
Minimizing Cache Usage in Paging

University of Waterloo Technical Report CS-2012-15

Alejandro López-Ortiz and Alejandro Salinger

David R. Cheriton School of Computer Science, University of Waterloo,
200 University Ave. West, Waterloo, ON, Canada, N2L3G1

{alopez-o,ajsalinge}@uwaterloo.ca

Abstract. Traditional paging models seek algorithms that maximize their performance while using the
maximum amount of cache resources available. However, in many applications this resource is shared
or its usage involves a cost. In this work we introduce the Minimum Cache Usage problem, which is an
extension to the classic paging problem that accounts for the efficient use of cache resources by paging
algorithms. In this problem, the cost of a paging algorithm is a combination of both its number of faults
and the amount of cache it uses, where the relative cost of faults and cache usage can vary with the
application. We present a simple family of online paging algorithms that adapt to the ratio α between
cache and fault costs, achieving competitive ratios that vary with α, and that are between 2 and the
cache size k. Furthermore, for sequences with high locality of reference, we show that the competitive
ratio is at most 2, and provide evidence of the competitiveness of our algorithms on real world traces.
Finally, we show that the offline problem admits a polynomial time algorithm. In doing so, we define
a reduction of paging with cache usage to weighted interval scheduling on identical machines.

1 Introduction

The efficient management of a computer memory hierarchy is a fundamental problem in both
computer architecture and software design. A program’s data and instructions reside in various
levels of the hierarchy, in which memories at higher levels have higher capacities, but slower access
times. Simplified to a two-level memory system, the paging problem models a slow memory of
infinite size and a fast memory of limited size, usually known as the cache. The input consists
of a sequence of page requests. If the page of a request is in the cache then the request is a hit ;
otherwise it is a miss or fault and the requested page must be brought from slow memory to cache,
possibly requiring the eviction of one or more pages currently residing in cache. A paging algorithm
must decide which pages to maintain in the cache at each time in order to minimize a defined
cost measure. In the classic page fault model the cost of an algorithm is measured in terms of its
number of faults and hits have no cost, reflecting the fact that an access to slow memory is orders
of magnitude slower than an access to cache.

As computer architectures and applications evolve, other cost models have arisen to reflect,
for example, varying fetching costs and sizes in web-caches [1–3], or multi-threaded applications
sharing a cache [4–8]. In this paper we consider a generalization of the classic page fault model
whose performance objective function is a combination of both the number of faults and the amount
of cache used by an algorithm. Thus in addition to the fault cost, at each step we charge a cost
proportional to the number of pages in cache. In general, the model seeks algorithms with good
performance in terms of number of faults while at the same time using available resources efficiently.
Naturally, minimizing the number of faults and the cache usage of a paging algorithm are conflicting
goals.

Paging strategies that minimize cache usage are relevant in multi-core architectures where mul-
tiple cores share some level of cache. In this context, multiple request sequences compete for the
use of this shared resource. While traditional models of paging encourage algorithms to use the
entire cache so as to minimize the faults incurred, a model that charges for cache usage can make
a paging algorithm in a shared cache scenario be “context aware”. Varying the parameters of the
model for each sequence can be used to achieve a cooperative global strategy with better overall
performance.

The cache minimizing model can also be used as an energy efficient paging model. Several
applications use caches implemented with Content-Addressable Memories (CAMs), most notably
networking routers and switches, and Translation Lookaside Buffers (TLBs). CAMs provide a single
clock cycle throughput, making them faster than other hardware alternatives [9]. However, speed
comes at a cost of increased power consumption, mainly due to the comparison circuitry. Reducing
this power without sacrificing capacity or speed is an important goal of research in circuit design [9].
Power consumption could be reduced if inactive cache lines are turned off, thus our model can
provide a framework for paging strategies that achieve good performance in terms of faults while
contributing to energy savings.

1.1 Paging and Cost Models

The paging problem has been extensively studied; some well-known page replacement policies are
Least-Recently-Used (LRU), which evicts the page in the cache whose last access time is furthest
in the past; First-In-First-Out (FIFO), which evicts the page that has been longest in the cache;
and Flush-When-Full (FWF), which when required to evict a page evicts all pages from the cache.

The performance of paging algorithms has been traditionally measured using competitive anal-
ysis [10]. A paging algorithm A has competitive ratio r or is r-competitive if its cost A(R) over
any sequence R satisfies A(R) ≤ r · OPT (R) + β, where OPT (R) is the optimal cost of serving
R offline, and β is a constant. In the page fault model, where a fault has cost 1 and hits have no
cost, the algorithms above are k-competitive, where k is the size of the cache, which is optimal for
deterministic algorithms [11]. A competitive ratio of k is achieved by all marking and conservative
algorithms. An algorithm is conservative if it incurs at most k faults on any consecutive subsequence
of requests that contains at most k distinct pages [11]. A marking algorithm associates a mark with
each page in its cache (either explicitly or implicitly) and marks a page when it is brought to
cache or if it is unmarked and requested. Upon a fault with a full cache, it only evicts unmarked
pages if there are any, and unmarks all pages in cache otherwise. The latter event marks the start
of a phase, which defines a k-phase partition of a request sequence. LRU and FWF are marking
algorithms, while LRU and FIFO are conservative algorithms [11]. Randomized algorithms with
optimal competitive ratio Θ(log k) exist for this problem [11]. The offline problem can be solved
optimally by Belady’s algorithm [12]: evict the page in cache that is going to be requested furthest
in the future (FITF).

Other cost models for paging differ in the assumptions of applications with respect to the cost
of bringing a page into the cache, and the size of pages [2, 1, 13, 3]. Unlike these models, which
consider only the cost of faults, the full access cost model [14] charges a cost of 1 for a hit, and a

cost of s ≥ 1 for a fault. In this model, marking algorithms achieve a competitive ratio of 1+ (k−1)s
L+s ,

where L is the average phase length in the k-phase partition of a sequence. In the worst case, L = k
and the ratio is k(s+1)/(k+s), which is optimal. The model coincides with the classic model when

2

s → ∞, but can yield competitive ratios that are significantly smaller if s is small or if a sequence
has high locality [11], properties that, as we shall see, are also shared by our model.

A related paging model that also includes the amount of cache used in the cost of algorithms is
described in [15]. In this model an algorithm can purchase cache slots, and the overall cost of the
algorithm is the number of faults plus the cost of purchased cache. As cache may only be bought,
the cache size can only increase (with no bound on the maximum size). In our model, however,
an algorithm is charged for the number of pages it has in the cache at every step, which can both
increase or decrease. In this sense our model charges algorithms for renting cache, while keeping
the upper bound k on the maximum cache available.

1.2 Our Contributions

This work introduces a generic model of efficient cache usage in paging that can be applied to any
scenario in which it is desirable for a paging algorithm to minimize the amount of cache it uses.

We define a family of online algorithms that combine the eviction policies of traditional marking
or conservative algorithms with cache saving policies. The performance of the algorithms adapts
to the relative cost of faults and cache. More precisely, they achieve a competitive ratio of 2 if

α < k, where α = f/c is the ratio between fault and cache cost, and min
{

k, α(k+1)
α+k−1

}

if α ≥ k, thus

matching the performance of classical algorithms when f ≫ c. We further parametrize the analysis
by considering the locality of reference of the sequence, and show that for sequences with high
locality of reference the competitive ratio of our algorithms is at most 2. Simulations on real-world
inputs show that our algorithms are close to optimal in terms of the total cost, and both its cache
usage and number of faults are close to those of the optimal offline.

Lastly, we show that the offline problem admits a polynomial time algorithm via a reduction to
interval weighted interval scheduling on identical machines.

The rest of this paper is organized as follows. Section 2 introduces the Minimum Cache Usage
model and problem. We present an optimal offline algorithm in Section 3, and present our results
related to online algorithms and simulations in Section 4. Due to space constraints, we include only
some of the proofs and charts in the body of the paper, while the rest appear in the Appendix.

2 Paging with Cache Usage

The paging model we consider in this paper extends classic paging to a model in which the cost of
a paging algorithm on a request sequence is a weighted function of the number of faults and the
total amount of cache used by the algorithm. An instance of paging with minimum cache consists
of a sequence R = {r1, r2, . . . , rn} of page requests and a maximum cache size k. Each request ri
is associated with a page σj, for 1 ≤ j ≤ N , where N is the size of the universe of pages that can
be requested. We denote by page(ri) the page associated with request ri. A paging algorithm can
hold at most k pages in its cache, but can also choose to hold fewer pages, in order to reduce its
cache usage.

Definition 1 (Total cache usage). Let A be a paging algorithm and R a request sequence. Let
k(i) ≤ k denote the number of pages in A’s cache immediately before request ri, where k is the
maximum cache size. The total cache usage of A when serving R is defined as CA(R) =

∑

i k(i).

3

Given a request sequence R and maximum cache size k, the cost of an algorithm A on R is
defined as A(R) = fFA(R)+ cCA(R), where FA(R) and CA(R) are the number of faults and total
cache usage of A when serving R, respectively, and f ≥ 0 and c ≥ 0 are parameters. The Minimum
Cache Usage problem is then the problem of serving a request sequence with minimum cost.

In reality a request sequence is revealed in an online fashion, thus our focus is on the performance
of online algorithms in terms of their competitive ratio. An online algorithm has competitive ratio
r if, given a maximum cache size k, and parameters f and c, for all request sequences A(R) ≤
r ·OPT (R)+β, where OPT is the optimal offline, r is a function of k, f and c, and β is a constant
that does not depend on R. As in classic paging, the steps involved in serving a request ri are as
follows: the page associated with the request is revealed to the algorithm, after which the algorithm
acts by possibly evicting one or more pages, and finally the request is served. Thus, all pages evicted
in cache in step i were held in cache up to time i − 1. A paging algorithm is said to be lazy or
demand paging if it only evicts a page when a page fault occurs. Observe that unlike classic paging,
in which any algorithm can be made demand paging without sacrificing performance [11], in our
model algorithms can benefit from evicting pages even when there is no page fault.

The relation between the parameters f and c can vary according to the application to empha-
size the importance of minimizing faults or using the cache efficiently, or a combination of both.
Naturally, an instance with c = 0 and f > 0 is an instance of the classical model, in which the cost
of an algorithm is its number of faults. On the other hand, if f < c then the problem is trivial: an
optimal algorithm always evicts the page of each request immediately after serving it. We assume
in general that f ≥ c > 0.

2.1 Applications

The cost model described above provides incentives for an eviction policy to be efficient not only in
terms of its faults but also with respect to the use of the resources that are available to it. Thus, the
model can be used in any environment where the latter has significance. We mention the following
applications.

Shared Cache Multiprocessors. Multi-core processors are equipped with both private and shared
caches, with threads running in each core usually competing for the latter type. While there are
schedulers that seek to achieve cooperative use of a shared cache, in general paging strategies for
individual threads do not act cooperatively but use as much of the available cache as possible. The
cost model we propose provides incentives for paging algorithms to balance their own benefits—a
fast execution due to a small number of faults—and the benefits they can provide to concurrently
running threads. Depending on the values of f and c, an algorithm will favour one or the other.

Energy Efficient Caching. Content Addressable Memories (CAMs) are used in many applications
that require high speed searches, and whose primary applications are in network routers [9]. CAMs
are indexed by stored data words instead of memory addresses, as in regular caches. Each cell
has a matchline that indicates if the stored word in the cell and the searched word match. A
search for an input data word first precharges all matchlines, then each cell compares its bits
against the searched bits, and matchlines corresponding to non-matching entries are discharged.
The overall missing matchline dynamic power consumption for a system with w matchlines can be
modeled as P = wCV 2f , where C is the matchline capaticance, V is the supply of a matchline
and f is the frequency of misses (the power associated with a matchline in a match is small and

4

can be neglected) [9]. The power involved in this operation can be therefore reduced if matchline
precharging is controlled based on the valid bit status of each entry [16]: on a search, only valid
entries require the precharging of matchlines, thus the power cost of a search can be proportional
to the number of valid entries in the cache. In this scenario, a paging algorithm that uses its cache
efficiently will contribute to power savings.

3 Offline Optimum

In the next section we describe a simple family of online algorithms for the cache usage problem
and analyze their competitiveness. In order to provide a better intuition for that analysis we first
describe a solution to the offline problem. We recast the paging instance as an instance of weighted
interval scheduling on identical machines, and use an algorithm for this problem to obtain an
optimal polynomial time paging algorithm.

An instance of Weighted Interval Scheduling on Identical Machines consists of a set J of jobs
and a number m of available identical machines. Each job has a starting time, a duration, and a
weight. In order to be processed, a job must be assigned to a machine immediately after its start
time and cannot be interrupted. A machine can process only one job at a time. The goal is to
process a subset J ′ ⊆ J of jobs such that the total weight of jobs in J ′ is maximized. Equivalently,
each job corresponds to an interval in the real line, and we seek to schedule the maximum weight
subset of intervals such that at most m intervals overlap at any time. This problem can be solved
in polynomial time by reduction to minimum cost flow [17, 18].

It will be useful to see a paging problem instance as an instance of interval scheduling on
identical machines: each pair of consecutive requests to the same page defines an interval whose
start and end times are the times of the requests. In each pair of requests, the second request results
in a hit if and only if the corresponding page is kept in the cache since the previous request, or
equivalently, if the interval is scheduled.

The connection between interval scheduling and paging has been noted before in [19, 20] where
it is used to study cache policies in non-standard caches. It is assumed, however, that the reduction
applies only when bypassing is allowed. More recently, [21] used this connection to show that offline
paging in the fault and bit models is NP-hard by reducing interval packing problems to paging.
Unlike our model, these models consider pages (and hence intervals) of different sizes. The reduction
we introduce in this paper is from paging to interval scheduling, and it is defined as follows.

Definition 2 (Interval representation of a sequence). An interval representation of a request
R of length n is a set of intervals I(R) = {I1, I2, . . . , In} where each interval Ii corresponds to
request ri in R. The starting time of each interval Ii is s(Ii) = i+1 and the end time is e(Ii) = j−1,
where j > i is the smallest index such that page(rj) = page(ri), or e(Ii) = n if no such j exists. We
say that an interval Ii is feasible if e(Ii) < n and unfinished otherwise. Thus the length of interval
Ii is |Ii| = e(Ii)− s(Ii) + 1.

An example of a sequence and its interval representation is shown in Figure 1. Intuitively, an
interval corresponding to request rj represents the time interval in which page(rj) must reside in
the cache in order for the next request to this page to result in a hit. Note that each first request
to a page has no preceding interval thus cannot be a hit. Similarly, a page that is requested for the
last time in a sequence can be held in cache, but as the interval does not finish in the corresponding
page, it cannot result in a hit. Note that intervals do not overlap with the times in which their

5

σ1 σ2 σ3 σ1σ4 σ3 σ5 σ2 σ3 σ4 σ5 σ1 σ2

1 2 3 4 5 6 7 8 9 10 11 12 13

I1

I2

σ1

14

I3

I4

I6

I7

I8

I10

I9

I11

I12

I133 6 1

6 4

3

3

2 4

3

2

6

Fig. 1. A request sequence and its interval representation. The length of each interval is shown below the interval (I5
of length 0 is not shown). Feasible intervals are {I1, I2, I3, I4, I5, I6, I7, I8, I9} while {I10, I11, I12, I13} are unfinished.
The request can be served with a cache of size 3 with 8 faults and a cache usage of 29 by scheduling intervals
{I1, I3, I5, I7, I8, I9} on 2 machines (thus requests 5,6,7,10,12,14 are hits and the rest are faults), which is the optimal
cache cost for the minimum number of faults.

corresponding pages are requested, thus using this reduction theres is no need to assume that
bypassing is allowed. All requests are served, but only the ones whose interval was scheduled will
result in hits. Note as well that two consecutive requests to the same page define an interval of
length 0 that does not overlap any other interval, and thus it is always scheduled. The following
Lemma formalizes the reduction1.

Lemma 1. Let R be a request sequence. Let I ′(R) = I(R) \ {Ii : Ii is unfinished}. Let S ⊂ I ′(R)
be a feasible schedule of I ′(R) on k − 1 machines. Then R can be served with a cache of size k
such that all requests rj with Ii ∈ S and j = i + |Ii| + 1 are hits, with a total cache usage of
|R|+

∑

Ii∈S
|Ii|.

In light of Lemma 1, when describing the actions of an algorithm while serving a request R,
we sometimes use the terminology related to interval scheduling. Thus we say that an algorithm
schedules an interval Ii to mean that it keeps a page page(ri) in cache until request rj with
j = i+ |Ii|+1 (and page(rj) = page(ri)). We define the cache cost of a request rj as the number of
requests that page(rj) was kept in cache for after ri, which equals |Ii| if rj is a hit, and is smaller
otherwise.

If we are only interested in minimizing faults then the problem corresponds to Maximal Interval
Scheduling. This problem can be solved by sorting intervals in increasing order of end time, and
then greedily scheduling intervals while there are available machines. Minimizing the number of
faults while at the same time using the least possible cache can be solved instead by computing the
maximum weight schedule in the corresponding interval representation. Weighted interval schedul-
ing on identical machines can in turn be solved by formulating the problem as a minimum cost
flow problem [17, 18]. Since we are interested in minimizing cache usage (equivalently, minimizing
processing time in the interval schedule), for a given instance R we assign weights to intervals using
the following corollary from [18]:

Corollary 1. [18, Cor. 2] For each interval Ij ∈ I(R) with processing time |Ij|, define a weight
wj = M − |Ij |+ 1 2, where M is a positive real number such that M ≥

∑

|Ij|. Then a solution to
maximum weight interval scheduling gives an optimal solution to maximal interval scheduling with
minimum total processing time.

1 See Appendix A for full proofs.
2 We add 1 to the weight of each interval so that intervals have non-zero weight if all intervals have length 0.

6

Algorithm 1 Minimum Cache Usage Cost(R, k, f, c)

1: {Compute interval representation of R without unfinished intervals}
2: I = ∅
3: for j = 1 to |R| do
4: lastRequest[page(rj)] = −1
5: M ← 0
6: for j = 1 to |R| do
7: i←lastRequest[page(rj)]
8: if i 6= −1 then

9: s(Ii)← i+ 1
10: e(Ii)← j − 1
11: if c · |Ii| ≤ f then

12: add Ii to I
13: M ←M + |Ii|
14: lastRequest[σ] = j

15: for i = 1 to |I| do
16: w(Ii) = M − |Ii|+ 1
17: S ←MaxWeightSchedule(I, k − 1)
18: return f(|R| − |S|) + c(

∑
Ii∈S
|Ii|+ |R|)

Using the above weight assignment and a maximum weight scheduling algorithm we obtain a
way of serving request R with the minimum number of faults, and with minimum cache usage.
Recall that in general we seek to minimize the total cost of serving a sequence R, defined as
fF (R) + cC(R), which does not necessarily imply minimizing the number of faults F . However,
we can still use the same reduction to interval scheduling and subsequently to minimum cost flow
by first eliminating from I(R) all intervals whose cache cost is higher than the fault cost. It is
easy to see that any solution that includes an interval Ii such that c|Ii| > f could be modified to
obtain a smaller cost by not scheduling that interval and paying for the fault instead. Hence, an
optimal algorithm does not schedule any interval whose cost is higher than that of the fault cost.
The resulting optimal offline algorithm is shown in Algorithm 1, where MaxWeightSchedule is an
algorithm for maximum weight interval scheduling. Clearly, computing the interval representation
of a request R of n pages (lines 2-16) takes O(n) time, while MaxWeightSchedule takes time
O(m2 logm) [17], where m is the number of intervals of the weighted interval scheduling problem.
Naturally, m = O(n), which yields an O(n2 log n) total running time. However, in general m might
be much smaller than n, depending on the number of different pages in R and the number of
intervals whose length is greater than f/c.

Theorem 1. Given a request sequence R of length n and a cache size k, and constants f ≥ 0, and
c ≥ 0, an optimal way of serving R that minimizes fF (R) + cC(R), where F (R) and C(R) are
the number of faults and cache usage when serving R, can be computed in O(n2 log n) time.

4 Online Algorithms

In this section we present a family of online algorithms that adapt to the relative cost of a fault
versus the cache cost. These algorithms are k-competitive in the worst case (when f ≫ c), but can
achieve significant cache savings and smaller cost when the cache cost is closer to the fault cost.
As a warm-up, we show that while classical optimal paging algorithms are also k-competitive, this
ratio does not improve when the cache cost is high relative to the fault cost.

7

Lemma 2. Let A be any marking or conservative paging algorithm. The competitive ratio of A is
at most k.

Proof. LetR be any sequence and consider its k-phase partition. Since A is marking or conservative,
it faults at most k times per phase. In addition, in a phase of m requests any algorithm has a cache
cost of at most cmk. On the other hand, any algorithm must fault at least once per phase, and
must pay at least cm for a phase of m requests. Thus A(R)/OPT (R) ≤ (fk+ cmk)/(f + cm) = k.

We now show that this bound is tight for any values of f and c.

Lemma 3. Let A be any lazy paging algorithm. Then the competitive ratio of A is at least k.

Proof. Let α = f/c and c 6= 0. Suppose that α is finite. Let R = {σ1, σ2, . . . , σk−1, (σk)
x}, with

σi 6= σj for all i 6= j, and (σ)x denotes a sequence of x consecutive requests to σ. Since A is a lazy
algorithm, it will not evict any page from the cache, thus only faulting in the first k requests but
using the entire cache until the end of the sequence. Hence, A(R) ≥ fk+xkc. An optimal algorithm
can use only one cell of cache for a cost of OPT (R) = fk + xc. Since x can be made arbitrarily
large and f/c is bounded, the result follows. In the case of an unbounded α, the same sequence
used in the classic lower bound of k applies: request the page in {σ1, . . . , σk+1} not currently in the
cache. Thus, A(R) ≥ n(f + c) and OPT (R) ≤ (n/k)f +nkc and the ratio approaches k as α → ∞.

4.1 A Family of Cost-Sensitive Online Algorithms

Definition 3. For any online paging algorithm A, we define Ad as the algorithm that acts like A,
except that for each ri, it evicts page(ri) at time i + d if this page has not been requested by that
time and is still in the cache. In this case, we say that page(ri) expires at time i+ d. We say that a
page suffers an early eviction if it is evicted as a result of a capacity miss, according to A’s eviction
policy. Thus, if page(ri) is not requested or evicted early within [i, i+ d], it will reside in cache for
d+ 1 requests.

We restrict our choice of online algorithms in the definition above to marking and conservative
algorithms and set d = ⌊α⌋ = ⌊f/c⌋. Consider A=LRU. For some instances LRU could have a
better cost than LRUα

3. We now show, however, that the cost of LRUα is always at most twice the
cost of LRU, while there exists a sequence for which the cost of LRU is k times worse than the cost
of LRUα, which is the worst possible ratio for a marking algorithm. This direct comparison of two
algorithms can be seen as a variation of relative interval analysis [22] that uses the cost ratio instead
of the cost difference: for algorithms A and B let Min(A,B) = lim infn→∞(min|R|=n{A(R)/B(R)})
and Max(A,B) = lim supn→∞(max|R|=n{A(R)/B(R)}). Then the relative interval of A and B is
I(A,B) = [Min(A,B),Max(A,B)], and I(A,B) ⊆ [γ, δ] if γ ≤ Min(A,B) and Max(A,B) ≤ δ.
Thus, if I(A,B) ⊆ [γ ≥ 1, δ > 1] we say that B dominates A, since on any sequence B is no
worse than A and there is at least one sequence for which B is better than A. Lemma 51 and
Theorem 2 show that I(LRU,LRUα) ⊆ [1/2, k]. Thus, although LRU does not properly dominate
LRUα, the latter is generally preferable to the former. Throughout the proofs in this section we
use the following lemma:

3 To keep notation simple, we refer to A⌊α⌋ as Aα.

8

Lemma 4. [23, Cor. 11] Let two vectors x = (x1, . . . , xn) ≥ 0 and y = (y1, . . . , yn) > 0 be given.
Let π denote a permutation of (1, . . . , n). Then we have

∑n
i=1 xi

∑n
i=1 yi

≤ min
π

max

{

xi
yπ(i)

: 1 ≤ i ≤ n

}

≤ max

{

xi
yπ(i)

: i = 1 ≤ i ≤ n, and fixed π

}

Lemma 5. Let α = f/c be finite. Then Max(LRU,LRUα) = k.

Theorem 2. Assume k ≥ 2. Then, for all sequences R, LRUα(R) ≤ 2 LRU(R), and thus
Min(LRU,LRUα) ≥ 1/2.

Proof. Let R be any sequence. Let F and C denote the faults and cache cost of LRU on R and let
Fα and Cα denote the corresponding costs for LRUα. Let Cα = Cfh +Chh +Cff +Chf + γ, where
Cfh is the cache cost of requests that are faults for LRUα and hits for LRU, and Cff , Chh, and
Chf are defined analogously. γ is the cost of keeping unfinished intervals. We will use the following
properties: (1) every page of a request sequence is kept in LRU’s cache for at least as long as in
LRUα’s cache; and (2) any request that is a fault for LRUα and is a hit for LRU corresponds to a
page that expired in LRUα’s cache.

To see that Property (1) holds, note that if LRU evicts a page σ upon request ri, then either
σ has also expired in LRUα’s cache, or it is evicted at this point on request ri as well. The latter
holds because if σ was evicted from LRU’s cache, then there are k distinct requests since the last
request to σ, and since σ has not expired in LRUα’s cache, there are k − 1 pages in LRUα’s cache
that have not expired either and are younger than σ. Hence upon request ri, LRUα evicts σ as well.
Property (1) implies that every request that is a hit for LRUα is a hit for LRU, and thus Chf = 0.
Property (2) follows from the fact if LRUα evicts a page σ due a capacity miss, then its cache is
full and since all pages stay longer in LRU’s cache, then LRU’s cache holds the same pages and
evicts σ as well, hence the next request to σ is also a fault for LRU.

Property (1) implies as well that LRU’s cache cost is C ≥ Cfh + Fα − F + Cff + Chh + γ.
Moreover, both properties imply that Cfh = ⌊α⌋(Fα − F). Hence,

LRUα(R)

LRU(R)
≤

fFα + c(⌊α⌋(Fα − F) + Chh + Cff + γ)

fF + c(⌊α⌋(Fα − F) + Fα − F + Cff + Chh + γ)

≤
fFα + c⌊α⌋(Fα − F)

fF + c(⌊α⌋(Fα − F) + Fα − F)
(by Lemma 4)

=
αFα + ⌊α⌋(Fα − F)

αF + ⌊α⌋(Fα − F) + Fα − F

It is easy to verify that the above expression is bounded above by 2 if α ≥ 2. The case α < 2 is
covered by the upper bound on the competitive ratio of Aα in Theorem 3. ⊓⊔

4.2 Upper bound on the Competitive Ratio of Aα

We now show that for any marking or conservative algorithm A, the competitive ratio of Aα adapts
to the relative costs of faults and hits, being at most 2 when the cost of faults is relatively small, and
matching the competitiveness of traditional paging algorithms when the cache cost is negligible.1

9

Theorem 3. Let A be any marking or conservative algorithm and let α = f/c. Assume k ≥ 2.

The competitive ratio of Aα is at most 2− 1+α−⌊α⌋
α+1 if α < k and min

{

k, α(k+1)
k+α−1

}

if α ≥ k.

Lemma 6 gives a lower bound on the competitive ratio for Aα, which matches the upper bound
for α < k − 1. For larger values of α the gap between upper and lower bounds is reduced as α
grows. Lemma 7 gives a straightforward smaller lower bound for any online algorithm.1

Lemma 6. For A marking or conservative, the competitive ratio of Aα is at least 2 − 1+α−⌊α⌋
α+1 if

α < k − 1 and αk+k2/2
α+k2

otherwise.

Lemma 7. The competitive ratio of any online deterministic algorithm is at least k(α+1)
α+k2 .

The classic paging cost model has been criticized for not being able to capture the benefit of
online algorithms on sequences with high locality of reference [11]. For example, while in prac-
tice LRU is likely to outperform FWF for sequences with high locality, both algorithms perform
equally according to competitive analysis in the classic model. Various studies have analyzed the
competitiveness of paging algorithms in a parameterized manner, attempting to capture relevant
characteristics of sequences such as, for example, locality and typical memory accesses [23], and
attack rate [24]. We now give a parameterized competitive ratio for Aα that varies with the locality
of reference of the input sequence, for which we use the definition in terms of the average phase
length in its k-phase partition.1

Theorem 4. Let A be any marking or conservative algorithm, let α = f/c, and let k ≥ 2. Let R be
any request sequence and let φ be the number of phases in R’s k-phase partition. Let L(R) = |R|/φ.

Then Aα(R)/OPT (R) ≤ 2 if L(R) > kα(α− 2), and Aα(R)
OPT (R) ≤ 1 + αk+1−α

α+k−1+L(R) otherwise.

4.3 Real World Sequences

We measured the performance of various algorithms on real world cache traces collected from 4
applications using VMTrace (for Linux) and the Etch tool (on Windows NT)[25]. We obtained
the traces from [26] and truncated them to 3 × 106 entries. Table 4.3 shows a description of the
sequences. We simulated LRU, LRUα, FWF, FWFα, FIFO, FIFOα, and OPT on these sequences.
For each sequence, we used the size of cache that would yield a fault rate of 1% and 0.1% for LRU.
Figure 2 shows the cost ratio compared to OPT, fault rate, and average cache usage for the espresso
sequence for two cache sizes. Results for other sequences are shown in Appendix B. For the total cost
we set c = 1 and f = α. We implemented the optimal offline (Algorithm 1) using the reduction to
minimum cost flow in [18], and solved the minimum cost flow instances using the implementation of
the cost scaling algorithm from the LEMON C++ library [27]. Results in these practical instances
show that the cost of Aα algorithms adapt nicely to the value of α, and that their fault rate and
cache usage approaches those ones of the optimal offline. In fact, the ratio Aα/OPT is never more
than 2 and in most cases is close to 1. As suggested by Theorem 4, the cost ratio of Aα algorithms
improves for sequences with higher locality. Note as well that as α grows, the performance of the
traditional marking algorithms gets closer to that of its cost-sensitive counterpart, which is more
noticeable for instances with smaller caches.

10

Application Description Length Avg. phase length

acroread (Windows NT) Acrobat Reader 3× 106 722 (k=15) 19108 (k=20)
espresso (Linux) circuit simulator 3× 106 196 (k=5) 1502 (k=7)
gs (Linux) GhostScript 3.33 3× 106 542 (k=16) 18405 (k=40)
grobner (Linux) Grobner basis functions 3× 106 330 (k=8) 9918 (k=22)

Table 1. Description of input sequences used in simulations.

5 Conclusions

We introduced a model for paging with minimum cache usage and presented a cost-sensitive family
of online algorithms whose performance adapts to the relative costs of cache and faults. The cost
model that we propose is able to capture locality of reference, yielding a competitive ratio of at most
2 for inputs with high locality. Experiments on request sequences collected from actual programs
agree with the theoretical results.

The preliminary study of this model suggest various directions. It would be interesting to show
a better lower bound for online algorithms, and to propose and analyze other online algorithms,
including randomized ones. A natural direction of research would be to evaluate the model in an
application, either in theory or in practice. For example, it would be interesting to study and design
a global shared caching strategy that varies the relative cache and fault cost for various threads so
that the cooperative execution leads to an advantage in overall performance.

6 Acknowledgments

We would like to thank Francisco Claude, Robert Fraser, Patrick Nicholson, and Hiren Patel for
insightful discussions. We are also thankful to the anonymous reviewers of the conference version
of this paper for their useful comments.

References

1. Chrobak, M., Karloff, H., Payne, T., Vishwanathan, S.: New results on server problems. SIAM J. Discret. Math.
4(2) (March 1991) 172–181

2. Irani, S.: Page replacement with multi-size pages and applications to web caching. In: Proceedings of STOC,
ACM (1997) 701–710

3. Young, N.E.: On-line file caching. In: Proceedings of SODA, Society for Industrial and Applied Mathematics
(1998) 82–86

4. Barve, R.D., Grove, E.F., Vitter, J.S.: Application-controlled paging for a shared cache. SIAM J. Comput. 29
(February 2000) 1290–1303

5. Cao, P., Felten, E.W., Li, K.: Application-controlled file caching policies. In: Proceedings of USTC - Volume 1.
(1994) 171–182

6. Feuerstein, E., Strejilevich de Loma, A.: On-line multi-threaded paging. Algorithmica 32(1) (2002) 36–60
7. Hassidim, A.: Cache replacement policies for multicore processors. In Yao, A.C.C., ed.: ICS, Tsinghua University

Press (2010) 501–509
8. López-Ortiz, A., Salinger, A.: Paging for multi-core shared caches. In Goldwasser, S., ed.: ITCS, ACM (2012)

113–127
9. Pagiamtzis, K., Sheikholeslami, A.: Content-addressable memory (CAM) circuits and architectures: A tutorial

and survey. IEEE Journal of Solid-State Circuits 41(3) (March 2006) 712–727
10. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2) (1985)

202–208
11. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge University Press, New

York, NY, USA (1998)

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80

ra
tio

alpha

Ratio espresso k=5

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

ra
tio

alpha

Ratio espresso k=7

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 10 20 30 40 50 60 70 80

fa
u

lt
ra

te

alpha

Faults espresso k=5

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 20 40 60 80 100

fa
u

lt
ra

te

alpha

Faults espresso k=7

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60 70 80

a
vg

.
ca

ch
e

alpha

Cache espresso k=5

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 1

 2

 3

 4

 5

 6

 7

 0 20 40 60 80 100

a
vg

.
ca

ch
e

alpha

Cache espresso k=7

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

Fig. 2. Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd, FIFO, FIFOd, and OPT (with
d = α) on sequence “espresso” of length 3×106 with cache sizes k = 5 (average phase length 196) and k = 7 (average
phase length 1502).

12

12. Belady, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Systems Journal 5(2) (1966)
78–101

13. Cao, P., Irani, S.: Cost-aware www proxy caching algorithms. In: Proceedings of USITS. (1997) 18–18
14. Torng, E.: A unified analysis of paging and caching. Algorithmica 20 (1998) 194–203
15. Csirik, J., Imreh, C., Noga, J., Seiden, S.S., Woeginger, G.J.: Buying a constant competitive ratio for paging.

In: Proceedings of ESA. (2001) 98–108
16. Miyatake, H., Tanaka, M., Mori, Y.: A design for high-speed low-power cmos fully parallel content-addressable

memory macros. Solid-State Circuits, IEEE Journal of 36(6) (jun 2001) 956 –968
17. Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times. Discrete Appl. Math. 18(1)

(November 1987) 1–8
18. Bouzina, K.I., Emmons, H.: Interval scheduling on identical machines. Journal of Global Optimization 9 (1996)

379–393 10.1007/BF00121680.
19. Wagner, S.: Restricted Cache Scheduling. PhD thesis, Michigan State University (2001)
20. Brehob, M., Wagner, S., Torng, E., Enbody, R.J.: Optimal replacement is np-hard for nonstandard caches. IEEE

Trans. Computers 53(1) (2004) 73–76
21. Chrobak, M., Woeginger, G.J., Makino, K., Xu, H.: Caching is hard - even in the fault model. Algorithmica

63(4) (2012) 781–794
22. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging algorithms. Theor. Comput. Sci.

410(38-40) (2009) 3694–3701
23. Panagiotou, K., Souza, A.: On adequate performance measures for paging. In: Proceedings of STOC, ACM

(2006) 487–496
24. Moruz, G., Negoescu, A.: Outperforming lru via competitive analysis on parametrized inputs for paging. In:

Proceedings of SODA. (2012) 1669–1680
25. Kaplan, S.F., Smaragdakis, Y., Wilson, P.R.: Flexible reference trace reduction for vm simulations. ACM Trans.

Model. Comput. Simul. 13(1) (January 2003) 1–38
26. : http://www.cs.amherst.edu/∼ sfkaplan/research/trace-reduction/index.html Retrieved on 06/14/12.
27. : http://lemon.cs.elte.hu/trac/lemon

13

A Omitted Proofs

Lemma 1. Let R be a request sequence. Let I ′(R) = I(R) \ {Ii : Ii is unfinished}. Let S ⊂ I ′(R)
be a feasible schedule of I ′(R) on k − 1 machines. Then R can be served with a cache of size k
such that all requests rj with Ii ∈ S and j = i + |Ii| + 1 are hits, with a total cache usage of
|R|+

∑

Ii∈S
|Ii|.

Proof. Given a feasible schedule S, R can be served, at each request ri, by bringing page(ri) to the
cache, and evicting it before serving request ri+1 if and only if Ii /∈ S. Thus, a page σ requested
in ri that is not evicted before serving ri+1 will remain in cache at least until the next request to
σ, resulting in a hit. Since S is valid schedule on k − 1 machines, there at most k − 1 overlapping
intervals at any time, and thus there are enough cells to keep the corresponding pages in cache.
Moreover, since there are k cells in cache and at most k − 1 pages being held in cache, there is
always one cell to store the page of the current request at each step, including all requests that
result in faults. Note as well that S does not contain any unfinished interval and thus for all
Ii ∈ S, page(re(S)+1) exists and is equal to page(ri). Since all pages that correspond to requests
that result in hits are kept in cache for the duration of their intervals, and an extra cell is used for
the page of each request, the cache usage is |R|+

∑

Ii∈S
|Ii|. ⊓⊔

Lemma 5. Let α = f/c be finite. Then Max(LRU,LRUα) = k.

Proof. Note that since LRU is k-competitive, then for all R, LRU(R)/LRUα(R) ≤ k. Consider
the sequence R = {σ1, σ2, . . . , σk−1, (σk)

x} used in the proof of Lemma 3. The cost of LRU is
at least fk + xkc, while LRUα keeps the first k − 1 pages only for ⌊α⌋ requests, incurring a
cost of fk + c(⌊α⌋(k − 1) + x). Since x can be made arbitrarily large and α = f/c is bounded,
LRU(R)/LRUα(R) ≥ k, and the results follows. ⊓⊔

Theorem 3. Let A be any marking or conservative algorithm and let α = f/c. Assume k ≥ 2.

The competitive ratio of Aα is at most 2− 1+α−⌊α⌋
α+1 if α < k and min

{

k, α(k+1)
k+α−1

}

if α ≥ k.

Proof. Let R be any request sequence and let α < k. Since Aα keeps each page for no more than
⌊α⌋ + 1 ≤ k requests (including the request to the page itself), there can be at most k pages in
the cache at any given time. Thus, Aα does not incur early evictions. Let I(R) be the interval
representation of R. Aα will incur a hit on every request following an interval Ii ∈ I(R) such that
|Ii| ≤ ⌊α⌋, and it will fault on any request following a longer interval. Let w be the number of
distinct pages in R. Aα will incur an extra cost of at most w(f + c⌊α⌋), since it will fault on each
first request to a page, and will hold the page corresponding to their last request for at most ⌊α⌋
requests. Thus, Aα(R) ≤ c(

∑

|Ii|≤α |Ii|+n)+ (F +w)(f + c⌊α⌋), where F is the number of feasible
intervals that are longer than α. Since f < ck, OPT can schedule all intervals of length at most f/c
and will not schedule longer intervals. In addition, OPT will fault in every first request to a page
but will not schedule any unfinished intervals. Thus, OPT (R) ≥ c(

∑

|Ii|≤α |Ii| + n) + f(F + w).
Thus,

Aα(R)

OPT (R)
≤

c(
∑

|Ii|≤α |Ii|+ n) + (F + w)(f + c⌊α⌋)

c(
∑

|Ii|≤α |Ii|+ n) + f(F + w)

The above ratio is maximum when F = n − w, and thus Aα(R)
OPT (R) ≤ α+⌊α⌋+1

α+1 = 2 − 1+α−⌊α⌋
α+1 ≤

2− 1
α+1 .

14

Assume now α ≥ k. Consider a phase j in the k-phase partition of R that is not the last phase.
Although A is marking or conservative, Aα might incur more than k faults in a phase, since it
might evict a marked page during the phase. However, a marked page will be evicted only when
it expires, and not due to capacity misses. Let m be the number of requests in the phase. Call a
request external if it is the first request to a page in the phase (i.e., this is the first request to this
page in R, or the request is the end of an interval that started in an earlier phase), and internal
otherwise (i.e., the interval ending in the request started in phase j). Let E and I denote the sets
of intervals ending in external and internal requests, respectively, and let FI and FE be the number
of faults of Aα on internal and external requests in phase j, respectively. Let HI =

∑

Ii∈I,|Ii|≤α |Ii|

be the interval cost of hits on internal requests. Let HE =
∑

Ii∈E′ |Ii|, where E′ ⊆ E is the set of
intervals ending in external requests that result in hits and let G =

∑

Ii∈E\E′ |Ii|. The total cost of
Aα in phase j for these requests is

Aα = f(FI + FE) + c(HI +HE +m+G+ ⌊α⌋FI)

Note that we must add the cost of unfinished intervals to the total cost of Aα. These correspond
to last requests to certain pages in R. Instead of charging the cost of each of these requests to the
phase when they are requested, we charge it to the phase in which the corresponding page was
first requested in R. Let uj be the number of first requests to a page during phase j. Aα pays at
most ujα for keeping these pages in the cache after they are last requested. The faults on these uj
requests is included in FE . Thus, the cost of Aα in phase j becomes

Aj
α = f(FI + FE) + c(HI +HE +m+G+ ⌊α⌋(FI + uj))

On internal requests, an optimal algorithm will fault exactly on the same requests as Aα, since
OPT does not schedule intervals longer than α and it can certainly schedule all other internal
intervals. Note that this implies an upper bound of k on the cost ratio in each phase: the total
cache cost of Aα in the phase is at most mk, and the number of external faults is FE ≤ k. Since
OPT incurs at least one external fault in the phase and incurs a cache cost of at least m, we have
Aj

α/OPTj ≤ (f(FI + FE) + cmk)/(f(FI + 1) + cm) ≤ k.

We can provide a more refined analysis taking into account the actual use of cache of Aα. Since
OPT faults on the same pages as Aα on internal requests, OPT pays fFI + cHI for these requests.
However, OPT might incur hits on external requests that resulted in faults for Aα. Observe first
that all external requests that result in hits for Aα are also hits for OPT. To see this, note that any
hits for Aα on external requests must be to pages that were requested in phase j−1. Otherwise, the
page should have been evicted due to a capacity miss or it expired during phase j−1. In particular,
the first request in phase j must be a fault for Aα. Hence, the cache cost of every external hit for
Aα is smaller than the cache cost of this first request. Therefore, OPT can schedule all intervals
corresponding to Aα’s external hits (because there are at most k − 1 such intervals) and it will
schedule them because their length is at most α. The cache cost of these hits for OPT is then cHE .

Consider now the external requests that result in faults for Aα. The cost of these intervals for
Aα is G = Eh + Ef , where Eh and Ef are the interval costs paid by Aα on external intervals that
end in requests resulting in hits and faults for OPT, respectively. Let hOPT be the number of such
hits. The cost of these hits for OPT is at least Eh + hOPT . In addition, the cost for external faults
is FOPTf , where FOPT = k − hOPT − k + FE = FE − hOPT ≥ u′j , where u′j = max{uj , 1}, since
OPT faults in any first request during the phase and it must incur at least one external fault in

15

the phase. Thus, the cost of OPT in phase j is at least

OPT j ≥ f(FI + FOPT) + c(HI +HE +m+ Eh + hOPT)

Therefore,

Aj
α

OPT j
≤

f(FI + FE) + c(HI +HE +m+G+ ⌊α⌋(FI + uj))

f(FI + FOPT) + c(HI +HE +m+ Eh + hOPT)
(1)

≤
α(2FI + FE + uj) +HI +HE +m+ Eh + Ef

α(FI + FOPT) +HI +HE +m+ Eh + hOPT
(2)

≤
α(2FI + FE + FOPT) +HI +HE +m+ Eh

α(FI + FOPT) +HI +HE +m+ Eh + hOPT
(since Ef ≤ α(FOPT − uj)) (3)

≤ max

{

2,
α(FE + FOPT)

αFOPT + hOPT

}

(by Lemma 4) (4)

= max

{

2,
α(FE + FOPT)

αFOPT + FE − FOPT

}

(5)

Note that the second expression in (5) is an increasing function FE and decreases with FOPT

(since α ≥ k ≥ 2 and FOPT ≥ u′j), and since u′j ≤ FOPT ≤ FE ≤ k,

Aj
α

OPT j
≤ max

{

2,
α(k + u′j)

u′j(α− 1) + k

}

Finally, the right expression above is maximum when u′j is minimum, hence

Aj
α

OPT j
≤ max

{

2,
α(k + 1)

k + α− 1

}

=
α(k + 1)

k + α− 1
(since α ≥ 2)

Thus, the cost ratio of each phase is r = min
{

k, α(k+1)
k+α−1

}

. Adding up all the costs for all phases

but the last one we have
∑

j A
j
α/

∑

j OPT j ≤ r, and since the cost of Aα in the last phase is at
most 2fk, we have A(R) ≤ rOPT (R) + 2fk. ⊓⊔

Lemma 6. For A marking or conservative, the competitive ratio of Aα is at least 2 − 1+α−⌊α⌋
α+1 if

α < k − 1 and αk+k2/2
α+k2

otherwise.

Proof. Assume that α < k − 1 and let R be the sequence such that each request is for a page
not in Aα’s cache among pages {σ1, σ2, . . . , σ⌊α⌋+2}. A page not in cache always exists since Aα

keeps each page for at most ⌊α⌋ requests and thus there are at most ⌊α⌋+ 1 < k pages in cache at
any give time. Since the cache is never full Aα keeps each page for exactly ⌊α⌋ requests and thus
it pays f + c(⌊α⌋ + 1) per request. Since the hit cost of each request is ⌊α⌋ + 1 > α, an optimal
strategy will evict each page after it is served, and thus its cost per request is f + c. Therefore,
Aα(R)/OPT (R) ≥ (α+ ⌊α⌋ + 1)/(α + 1) = 2− 1+α−⌊α⌋

α+1 > 2− 2
α+1 .

16

For the case α ≥ k − 1, let R again be the sequence that requests the page not in Aα’s cache,
but now among {σ1, σ2, . . . , σk+1}. Consider a phase in the k-phase partition of R. Since Aα is
marking or conservative, it does not evict any pages that are requested in the same phase unless
they expire. However, since ⌊α⌋ ≥ k−1, and each phase has length k, a page could expire only after
the last request of the phase. Thus, no pages that were requested during the phase are evicted and
at the end of the phase the cache will necessary be full. Hence, in each phase Aα incurs k faults
and uses at least

∑k
i=1 i = k(k + 1)/2 cache, for a cost of fk + ck(k + 1)/2. In turn, and optimal

algorithm can keep k pages in cache at all times an incur at most one fault in the phase, for a cost
of at most f + ck2. Thus, Aα(R)/OPT (R) ≥ (αk + k2/2)/(α + k2). ⊓⊔

Lemma 7. The competitive ratio of any online deterministic algorithm is at least k(α+1)
α+k2 .

Proof. Let R be the sequence that request the page not in A’s cache among {σ1, σ2, . . . , σk+1}.
Since A faults on every request and uses at least one cell per request A(R) ≥ fn + cn. OPT
can fault at most once every k requests and uses at most kn cache. Thus A(R)/OPT (R) ≥
n(f + c)/((n/k)f + knc) = k(α+ 1)/(α + k2).

Theorem 4. Let A be any marking or conservative algorithm, let α = f/c, and let k ≥ 2. Let R be
any request sequence and let φ be the number of phases in R’s k-phase partition. Let L(R) = |R|/φ.

Then Aα(R)/OPT (R) ≤ 2 if L(R) > kα(α− 2), and Aα(R)
OPT (R) ≤ 1 + αk+1−α

α+k−1+L(R) otherwise.

Proof. From the proof of Theorem 3, Eq. (3), the cost of Aα in the j-th phase is Aj
α ≤ c(α(2FI +

FE +FOPT)+HI +HE+m+Eh), where FI and FE are the number of internal and external faults,
resp.,HI andHE the cost of intervals that result in internal and external hits, resp.,m is the number
of requests in the phase, and Eh is the interval cost of requests that are faults for LRUα and hits for
OPT. The cost of OPT in this phase is at least OPT j ≥ f(FI+FOPT)+c(HI+HE+m+Eh+hOPT).
Summing over j we obtain

∑

Aj
α

∑

OPT j
≤

α(2
∑

FI +
∑

FE +
∑

FOPT) + n+
∑

HI +
∑

HE +
∑

Eh

α(FI +
∑

FOPT) +
∑

HI +
∑

HE + n+
∑

Eh +
∑

hOPT
(6)

≤ max

{

2,
α(

∑

FE +
∑

FOPT) + n

(α− 1)
∑

FOPT +
∑

FE + n

}

(7)

Suppose α ≥ 2. Then the above expression is an increasing function of FE , and thus the ratio
is maximal for

∑

FE = φk. Let L = L(R) = n/φ. Suppose that L ≤ k(α2 − 2α). Then it is not
hard to verify that the above expression decreases with FOPT . Since

∑

FOPT ≥ φ, and φ = n/L,

Aα(R)

OPT (R)
≤ max

{

2,
α((n/L)k + (n/L)) + n

(α− 1)(n/L) + k(n/L) + n

}

= max

{

2,
α(k + 1) + L

α+ k − 1 + L

}

= max

{

2, 1 +
k(α − 1) + 1

α+ k − 1 + L

}

Now, if L > k(α2−2α), then the ratio is maximized when
∑

FOPT = φk. Substituting
∑

FOPT

in (7) above we obtain Aα(R)
OPT (R) ≤ max

{

2, 1 + αk
αk+L

}

= 2. Finally, by Theorem 3, if α < 2 the

upper bound is 2 as well. ⊓⊔

17

B Simulation Results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200

ra
tio

alpha

Ratio gs k=16

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400

ra
tio

alpha

Ratio gs k=40

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200

fa
u
lt

ra
te

alpha

Faults gs k=16

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200 250 300 350 400

fa
u
lt

ra
te

alpha

Faults gs k=40

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200

a
vg

.
ca

ch
e

alpha

Cache gs k=16

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

a
vg

.
ca

ch
e

alpha

Cache gs k=40

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

Fig. 3. Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd, FIFO, FIFOd, and OPT (with
d = α) on sequence “gs” of length 3 × 106 with cache sizes k = 16 (average phase length 542) and k = 40 (average
phase length 18405).

18

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500

ra
tio

alpha

Ratio acroread k=15

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

ra
tio

alpha

Ratio acroread k=45

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 100 200 300 400 500 600 700 800 900 1000

fa
u
lt

ra
te

alpha

Faults acroread k=15

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200 250 300 350 400

fa
u
lt

ra
te

alpha

Faults acroread k=45

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400 500 600 700 800 900 1000

a
vg

.
ca

ch
e

alpha

Cache acroread k=15

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400

a
vg

.
ca

ch
e

alpha

Cache acroread k=45

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

Fig. 4. Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd, FIFO, FIFOd, and OPT (with
d = α) on sequence “acroread” of length 3 × 106 with cache sizes k = 15 (average phase length 722) and k = 20
(average phase length 19108).

19

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100 120

ra
tio

alpha

Ratio grobner k=8

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250

ra
tio

alpha

Ratio grobner k=22

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 20 40 60 80 100 120 140 160

fa
u
lt

ra
te

alpha

Faults grobner k=8

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 50 100 150 200 250

fa
u
lt

ra
te

alpha

Faults grobner k=22

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160

a
vg

.
ca

ch
e

alpha

Cache grobner k=8

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

 0

 5

 10

 15

 20

 0 50 100 150 200 250

a
vg

.
ca

ch
e

alpha

Cache grobner k=22

LRUd
LRU

FWFd
FWF

FIFOd
FIFO
OPT

Fig. 5. Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd, FIFO, FIFOd, and OPT (with
d = α) on sequence “grobner” of length 3×106 with cache sizes k = 8 (average phase length 330) and k = 22 (average
phase length 9118).

20

