|f , τ ,x,ba, ϕ) ∝ e−ψ(f ′,τ ,x)
[
EPr(θf )(θf )

]
(39)

Let us first assume that the prior over θf is uninformative, and so only the first expectation remains.
Then, if we compare two values for s′, say s′1 and s′2, and we imagine that we have deterministic dynamics
for the application state X and the transients T, then we find

b(s′1)− b(s′2) ∝ Eb(s)
(
e−ψ(f ′1,s1) − e−ψ(f ′2,s2)

)
(40)

≥ e−ψ(f ′1,Eb(s)(s1)) − e−ψ(f ′2,Eb(s)(s2)) (41)

where the inequality between (40) and (41) is due to the expectation of a convex function being always
larger than the function of the expectation (Jensen’s inequality). From (41), we have that the probability
of f ′1 will be greater than the probability of f ′2 if and only if:

ψ(f ′1,Eb(s)(s1)) < ψ(f ′2,Eb(s)(s2)) (42)

that is, the deflection caused by f ′1 is less than the deflection caused by f ′2. This demonstrates that
our probability measure over f ′ will assign higher likelihoods to behaviours with lower deflection, as
expected, and so if we wish find the most likely f ′ value, we have only to find the value that gives the
smallest deflection by, e.g., taking derivatives and setting equal to zero. The probabilistic formulation
in Equation (42), however, takes this one step further, and shows that the probability of f ′ will assign
higher weights to behaviours that minimize deflection, but in expectation of the state progression if it is
not fully deterministic.

If the prior over θf is such that we expect identities to stay constant over time, as in Equation (24), we
can derive a similar expression to (42), except it now includes the deflections of the fundamentals over
identities:

ψ(f ′1,Eb(s)(s1)) + ξ(f ′1, f) < ψ(f ′2,Eb(s)(s2)) + ξ(f ′2, f) (43)

We see that this is now significantly different than (42), as the relative weights of ξ (βa and βc) and ψ (α)
will play a large role in determining which fundamental sentiments are most likely. If βa � α or βc � α,
then the agents beliefs about identities will change more readily to accommodate observed deflections. If
the opposite is true, then deflections will be ignored to accommodate constant identities.

C Connection to Heise’s most likely behaviours

In this section, we show that the most likely predictions from our model match those from [1] if we use the
same approximations. We begin from the probability distribution of fundamentals from Equation (24),
but we assume deterministic state transitions, ignore the fundamental inertia ξ, and use the formula for
ψ as given by Equation (27), we get

Pr(f ′|f , τ ,x,ba, ϕ) ∝ e−(f ′−K −1C )TK TΣ−1K (f ′−K −1C ) (44)

Now we saw in Section 3.3 that this was simply a Gaussian with a mean of K −1C , and so gives us the
expected (most likely or “optimal” in Heise’s terms) behaviours and identities simultaneously. We can
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find these expected fundamentals by taking the total derivative and setting to zero

d

df ′
Pr(f ′|f , τ ,x,ba, ϕ) =

(
d

df ′
(f ′ −K −1C )TK TΣ−1K (f ′ −K −1C )

)
e−(f ′−K −1C )TK TΣ−1K (f ′−K −1C ) = 0

which means that f ′ = K −1C (the mean of the Gaussian), as expected. Heise, however, estimates the
derivatives of each of the identities and behaviours separately assuming the others are held fixed. This is
the same as taking partial derivatives of (44) with respect to fb only while holding the others fixed:(

∂

∂f ′b
(f ′ −K −1C )TK TΣ−1K (f ′ −K −1C )

)
e−(f ′−K −1C )TK TΣ−1K (f ′−K −1C ) = 0 (45)

Now, we recall that (writing I ≡ I3 and 0 ≡ 03):

K =

 I −Ha 0
0 1−Hb 0
0 −Hc I


So that

K −1 =

 I Ha(1−Hb)
−1 0

0 (1−Hb)
−1 0

0 Hc(1−Hb)
−1 I


and if Σ is a diagonal identity matrix, we can write

K TΣ−1K =

 I −Ha 0
−Ha H 2

a + (1−Hb)
2 + H 2

c −Hc

0 −Hc I


To simplify, we let a = −Ha, b = 1−Hb, c = −Hc, and z = H 2

a + (1−Hb)
2 + H 2

c we get

K TΣ−1K =

 I a 0
a z c
0 c I


we also have that

f −K −1C =

 fa −
(
Ca + CbHa(1−Hb)

−1
)

fb − (1−Hb)
−1Cb

fc −
(
Cc + CbHc(1−Hb)

−1
)
 =

 ya
yb
yc


where we have used ya, yb, yc to denote the difference between the actor identity, behaviour and object
identity and their respective true means as given by the total derivative. Therefore, we have from
Equation (45):

∂

∂fb

(
y2
a + 2ayayb + zy2

b + 2cybyc + y2
c

)
= 0

2aya + 2zyb + 2cyc = 0

and therefore that the “optimal” behaviour, f∗b is

f∗b = −z−1(aya + cyc) + (1−Hb)
−1Cb

partially expanding out this is

f∗b = −z−1
[
−Ha(fa − Ca − CbHa(1−Hb)

−1)−Hc(fc − Cc − CbHc(1−Hb)
−1)− zCb(1−Hb)

−1
]
(46)
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Now we note that, the terms from Heise’s book can be written as follows

[I −M ′]Iβgβ =

 fa − Ca
−Cb

fc − Cc


and

[I −M ′]IβSβ =

 Ha

I −Hb

Hc


so that

STβ Iβ

[
I
−M ′

]
[I −M ′]Iβgβ = −Ha(fa − Ca)− Cb(I −Hb)−Hc(fc − Cc) (47)

and that(
STβ Iβ

[
I
−M ′

]
[I −M ′]IβSβ

)−1

=
(
H T
a Ha + (I −Hb)

T (I −Hb) + H T
c Hc

)−1
= z−1

so that f∗b is now

f∗b = −
(
STβ Iβ

[
I
−M ′

]
[I −M ′]IβSβ

)−1

×[
−Ha(fa − Ca) + HaCbHa(1−Hb)

−1 −Hc(fc − Cc) + HcHbHc(1−Hb)
−1

−
(
H T
a Ha + (1−Hb)

T (1−Hb) + H T
c Hc

)
Cb(1−Hb)

−1
]

(48)

collecting terms and comparing to Equation (47), this give us exactly Equation (12.21) from [1]:

f∗b = −
(
STβ Iβ

[
I
−M ′

]
[I −M ′]IβSβ

)−1

STβ Iβ

[
I
−M ′

]
[I −M ′]Iβgβ (49)

Similar equations for actor and object identities can be obtained in the same way by computing with
partial derivatives keeping all other quantities fixed, and the result is equations (13.11) and (13.18)
from [1].
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